
TP663851.fm Page 1 Monday, October 17, 2011 11:48 AM
HP NonStop SQL/MX
Release 3.1 Query
Guide
Abstract

This guide describes how to understand query execution plans and write optimal
queries for an HP NonStop™ SQL/MX database. It is intended for database
administrators and application developers who use NonStop SQL/MX to query an
SQL/MX database and who have a particular interest in issues related to query
performance.

Product Version

NonStop SQL/MX Releases 3.1

Supported Release Version Updates (RVUs)

This publication supports J06.12 and all subsequent J-series RVUs and H06.23 and all
subsequent H-series RVUs, until otherwise indicated by its replacement publications.

Part Number Published

663851-001 October 2011

TP663851.fm Page 2 Monday, October 17, 2011 11:48 AM
Document History
Part Number Product Version Published

640323-001 NonStop SQL/MX Release 3.0 February 2011

663851-001 NonStop SQL/MX Release 3.1 October 2011

TP663851.fm Page 1 Monday, October 17, 2011 11:48 AM
Legal Notices
 Copyright 2011 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989,
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986,
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California. OSF acknowledges the following
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold,
Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

TP663851.fm Page 2 Monday, October 17, 2011 11:48 AM

HP NonStop SQL/MX Release
3.1 Query Guide

TP663851.fm Page i Monday, October 17, 2011 11:48 AM
Index Examples Figures Tables
Legal Notices

What’s New in This Manual ix

Manual Information ix

New and Changed Information ix

Changes to the SQL/MX 3.1 manual: ix

Changes to the H06.22/J06.11 manual: ix

Changes to the H06.20/J06.09 manual: x

Changes to the H06.19/J06.08 Manual x

Changes to the H06.16/J06.05 Manual x

Changes to the H06.05 Manual xi

About This Manual xiii

Audience xiii

Organization xiii

Related Documentation xiv

Notation Conventions xvii

Hypertext Links xvii

General Syntax Notation xvii

Change Bar Notation xix

1. Compiling and Executing a Query
Overview 1-1

How the Compiler Works 1-2

Compilation Steps 1-2

Parsing, Binding, and Normalizing 1-3

Query Plan Caching 1-5

Improving Query Performance 1-6

 Factors That Can Affect Compile Time 1-19

How the Executor Processes the Plan 1-19

2. Accessing SQL/MX Data
Access Methods 2-1
 Hewlett-Packard Company—663851-001
i

Contents 3. Keeping Statistics Current

TP663851.fm Page ii Monday, October 17, 2011 11:48 AM
Storage-Key Access 2-1

Index-Only Access 2-2

Alternate Index Access 2-4

Full Table Scan 2-5

Understanding Unexpected Access Paths 2-9

MultiDimensional Access Method (MDAM) 2-13

Specifying MDAM 2-13

Comparing MDAM With Single Subset Access 2-14

How MDAM Processes Queries 2-15

Influencing the Optimizer to Use MDAM 2-17

Controlling the Number of Key Columns Used by MDAM 2-18

MDAM’s Use of DENSE and SPARSE Algorithms 2-18

3. Keeping Statistics Current
Histogram Statistics 3-1

Updating Histogram Statistics 3-2

Sampling and UPDATE STATISTICS 3-5

Performance Issues and Accuracy in Sampling 3-7

Collecting Statistics for Multiple Columns 3-8

Testing the Results of UPDATE STATISTICS 3-8

Testing the Results for SQL/MP Tables 3-8

Testing the Results for SQL/MX Tables 3-9

4. Reviewing Query Execution Plans
Displaying Execution Plans 4-1

Using the EXPLAIN Function 4-1

Using the EXPLAIN Statement Shortcut 4-2

Using the Visual Query Planner 4-2

The Optimizer and Executor 4-3

Description of the EXPLAIN Function Results 4-3

Displaying Selected Columns of the Execution Plan 4-5

Extracting EXPLAIN Output From Embedded SQL Programs 4-6

Using the EXPLAIN Statement to Review the Execution Plan 4-6

Optimization Tips 4-9

Verifying DAM Access 4-13

Using the Visual Query Planner 4-14

Visual Query Planner Requirements 4-14

Getting Help for Visual Query Planner 4-14

Graphically Displaying Execution Plans 4-14

Reviewing Run-Time Statistics 4-21
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
ii

Contents 5. Forcing Execution Plans

TP663851.fm Page iii Monday, October 17, 2011 11:48 AM
Simple Query Example 4-22

Using Measure 4-22

5. Forcing Execution Plans
Why Force a Plan? 5-1

Checklist for Forcing Plans 5-2

Displaying the Optimized Plan 5-2

Reviewing the Optimized Plan 5-3

Translating the Operator Tree to Text Format 5-5

Using SHOWSHAPE and SET SHOWSHAPE to View the Text Format 5-5

Using Visual Query Planner to Get the Shape 5-6

Manually Writing the Shape 5-7

Writing the Forced Shape Statement 5-8

Scope of CONTROL QUERY SHAPE 5-8

Shaping Portions of an Operator Tree 5-9

Using Logical and Physical Specifications 5-9

Forcing Shapes on Views 5-10

What Happens if No Plan Is Returned? 5-10

Migrating Forced Shapes From NonStop SQL/MP 5-10

Forcing Group By Operations to the Data Access Manager 5-10

Forcing Parallel Plans 5-13

6. Query Plan Caching
Overview 6-1

Types of Cacheable Queries 6-2

Examples of Cacheable Expressions 6-3

Examples of Queries That Are Not Cacheable 6-4

Choosing an Appropriate Size for the Query Cache 6-6

Query Plan Caching Statistics 6-6

SYSTEM_DEFAULTS Table Settings for Query Plan Caching Attributes 6-7

QUERYCACHE Function 6-9

QUERYCACHEENTRIES Function 6-11

Querying the Query Plan Caching Virtual Tables 6-13

Reviewing the Query Plan Caching Statistics With the DISPLAY_QC and
DISPLAY_QC_ENTRIES Commands 6-15

7. SQL/MX Operators
Operators 7-5

BLOCKED_UNION Operator 7-5

CALL Operator 7-6
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
iii

Contents 7. SQL/MX Operators

TP663851.fm Page iv Monday, October 17, 2011 11:48 AM
CURSOR_DELETE Operator 7-8

CURSOR_UPDATE Operator 7-9

ESP_ACCESS Operator 7-11

ESP_EXCHANGE Operator 7-12

EXPLAIN Operator 7-16

EXPR Operator 7-16

EXPLAIN_CMD Operator 7-17

FILE_SCAN Operator 7-17

FILE_SCAN_UNIQUE Operator 7-19

FirstN Operator 7-22

HASH_GROUPBY Operator 7-22

HASH_PARTIAL_GROUPBY_LEAF Operator 7-24

HASH_PARTIAL_GROUPBY_ROOT Operator 7-25

HYBRID_HASH_ANTI_SEMI_JOIN Operator 7-26

HYBRID_HASH_JOIN Operator 7-27

HYBRID_HASH_SEMI_JOIN Operator 7-28

INDEX_SCAN Operator 7-29

INDEX_SCAN_UNIQUE Operator 7-31

INSERT Operator 7-33

INSERT_VSBB Operator 7-34

LEFT_HYBRID_HASH_JOIN Operator 7-35

LEFT_MERGE_JOIN Operator 7-36

LEFT_NESTED_JOIN Operator 7-38

LEFT_ORDERED_HASH_JOIN Operator 7-39

MATERIALIZE Operator 7-40

MERGE_ANTI_SEMI_JOIN Operator 7-41

MERGE_JOIN Operator 7-42

MERGE_SEMI_JOIN Operator 7-44

MERGE_UNION Operator 7-45

MultiUnion Operator 7-46

NESTED_ANTI_SEMI_JOIN Operator 7-46

NESTED_JOIN Operator 7-47

NESTED_SEMI_JOIN Operator 7-49

NEXTVALUEFOR Operator 7-50

NESTED_SEMI_JOIN Operator 7-50

7-50

ORDERED_HASH_JOIN Operator 7-52

ORDERED_HASH_SEMI_JOIN Operator 7-53

ORDERED_UNION Operator 7-54
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
iv

Contents 8. Parallelism

TP663851.fm Page v Monday, October 17, 2011 11:48 AM
PACK Operator 7-56

PARTITION_ACCESS Operator 7-57

PROBE_CACHE Operator 7-59

ROOT Operator 7-59

SAMPLE Operator 7-61

SAMPLE_FILE_SCAN Operator 7-62

SEQUENCE Operator 7-63

SEQUENCEGENERATOR Operator 7-65

The description field for the operator contains: 7-65

SHORTCUT_SCALAR_AGGR Operator 7-66

SORT Operator 7-67

SORT_GROUPBY Operator 7-68

SORT_PARTIAL_AGGR_LEAF Operator 7-69

SORT_PARTIAL_AGGR_ROOT Operator 7-69

SORT_PARTIAL_GROUPBY_LEAF Operator 7-70

SORT_PARTIAL_GROUPBY_ROOT Operator 7-71

SORT_SCALAR_AGGR Operator 7-73

SPLIT_TOP Operator 7-74

SUBSET_DELETE Operator 7-75

SUBSET_UPDATE Operator 7-76

TRANSPOSE Operator 7-78

TUPLE_FLOW Operator 7-79

TUPLELIST Operator 7-80

UNARY_UNION Operator 7-81

UNIQUE_DELETE Operator 7-83

UNIQUE_UPDATE Operator 7-84

UNPACK Operator 7-85

VALUES Operator 7-86

8. Parallelism
Types of Parallelism in NonStop SQL/MX 8-1

Partitioned Parallelism 8-1

Pipelined Parallelism 8-2

Independent Parallelism 8-2

Parallel Execution Principles 8-2

Query Plan as a Data Flow Tree 8-2

Exchange Nodes and Plan Fragments 8-3

DAM and ESP Parallelism 8-5

Parallel Plan Generation 8-6
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
v

Contents Index

TP663851.fm Page vi Monday, October 17, 2011 11:48 AM
Scan, Update, and Delete 8-6

Join With Matching Partitions 8-6

Join With Parallel Access to the Inner Table 8-10

Unions 8-11

Group Bys 8-11

Sort 8-12

Insert and Select 8-12

Combining Different Types of Parallelism 8-12

Explaining Parallel Plans 8-12

How to Determine if You Have a Parallel Plan 8-12

Plan Fragments 8-16

Degree of Parallelism 8-21

Influencing Parallel Plans 8-24

System Default Settings That Affect Parallelism 8-25

Index

Examples
Example 1-1. OR Optimization DDL 1-13

Example 1-2. EXPLAIN statement OPTIONS ‘f’ Output for Query Using
CHECK_CONSTRAINT_PRUNING 1-18

Figures
Figure 1-1. EXPLAIN statement OPTIONS ‘f’ Output for Nested Join With Indexes

LX1 and LX2 From LINEITEM Table 1-11

Figure 4-1. Left Linear and Zig-Zag Trees 4-13

Figure 4-2. Visual Query Planner 4-16

Figure 5-1. Query Plan Output in Visual Tree Format 5-4

Figure 5-2. Group By Operator Not Using DAM 5-11

Figure 5-3. GROUP BY Operator at the DAM Level 5-12

Figure 5-4. Two GROUP BY Operations 5-12

Figure 5-5. Query Tree for the Forced Plan 5-14

Figure 5-6. Logical Specification and Lower Exchange Operators 5-15

Figure 5-7. Type2 Hash Join 5-16

Figure 8-1. Matching Partitions Join Using ESP Parallelism 8-14

Figure 8-2. Serial Hybrid Hash Join Using DAM Parallelism 8-15

Figure 8-3. EXPLAIN statement OPTIONS 'f' SQLQUERY Output for Sample Query
Using ESP Parallelism 8-18

Figure 8-4. Query Tree With ESP Parallelism 8-19

Figure 8-5. Plan Fragment Boundary 8-19
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
vi

Contents Tables

TP663851.fm Page vii Monday, October 17, 2011 11:48 AM
Figure 8-6. Sample Query Plan Showing Plan Fragments 8-21

Figure 8-7. EXPLAIN statement OPTIONS 'f' SQLQUERY Output for Sample Query
Using DAM Parallelism 8-22

Figure 8-8. Query Tree for Sample Plan Using DAM Parallelism 8-23

Tables
Table 1-1. Valid Queries and Operators for OLT Optimization 1-9

Table 3-1. Histogram Temporary Tables 3-2

Table 3-2. Histogram Statistics Tables 3-3
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
vii

Contents

TP663851.fm Page viii Monday, October 17, 2011 11:48 AM
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
viii

TP663851.fm Page ix Monday, October 17, 2011 11:48 AM
What’s New in This Manual

Manual Information
Abstract

This guide describes how to understand query execution plans and write optimal
queries for an HP NonStop™ SQL/MX database. It is intended for database
administrators and application developers who use NonStop SQL/MX to query an
SQL/MX database and who have a particular interest in issues related to query
performance.

Product Version

NonStop SQL/MX Releases 3.1

Supported Release Version Updates (RVUs)

This publication supports J06.12 and all subsequent J-series RVUs and H06.23 and all
subsequent H-series RVUs, until otherwise indicated by its replacement publications.

Document History

New and Changed Information

Changes to the SQL/MX 3.1 manual:

 Added ESP_ACCESS Operator on page 7-11

 Added NEXTVALUEFOR Operator on page 7-50

 Added SEQUENCEGENERATOR Operator on page 7-65

Changes to the H06.22/J06.11 manual:

 Updated a note in the Using Constraint Based Query Pruning on page 1-16.

 Updated SQL/MX Objects in Table 3-1, Histogram Temporary Tables, on page 3-2.

 Replaced schema version 1200 with 3000 in 3, Keeping Statistics Current, on
page 3-1.

Part Number Published

663851-001 October 2011

Part Number Product Version Published

640323-001 NonStop SQL/MX Release 3.0 February 2011

663851-001 NonStop SQL/MX Release 3.1 October 2011
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
ix

What’s New in This Manual Changes to the H06.20/J06.09 manual:

TP663851.fm Page x Monday, October 17, 2011 11:48 AM
 Updated Querying the Query Plan Caching Virtual Tables on page 6-13.

 Added PROBE_CACHE Operator on page 7-59.

 Updated Optimization Tips on page 4-9.

Changes to the H06.20/J06.09 manual:

 Updated the DISPLAY_EXPLAIN function with EXPLAIN statement on pages 1-8,
1-9, 1-11, 1-17, 1-18, 4-1, 4-2, 4-5, 4-6, 4-8, 5-2, 5-8, 8-17, 8-18, and 8-22.

 Updated 7, SQL/MX Operators to add new tokens to the existing operators and to
provide an example for each operator.

 Added the following operators:

 BLOCKED_UNION Operator on page 7-5

 EXPLAIN_CMD Operator on page 7-17

 FirstN Operator on page 7-22

 ORDERED_UNION Operator on page 7-54

 SAMPLE_FILE_SCAN Operator on page 7-62

 UNARY_UNION Operator on page 7-81

Changes to the H06.19/J06.08 Manual

 Added Order of Evaluation of Predicates on page 1-14.

 Added MultiUnion Support on page 1-16.

 Added Using Constraint Based Query Pruning on page 1-16.

 Updated the value of OPTS_PUSH_DOWN_DAM attribute on page 4-12.

 Added MultiUnion Operator on page 7-46.

Changes to the H06.16/J06.05 Manual

 References to Release Version Updates (RVUs) throughout this manual have been
updated to include references to J-series RVUs, where appropriate.

 Updated the description of Sampling and UPDATE STATISTICS on page 3-6.

 Added the token, max_results, under User-Defined Routine (UDR) on page 7-7.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
x

What’s New in This Manual Changes to the H06.05 Manual

TP663851.fm Page xi Monday, October 17, 2011 11:48 AM
Changes to the H06.05 Manual

Section New or Changed Information

Section 2, Accessing SQL/MX
Data

Example added that shows placing statements for
a forced shape into a separate module.

Section 3, Keeping Statistics
Current

Added information about HIST_SCRATCH_VOL.

Section 4, Reviewing Query
Execution Plans

Clarified information about buffer size settings for
PARTITION_ACCESS operators.

Section 7, SQL/MX Operators Removed examples and corrected token
information.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
xi

What’s New in This Manual Changes to the H06.05 Manual

TP663851.fm Page xii Monday, October 17, 2011 11:48 AM
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
xii

TP663851.fm Page xiii Monday, October 17, 2011 11:48 AM
About This Manual
This guide describes the use and formulation of queries, how to understand query
execution plans, and how to affect the performance of NonStop SQL/MX databases. It
also provides information about:

 How to improve query performance
 How the SQL/MX optimizer chooses a query execution plan
 How you can influence the optimizer’s choice of a plan

Audience
This guide is intended for database administrators and application programmers who
use NonStop SQL/MX to query an SQL/MX database and who have a particular
interest in issues related to query performance. Readers are expected to be data
processing professionals who have familiarity with general issues related to the
performance of database management systems and who understand relational
database theory and terminology.

You should also be familiar with the operating system and one of the host
programming languages, such as C/C++ or COBOL.

Organization

Examples are shown in interactive form, such as that used by the SQL/MX
conversational interface (MXCI) and Visual Query Planner (VQP).

Section 1, Compiling and Executing a Query Introduces the NonStop SQL/MX compiler
and executor.

Section 2, Accessing SQL/MX Data Provides information about access methods.

Section 3, Keeping Statistics Current Provides information about updating statistics
and histogram statistics.

Section 4, Reviewing Query Execution
Plans

Describes how to read query execution
plans.

Section 5, Forcing Execution Plans Describes how to force query execution
plans.

Section 6, Query Plan Caching Describes how query plan caching works and
how to view query plan caching statistics.

Section 7, SQL/MX Operators Provides information about operators used in
query execution plans.

Section 8, Parallelism Describes how NonStop SQL/MX performs
parallelism.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
xiii

About This Manual Related Documentation

TP663851.fm Page xiv Monday, October 17, 2011 11:48 AM
Related Documentation
This manual is part of the HP NonStop SQL/MX library of manuals, which includes:

vst001.vsd

Introductory Guides

SQL/MX
Quick Start

SQL/MX
Comparison
Guide for
SQL/MP
Users

SQL/MX
Glossary

SQL/MX
Messages
Manual

SQL/MX
Reference
Manual

Reference Manuals

Installation Guides

NSM/web
Installation
Guide

SQL/MX
Installation
and
Management
Guide

ODBC/MX
Driver for
Windows

SQL/MX
Connectivity
Service
Adminis-
trative
Command
Reference

SQL/MX
Connectivity
Service
Manual

Connectivity Manuals

NSM/web
Help

SQL/MX Online Help

Reference
Help

Messages
Help

Glossary
Help

Visual Query
Planner Help

Data-
Loader/MX
Reference
Manual

SQL/MX
Report
Writer
Guide

SQL/MX
Data Mining
Guide

Data Management GuidesMigration Guides

NonStop
NS-Series
Database
Migration
Guide

SQL/MX
Database
and
Application
Migration
Guide

Application Development Guides

SQL/MX
Guide to
Stored
Procedures
in Java

SQL/MX
Queuing
and Publish/
Subscribe
Services

SQL/MX
Query Guide

SQL/MX
Programming
Manual for C
and COBOL
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
xiv

About This Manual Related Documentation

TP663851.fm Page xv Monday, October 17, 2011 11:48 AM
Introductory Guides

SQL/MX Comparison Guide
for SQL/MP Users

Describes SQL differences between NonStop
SQL/MP and NonStop SQL/MX.

SQL/MX Quick Start Describes basic techniques for using SQL in the
SQL/MX conversational interface (MXCI). Includes
information about installing the sample database.

Reference Manuals

SQL/MX Reference Manual Describes the syntax of SQL/MX statements, MXCI
commands, functions, and other SQL/MX language
elements.

SQL/MX Messages Manual Describes SQL/MX messages.

SQL/MX Glossary Defines SQL/MX terminology.

Installation Guides

SQL/MX Installation and
Management Guide

Describes how to plan for, install, create, and
manage an SQL/MX database. Explains how to use
installation and management commands and
utilities.

NSM/web Installation Guide Describes how to install NSM/web and troubleshoot
NSM/web installations.

Connectivity Manuals

SQL/MX Connectivity
Service Manual

Describes how to install and manage the
HP NonStop SQL/MX Connectivity Service
(MXCS), which enables applications developed for
the Microsoft Open Database Connectivity (ODBC)
application programming interface (API) and other
connectivity APIs to use NonStop SQL/MX.

SQL/MX Connectivity
Service Administrative
Command Reference

Describes the SQL/MX administrative command
library (MACL) available with the SQL/MX
conversational interface (MXCI).

ODBC/MX Driver for
Windows

Describes how to install and configure HP NonStop
ODBC/MX for Microsoft Windows, which enables
applications developed for the ODBC API to use
NonStop SQL/MX.

Migration Guides

SQL/MX Database and
Application Migration Guide

Describes how to migrate databases and
applications to NonStop SQL/MX and how to
manage different versions of NonStop SQL/MX.

NonStop NS-Series
Database Migration Guide

Describes how to migrate NonStop SQL/MX,
NonStop SQL/MP, and Enscribe databases and
applications to HP Integrity NonStop NS-series
systems.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
xv

About This Manual Related Documentation

TP663851.fm Page xvi Monday, October 17, 2011 11:48 AM
The NSM/web and Visual Query Planner help systems are accessible from their
respective applications. You can download the Reference, Messages, and Glossary
online help from the $SYSTEM.ZMXHELP subvolume or from the HP NonStop
Technical Library (NTL). For more information about downloading online help, see the
SQL/MX Installation and Management Guide.

Data Management Guides

SQL/MX Data Mining Guide Describes the SQL/MX data structures and
operations to carry out the knowledge-discovery
process.

SQL/MX Report Writer Guide Describes how to produce formatted reports using
data from an SQL/MX database.

DataLoader/MX Reference
Manual

Describes the features and functions of the
DataLoader/MX product, a tool to load SQL/MX
databases.

Application Development Guides

SQL/MX Programming
Manual for C and COBOL

Describes how to embed SQL/MX statements in
ANSI C and COBOL programs.

SQL/MX Query Guide Describes how to understand query execution
plans and write optimal queries for an SQL/MX
database.

SQL/MX Queuing and
Publish/Subscribe Services

Describes how NonStop SQL/MX integrates
transactional queuing and publish/subscribe
services into its database infrastructure.

SQL/MX Guide to Stored
Procedures in Java

Describes how to use stored procedures that are
written in Java within NonStop SQL/MX.

Online Help

Reference Help Overview and reference entries from the SQL/MX
Reference Manual.

Messages Help Individual messages grouped by source from the
SQL/MX Messages Manual.

Glossary Help Terms and definitions from the SQL/MX Glossary.

NSM/web Help Context-sensitive help topics that describe how to
use the NSM/web management tool.

Visual Query Planner Help Context-sensitive help topics that describe how to
use the Visual Query Planner graphical user
interface.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
xvi

About This Manual Notation Conventions

TP663851.fm Page xvii Monday, October 17, 2011 11:48 AM
These manuals are part of the SQL/MP library of manuals and are essential references
for information about SQL/MP Data Definition Language (DDL) and SQL/MP
installation and management:

Notation Conventions

Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

General Syntax Notation

The following list summarizes the notation conventions for syntax presentation in this
manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words; enter these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

Related SQL/MP Manuals

SQL/MP Reference Manual Describes the SQL/MP language elements,
expressions, predicates, functions, and statements.

SQL/MP Installation and
Management Guide

Describes how to plan, install, create, and manage
an SQL/MP database. Describes installation and
management commands and SQL/MP catalogs
and files.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
xvii

About This Manual General Syntax Notation

TP663851.fm Page xviii Monday, October 17, 2011 11:48 AM
[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list may be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list may be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
xviii

About This Manual Change Bar Notation

TP663851.fm Page xix Monday, October 17, 2011 11:48 AM
Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

Change Bar Notation

Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of
changed portions of text, figures, tables, examples, and so on. Change bars highlight
new or revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all
messages except LOGICAL-CLOSE and LOGICAL-OPEN.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
xix

About This Manual Change Bar Notation

TP663851.fm Page xx Monday, October 17, 2011 11:48 AM
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
xx

TP663851.fm Page 1 Monday, October 17, 2011 11:48 AM
1
Compiling and Executing a Query

Use the information in this section to understand how your queries are compiled and
executed.

 How the Compiler Works on page 1-2

 How the Executor Processes the Plan on page 1-19

Overview
At the highest level, compiling and executing an SQL query with NonStop SQL/MX
consists of two basic steps.

1. The SQL/MX compiler processes the query and produces a query execution plan.

2. The SQL executor processes the execution plan and produces the query result.

These actions can influence query optimization, as shown in Step 1:

 Forcing plans with the CONTROL QUERY SHAPE statement

 Changing default settings with the CONTROL QUERY DEFAULTS statement

 Keeping statistics current with the UPDATE STATISTICS statement

 Changing system default settings in the SYSTEM_DEFAULTS table

VST110.vsd

System
Defaults

Control
Query

Defaults

Control
Query
Shape

Statistics
(histograms) Metadata

QUERYQUERY Query
Execution Plan

Query
Execution Plan

SQL/MX COMPILER

Query
Execution Plan

SQL/MX EXECUTOR

VST120.vsd

Result
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-1

Compiling and Executing a Query How the Compiler Works

TP663851.fm Page 2 Monday, October 17, 2011 11:48 AM
 Modifying the database (metadata) by adding columns to a table, splitting or
merging partitions, and creating and dropping indexes

For more information, see Improving Query Performance on page 1-6.

How the Compiler Works
To compile a query, the SQL/MX compiler needs information about the tables listed in
the query and the query environment. The necessary table information is listed in the
schema metadata tables from the SQL/MX catalog. The query environment information
can be influenced by the user in the SYSTEM_DEFAULTS table. For more information
about the SYSTEM_DEFAULTS table, see the SQL/MX Reference Manual.

Compilation Steps

The SQL/MX compiler goes through several steps to compile a query. The
corresponding compiler component performs these steps in this way:

Internally, the query is represented as an operator query tree. Each stage adds
information and might modify the input tree. The tree produced in the last step is called
the query execution plan.

Parser Performs syntax checks and translates the SQL/MX query into a
syntactically correct query tree.

Binder Takes the syntactically correct query tree and translates logical
(ANSI) names to physical names and performs many semantic
checks. The binder also expands views that are listed in the query,
looks up metadata for table information, and produces a
semantically correct query tree.

Normalizer Takes the semantically correct query tree and performs certain
unconditional transformations, such as constant folding, subquery
elimination, and recognizes equivalent expressions by representing
equivalent groups of values. These transformations make the query
representation suitable for optimization. The transformations are not
based on cost. The normalizer produces the normalized query tree
as input to the optimizer (semantically correct query tree in
canonical form).

Optimizer Takes the normalized query tree and generates cost-based, rules-
driven alternative plans to choose the best execution plan for the
query. The optimizer computes the cost of each alternative and
chooses the alternative with the lowest cost as the optimal query
execution plan.

Codegen Takes the optimal query execution plan and translates it to
executable code for the executor (see How the Executor Processes
the Plan on page 1-19).
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-2

Compiling and Executing a Query Parsing, Binding, and Normalizing

TP663851.fm Page 3 Monday, October 17, 2011 11:48 AM
Parsing, Binding, and Normalizing

The initial steps in the compile process—parsing, binding, and normalizing—prepare
the query for the optimizer. Before query optimization begins, the query tree that is
produced by the parser is bound with information from the metadata. Certain query
processing instructions in addition to default values needed for optimizing the query
are processed. If you have made changes to the default settings, the parser reads the
adjusted values from the SYSTEM_DEFAULTS table. All subqueries are eliminated or
transformed into joins or semi-joins. In addition, certain predicates are rewritten and
pushed down for earliest possible evaluation in the query tree. If the predicates are
pushed all the way down to the scan level, they are executed in HP NonStop Data
Access Manager (DAM). If the predicates are pushed down to a join, they are executed
in the master process or one or more ESP processes. The binding and normalization
phases result in a normalized query tree that is provided as input to the optimizer.

Optimizing Queries

NonStop SQL/MX uses a unique combination of optimization strategies to build an
optimal query plan:

 Branch and Bound Programming

This technique consists of a top-down approach that starts with an query tree of
logical, relational expressions. Logical expressions contain relational operators that
do not denote an implementation. Examples are join, group by, and scan. Using
optimization rules, the optimizer makes a decision about the execution method of
the top operator in the tree. The optimizer generates optimal solutions for the
descendants of the top operator and combines those solutions with the execution
method (physical operator) of the top node. Physical operators are relational
operators that specify the actual implementation or run-time algorithm. Examples
are merge join, hash group by, and file scan.

The first feasible solution that is found will from then on form an upper cost bound.
Any solution that exceeds the cost bound is discarded immediately, and the

join

join scan

scan scan

VST011.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-3

Compiling and Executing a Query Parsing, Binding, and Normalizing

TP663851.fm Page 4 Monday, October 17, 2011 11:48 AM
optimizer remembers not to pursue that solution further. Alternative solutions found
by the optimizer go into the search space, where they are stored in search
memory.

 Principle of Optimality

In this strategy, the optimizer starts at the top of the normalized query tree and
breaks the optimization tasks into smaller tasks (or subtasks). Depending on the
physical properties of the operators, the optimizer combines the optimal solutions
of the subtasks for the completed plan.

 Avoiding Search Space Overload

The search space contains all possible plans that the optimizer considers. Because
the optimizer tries for as many alternatives as possible per node in the query tree,
a risk exists that you can inundate the search space with all the possibilities.
Equivalent expressions are organized into groups. Two expressions are in the
same group if one can be derived from the other by the application of rules. The
organization of the search memory reduces the search space dramatically. To
influence the amount of optimization that the optimizer performs in trying to find the
best plan, you can set the OPTIMIZATION_LEVEL attribute. For more information
about setting the OPTIMIZATION_LEVEL attribute, see Section 4, Reviewing
Query Execution Plans.

 Rule-Based Solutions

In addition to reviewing costs associated with operations, the optimizer also uses
rules. Optimization rules define how a query tree or one of its subtrees can be
transformed into a semantically equivalent query tree. These rules separate the
logical and physical expressions, as follows:

 What the optimizer does to find a solution. Transformation rules transform
one logical expression into a different, semantically equivalent logical
expression. Logical expressions do not have a cost associated with them and
do not have all their physical properties specified; that is, instead of using the
query tree suggestions, the optimizer creates another tree. For example, the
join of table T1 and table T2 should yield an equivalent logical expression
when transformed to a join of table T2 and table T1.

T1

join

T2 T2

join

T1

VST012.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-4

Compiling and Executing a Query Query Plan Caching

TP663851.fm Page 5 Monday, October 17, 2011 11:48 AM
 How the optimizer finds the solution. Implementation rules transform a
logical expression into a semantically equivalent expression whose root node
is a physical operator. Recursive application of implementation rules result in a
query execution plan that consists only of physical operators. Such plans or
subplans can be executed by the executor because they have physical
properties, and their cost can be estimated by the optimizer. The
implementation rule phase refines the earlier rules that result in physical
nodes. For more information about logical and physical operators, see
Section 5, Forcing Execution Plans.

Implementation rules reduce a problem into one or more small subproblems by
making a plan decision. This rule follows the Principle of Optimality, which
states: “Combine optimal partial solutions to form an optimal solution to the
complete problem.” The next figure shows an implementation rule that
transforms a join of A and B into a hash join of A and B. The principle of
optimality states that the optimal subplans for A and B remain the same in the
plan that uses a hash join.

 Multipass Optimization

The optimizer uses cost-based pruning by supporting a multipass optimization
technique. A pilot phase during preoptimization orders tables in ascending order,
based on estimated row count; that is, larger tables are scanned last. During the
first pass, only those rules that are necessary to generate a feasible plan (with a
reasonable cost) are enabled. Subsequent passes can then use the costs
generated in previous passes as an upper cost bound, allowing for more cost-
based pruning. This strategy has the effect of generating an optimal plan while
exploring a smaller search space and, as a result, reducing compile time.

The multipass optimization also enables error recovery. If an error occurs during
the second or subsequent pass, the plan generated from the first pass is returned.

Query Plan Caching

The SQL/MX compiler provides the ability to cache the plans of certain queries. Use
query plan caching in an environment where similar queries are generated, compiled,
executed, and SQL compilation time is significant compared to SQL execution time.

A

join

B A

hash join

B

VST013.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-5

Compiling and Executing a Query Improving Query Performance

TP663851.fm Page 6 Monday, October 17, 2011 11:48 AM
This feature improves the performance of the compiler when the plan can be produced
from cache rather than through a full compilation. The queries that can be considered
for plan caching include simple TP-style inserts, updates, deletes, selects, and joins.
Two queries are considered equivalent for the purposes of caching if their canonical
forms are the same. For query caching, the canonical form of a query is constructed
by:

 Removing unmeaningful white space differences

 Removing unmeaningful case differences

 Expanding '*' notation in select lists

 Resolving all object names to fully qualified names

 Replacing most constant literals with parameters

 Encoding all CONTROL QUERY DEFAULT and CONTROL TABLE statements that
have been previously executed in the current SQL/MX compiler session

When query caching is enabled, NonStop SQL/MX caches the compiled plans of
cacheable statements. When an equivalent query is resubmitted, most of the SQL
compilation is skipped, and the query plan is produced from the cache. Use query plan
caching statistics to determine important information about the caching process in
addition to the current state of stored plans.

 Section 6, Query Plan Caching describes the types of cacheable queries, query plan
caching statistics, and the default settings that affect query caching.

Improving Query Performance

The SQL/MX compiler performs a series of internal transformations when generating
the most suitable plan for a query. Some of these transformations are described next.
The actions you can take to influence query performance are described under
Influencing Query Performance on page 1-7.

Query Processing by the Compiler

The query tree obtained by parsing the query goes through numerous transformations.
While the binder and codegen perform relatively simple changes, more complex
transformations are performed in the normalizer and the optimizer stages.

In the normalizer, unconditional transformations are applied to make the query tree
more suitable for subsequent optimization. The major transformations are:

 Unconditional predicate transformations

 Subquery transformation to joins

 Predicates pushed down as far as possible

Note. The SQL/MX compiler has been enhanced to improve the quality of query plans for
complex queries that include multitable joins of up to 12 tables.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-6

Compiling and Executing a Query Improving Query Performance

TP663851.fm Page 7 Monday, October 17, 2011 11:48 AM
 The computation of the transitive closure of “=” predicates and rewrite of predicate
factors based on it

 Canonical reorder of the tables in the query tree

 Constant folding. Constant folding is a compiler optimization technique where an
expression, consisting only of constants, is evaluated at compile time. For
example:

 WHERE AGE_IN_DAYS>(2005-1960)*365

When constant folded, this expression becomes WHERE AGE_IN_DAYS>16425.

 Syntactic and semantic sort elimination

In the optimizer, transformations are conditional and performed based on cost. They
are also applied by rules. See Rule-Based Solutions on page 1-4.

A range of options exists for improving query performance. Some involve simple
changes to the system defaults and others are more complex and involve investigating
the query plan and making appropriate changes to the query or query plan.

Influencing Query Performance

You can influence query performance in online transaction processing environments
through one or more of these methods:

 Augment or modify the database by adding indexes.

 Refine table statistics by adding statistics for all columns used in the query. Ensure
that statistics have been generated for all columns used in the query. For more
information, see Section 3, Keeping Statistics Current.

 Use FIRST 1 syntax for nonunique SELECT ... INTO queries:

SELECT [FIRST 1] a INTO :hv ...

 Use read-only SELECT statements whenever possible:

CONTROL QUERY DEFAULT readonly_cursor 'TRUE'

To ensure that the MXCMP costing model works correctly, first perform a FUP
RELOAD and then UPDATE STATISTICS on tables and indexes. For more information
about using FUP RELOAD, see the SQL/MX Installation and Management Guide. For
more information about using the UPDATE STATISTICS statement, see the SQL/MX
Reference Manual.

 Force plans through the CONTROL QUERY SHAPE utility or through CONTROL
QUERY DEFAULT JOIN_ORDER_BY_USER. For more information, see
Section 5, Forcing Execution Plans.

 If possible, use host variable types that match the database column type. In all
three of these examples, col is the exact same data type as hvar:
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-7

Compiling and Executing a Query Improving Query Performance

TP663851.fm Page 8 Monday, October 17, 2011 11:48 AM
 WHERE predicate match:

SELECT a FROM t WHERE col = :hvar

 Target and source INSERT match:

INSERT INTO t(col) VALUES (:hvar)

 UPDATE match:

UPDATE t SET col = :hvar ...

 Set different default values. Default values can affect both compile and run time.
Performance-related default values include OPTIMIZATION_LEVEL, which
indicates the effort the optimizer should use in optimizing queries. Others include
default settings related to parallelism. For information about default settings, see
the SQL/MX Reference Manual.

 Adding or dropping partitions can influence whether you obtain a parallel plan. For
more information about parallel plans, see Section 8, Parallelism.

 If you use a key column in an expression like WHERE A*3=10 or WHERE
SIN(A)=20, or UPSHIFT(key col), or another similar expression that requires
computation or a function like UPSHIFT, a full table scan is used, and key access
is not used. As a result, query performance can be degraded. Consider rewriting
the expression in the form col=constant, for example, WHERE A=10/3.

 Whenever possible, formulate your queries to use multiplication instead of division.
For example, this query that uses division can be reformulated to use
multiplication:

--DIVISION
SELECT A/10 FROM T WHERE B > C/100

--REFORMULATED TO MULTIPLICATION
SELECT A*0.1 FROM T WHERE B > C*0.01

 When questioning “bad plans,” or query plans that do not seem optimal, question
the inputs to the compiler before you question the compiler.

Enabling Online Transaction (OLT) Optimization

If your OLTP application is having performance problems, verify that the token
olt_optimization is enabled for single-row access type queries. The token is present at
three levels: in the ROOT operator, PARTITION_ACCESS operator, and DAM
operators (INDEX_SCAN_UNIQUE, INSERT, FILE_SCAN_UNIQUE,
UNIQUE_DELETE, and UNIQUE_UPDATE).

The CONTROL QUERY DEFAULT to enable OLT optimization is OLT_QUERY_OPT
and is on by default. To check if OLT optimization is actually being used, look for
olt_optimization: USED in the EXPLAIN statement output.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-8

Compiling and Executing a Query Improving Query Performance

TP663851.fm Page 9 Monday, October 17, 2011 11:48 AM
You can also use the EXPLAIN statement OPTIONS 'f' command to display operators
in the query. Check the OPT column for letter o entries, as the following table shows, to
determine whether OLT optimization is enabled.

LC RC OP OPERATOR OPT DESCRIPTION CARD
-- -- -- --------- ----- ------------ -------
2 . 3 root o r 1.00E+0
1 . 2 partition_access o 1.00E+0
. . 1 insert o T 1.00E+0

To determine if your query uses OLT optimization, check the query type and operators
listed in Table 1-1.

If your query is using OLT optimization and performance is still an issue, review the
database or query for design choices that can affect performance. The SQL/MX

Note. For more information on how to use the EXPLAIN statement OPTIONS 'f' command,
see the SQL/MX Reference Manual.

Table 1-1. Valid Queries and Operators for OLT Optimization

Query ROOT Operator
PARTITION_ACCESS
Operator DAM Operators

Embedded unique UPDATE Yes Yes Yes

Embedded unique DELETE Yes Yes Yes

Embedded unique INSERT Yes Yes Yes

Embedded unique SELECT
... into

Yes Yes Yes

Embedded nonunique
UPDATE

Yes Yes No

Embedded nonunique
DELETE

Yes Yes No

Embedded INSERT with
value list

Yes No Yes

Embedded nonunique
SELECT ... into

Yes No No

Dynamic MXCI & ODBC
queries

No Same considerations
as Embedded Queries

Same
considerations
as Embedded
Queries

Compound Statements Yes Only if forced to use
DAM

Yes

Rowsets No No Unique access
only
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-9

Compiling and Executing a Query Improving Query Performance

TP663851.fm Page 10 Monday, October 17, 2011 11:48 AM
Programming Manual for C and COBOL, SQL/MX Programming Manual for Java, and
the SQL/MX Installation and Management Guide have tips and guidelines to help
identify potential performance problem areas.

Using OR Operators in Predicates

For a narrow subset of queries with OR operations, NonStop SQL/MX uses a feature
called OR optimization. OR optimization uses more than one access path to obtain the
data and eliminates duplicate predicates to produce the result. In many cases, OR
optimization results in the query running significantly faster. While partitioning is not
required for OR optimization benefits to take effect, performance benefits might be
further enhanced with partitioned tables.

 OR optimization and application example

OR optimization might be useful in querying large transaction tables where the
expected output is only a few rows.

 MDAM and OR optimization

MDAM is another feature that works with OR operators. It provides some benefits
that the OR optimization feature does not:

 MDAM eliminates duplicate key values in OR predicates at run time. It does so
before NonStop SQL/MX accesses any tables, so there is no performance
penalty.

 MDAM can process multiple tables in a query. It can be used on the inner and
outer tables of nested joins and on the outer tables of sort merge, hash, and
key-sequenced merge joins.

 WHERE clauses need not be in disjunctive normal form.

MDAM is enabled by default.

 Choosing optimized OR plans

SQL might use an optimized OR plan when all these conditions are satisfied:

 Two or more search conditions connected by OR operators.

 Each search condition contains predicates used as keys on an index. That is,
the predicates involve columns that belong to the key prefix of an index.

Note. OR optimization in NonStop SQL/MX has a more restrictive set of conditions than its
NonStop SQL/MP counterpart.

Note. A search condition in disjunctive normal form has only one level of OR operations;
for example, (P1 and P2) or (P4 and P5) or (P6 and P7 and P8). A search condition not in
normal disjunctive form can be transformed into one. For example, (A or B) and C can be
changed to (A and C) or (B and C). A search condition in conjunctive normal form has one
level of AND operations; for example, P1 and P2 and P3.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-10

Compiling and Executing a Query Improving Query Performance

TP663851.fm Page 11 Monday, October 17, 2011 11:48 AM
 The search condition is restricted to simple OR predicates:

L_SUPPKEY = 2407 OR L_PARTKEY > 34567

This query uses the DDL shown in Example 1-1 on page 1-13. The EXPLAIN
statement OPTIONS ‘f’ output is shown in Figure 1-1 below.

PREPARE XXZ FROM SELECT * FROM LINEITEM
WHERE L_SUPPKEY = 2407 OR L_PARTKEY = 34567;

Additional indexes might enable OR optimization for additional columns.

 Plans that do not use OR optimization

In general, OR optimization is not used when:

 A query involves more than one table.

 Columns in the predicate are not part of a key prefix.

 The search condition includes an AND operator.

 At least one single predicate—or set of predicates connected by AND
operators—contains an executor predicate, which are evaluated for each row.

 Examples of OR optimization

Note. For execution plans that use OR optimization, the optimizer considers index-only
access in addition to index-key lookup through a nested join. Index-only access, however,
can be used only if the index contains all the columns referenced in the query.

Figure 1-1. EXPLAIN statement OPTIONS ‘f’ Output for Nested Join With Indexes
LX1 and LX2 From LINEITEM Table

LC RC OP OPERATOR OPT DESCRIPTION CARD
--- --- --- -------- --- ----------- ----

15 . 16 root 4.30E+1
7 14 15 merge_union 1.70E+1
10 13 14 nested_join 1.40E+1
12 . 13 split_top 1:4(logph) 3.49E-1
11 . 12 partition_access 3.49E-1
. . 11 file_scan_unique fr ORCAT.LINEITEM(s) 3.49E-1
9 . 10 split_top 1:4(logph) 4.00E+1
8 . 9 partition_access 4.00E+1
. . 8 index_scan fs fr ORCAT.LX2(s) 4.00E+1
3 6 7 nested_join 3.00E+0
5 . 6 split_top 1:4(logph) 1.00E+0
4 . 5 partition_access 1.00E+0
. . 4 file_scan_unique fr ORCAT.LINEITEM(s) 1.00E+0
2 . 3 split_top 1:4(logph) 3.00E+0
1 . 2 partition_access 3.00E+0
. . 1 index_scan fs fr ORCAT.LX1(s) 3.00E+0
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-11

Compiling and Executing a Query Improving Query Performance

TP663851.fm Page 12 Monday, October 17, 2011 11:48 AM
For the DDL to these examples, see the LINEITEM table in Example 1-1 on
page 1-13. The primary key is L_ORDERKEY + L_LINENUMBER, and there are
indexes on L_PARTKEY (LX1) and L_SUPPKEY (LX2).

If a query on table LINEITEM contains these predicates, OR optimization might be
performed:

WHERE (L_PARTKEY = 200001 OR L_SUPPKEY = 10)

OR optimization would use index access on LX1 for the first predicate and an
index access through LX2 for the second predicate. In the absence of an index,
SQL reads the table sequentially to search for rows that satisfy the query.

Another option might be between using a single index versus using MDAM. Table
LINEITEM could have three indexes on columns (L_PARTKEY, L_SUPPKEY),
(L_SUPPKEY), (L_LINESTATUS). The query can either use all three indexes, or it
can use the index (L_PARTKEY, L_SUPPKEY) with MDAM for the first two
disjuncts and an index L_LINESTATUS for the last disjunct.

SELECT * FROM LINEITEM
WHERE L_PARTKEY=10999765 OR L_SUPPKEY=19 OR L_LINESTATUS=30

 Examples that do not enable OR optimization

 Indexes must exist for OR optimization to be considered. If the table,
LINEITEM, has secondary indexes on columns L_PARTKEY and L_SUPPKEY,
OR optimization is not considered for this query because there is no index on
column L_LINESTATUS:

SELECT * FROM LINEITEM
WHERE L_PARTKEY=1099987 OR L_SUPPKEY=20 OR
L_LINESTATUS='S'

 A combination of conjuncts and disjuncts does not enable OR optimization:

SELECT * FROM LINEITEM
WHERE L_PARTKEY=10998765 OR L_SUPPKEY=20
AND L_LINESTATUS='Y'

 Even if the indexes L_PARTKEY, L_SHIPINSTRUCT and L_SUPPKEY,
L_SHIPMODE exist on table LINEITEM, NonStop SQL/MX, unlike NonStop
SQL/MP, does not consider OR optimization for these types of queries:

SELECT * FROM LINEITEM
WHERE(L_PARTKEY=10997965 AND L_SHIPINSTRUCT='SAIL')
OR (L_SUPPKEY=20 AND L_SHIPMODE ='ANCH')
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-12

Compiling and Executing a Query Improving Query Performance

TP663851.fm Page 13 Monday, October 17, 2011 11:48 AM
Example 1-1. OR Optimization DDL
CREATE TABLE LINEITEM
 (L_ORDERKEY INT NOT NULL
 , L_PARTKEY INT NOT NULL
 , L_SUPPKEY INT NOT NULL
 , L_LINENUMBER INT NOT NULL
 , L_QUANTITY NUMERIC(12,2) NOT NULL
 , L_EXTENDEDPRICE NUMERIC(12,2) NOT NULL
 , L_DISCOUNT NUMERIC(12,2) NOT NULL
 , L_TAX NUMERIC(12,2) NOT NULL
 , L_RETURNFLAG CHAR(1) NOT NULL
 , L_LINESTATUS CHAR(1) NOT NULL
 , L_SHIPDATE DATE NOT NULL
 , L_COMMITDATE DATE NOT NULL
 , L_RECEIPTDATE DATE NOT NULL
 , L_SHIPINSTRUCT CHAR(25) NOT NULL
 , L_SHIPMODE CHAR(10) NOT NULL
 , L_COMMENT VARCHAR(44) NOT NULL
 , PRIMARY KEY (L_ORDERKEY, L_LINENUMBER))
 STORE BY PRIMARY KEY
 PARTITION (
 ADD FIRST KEY (100001)
 LOCATION $DATA08
 NAME PARTN1
 EXTENT (1024, 1024) MAXEXTENTS 512
 ,ADD FIRST KEY (200001)
 LOCATION $DATA07
 NAME PARTN2
 EXTENT (1024, 1024) MAXEXTENTS 512
 ,ADD FIRST KEY (300001)
 LOCATION $DATA06
 NAME PARTN3
 EXTENT (1024, 1024) MAXEXTENTS 512
);
CREATE INDEX LX1 ON LINEITEM
 (L_PARTKEY)
 LOCATION $DATA09
 ATTRIBUTE EXTENT (1024, 1024) MAXEXTENTS 512
 PARTITION
 (ADD FIRST KEY (100001)
 LOCATION $DATA08
 ,ADD FIRST KEY (200001)
 LOCATION $DATA07
 ,ADD FIRST KEY (300001)
 LOCATION $DATA06
);
CREATE INDEX LX2 ON LINEITEM
 (L_SUPPKEY)
 LOCATION $DATA09
 ATTRIBUTE EXTENT (1024, 1024) MAXEXTENTS 512
 PARTITION
 (ADD FIRST KEY (2500)
 LOCATION $DATA08
 ,ADD FIRST KEY (5000)
 LOCATION $DATA07
 ,ADD FIRST KEY (7500)
 LOCATION $DATA06
);
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-13

Compiling and Executing a Query Improving Query Performance

TP663851.fm Page 14 Monday, October 17, 2011 11:48 AM
Order of Evaluation of Predicates

The SQL/MX compiler can select any order for evaluating the predicates based on the
factors such as cost, cardinality, join type, access path, and so on. As a result,
SQL/MX might not be able to retain the order in which the predicates appear in a query
while executing them. SQL/MX might return different results depending on the order of
evaluation. The following example explains how the order of evaluation of predicates
can affect the result set.

>>CREATE TABLE T_DIVBYZERO (A INT, B INT);
--- SQL operation complete.

>>INSERT INTO T_DIVBYZERO VALUES (1,1),(0,0),(2,2);
--- 3 row(s) inserted.

>>SELECT * FROM T_DIVBYZERO WHERE A <> 0 AND 10/B > 1;
A B
----------- -----------
1 1
2 2
--- 2 row(s) selected.

>>SELECT * FROM T_DIVBYZERO WHERE 10/B > 1 AND A <> 0;
A B
----------- -----------
1 1
*** ERROR[8419] An arithmetic expression attempted a
division by zero.
--- 1 row(s) selected.
>>

You might notice similar behavior with complex queries, when SQL/MX selects other
order for evaluating the predicates than the given order. Another example is given
below.

>>CREATE TABLE STAFF_UC (
EMPNUM CHAR (3) CHARACTER SET UCS2 NOT NULL UNIQUE,
EMPNAME NCHAR VARYING (20));
--- SQL operation complete.
>>
>>CREATE TABLE WORKS_UC (
EMPNUM CHAR (3) CHARACTER SET UCS2 NOT NULL,
PNUM CHAR (3) CHARACTER SET UCS2 NOT NULL);
--- SQL operation complete.
>>
>>CREATE TABLE PROJ_UC (
PNUM CHAR (3) CHARACTER SET UCS2 NOT NULL UNIQUE,
CITY VARCHAR (15) CHARACTER SET UCS2);
--- SQL operation complete.
>>
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-14

Compiling and Executing a Query Improving Query Performance

TP663851.fm Page 15 Monday, October 17, 2011 11:48 AM
>>INSERT INTO STAFF_UC VALUES (_ucs2'E1', N'Alice');
--- 1 row(s) inserted.

>>INSERT INTO WORKS_UC VALUES (_ucs2'E1', _ucs2'P3');
--- 1 row(s) inserted.

>>INSERT INTO PROJ_UC VALUES (_ucs2'P3', _ucs2'Tampa');
--- 1 row(s) inserted.

>>INSERT INTO PROJ_UC VALUES
(_ucs2 X'4E7A', _ucs2 X'4E2D56FD53174EAC');
--- 1 row(s) inserted.
>>
>>CONTROL QUERY SHAPE HASH_JOIN (CUT, HASH_JOIN (CUT, CUT));
--- SQL operation complete.

>>PREPARE xx FROM
SELECT STAFF_UC.EMPNAME
FROM STAFF_UC
WHERE STAFF_UC.EMPNUM IN
(SELECT WORKS_UC.EMPNUM
FROM WORKS_UC
WHERE WORKS_UC.PNUM IN
(SELECT PROJ_UC.PNUM
FROM PROJ_UC
WHERE
(
PROJ_UC.PNUM < _UCS2 X'00FF'
AND
TRANSLATE (PROJ_UC.CITY USING
UCS2TOISO88591) = 'Tampa'
)
OR
PROJ_UC.CITY = _UCS2 X'5929 6D25'
)
);
--- SQL command prepared.
>>
>>EXECUTE xx;
EMPNAME

Alice
--- 1 row(s) selected.
>>
>>CONTROL QUERY SHAPE
MERGE_JOIN (
NESTED_JOIN (CUT, CUT, INDEXJOIN),
NESTED_JOIN (CUT, CUT)
);
--- SQL operation complete.
>>PREPARE yy FROM
SELECT STAFF_UC.EMPNAME
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-15

Compiling and Executing a Query Improving Query Performance

TP663851.fm Page 16 Monday, October 17, 2011 11:48 AM
FROM STAFF_UC
WHERE STAFF_UC.EMPNUM IN
(SELECT WORKS_UC.EMPNUM
FROM WORKS_UC
WHERE WORKS_UC.PNUM IN
(SELECT PROJ_UC.PNUM
FROM PROJ_UC
WHERE
(
PROJ_UC.PNUM < _UCS2 X'00FF'
AND
TRANSLATE (PROJ_UC.CITY USING
UCS2TOISO88591) = 'Tampa'
)
OR
PROJ_UC.CITY = _UCS2 X'5929 6D25'
)
);
--- SQL command prepared.
>>
>>EXECUTE yy;
*** ERROR[8690] An invalid character value encountered in
TRANSLATE function.
--- 0 row(s) selected.
>>

MultiUnion Support

The MultiUnion feature provides enhanced functionality to handle queries that have a
large number of table unions. This feature compresses the binary union backbone in
such queries into a single n-way “MultiUnion” operator, there by reducing query
execution and compilation time. For information on the MultiUnion operator, see
MultiUnion Operator on page 7-46.

The MultiUnion feature is controlled by the MULTIUNION CQD. For more information
on MULTIUNION CQD, see the SQL/MX Reference Manual.

Using Constraint Based Query Pruning

The constraint based query pruning feature enables you to eliminate unwanted table
scans when a predicate in that table violates the check constraints defined on the

Note. You might come across the queries that depend on the data during run time. There is no
specific method to avoid this behavior. However, you can try the following workarounds:

1. Rewrite the query to reorder predicates, tables, and so on.

2. Use control query defaults.

3. Use control query shape.

Note. The MultiUnion feature is supported only on systems running J06.08 and later J-series
RVUs and H06.19 and later H-series RVUs.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-16

Compiling and Executing a Query Improving Query Performance

TP663851.fm Page 17 Monday, October 17, 2011 11:48 AM
table. This feature enhances query performance by reducing compilation and
execution time.

During query compilation, NonStop SQL/MX receives the inputs from the constraints
that are defined on a table. If the query contains the predicates that fall outside the
check constraints on the table, the scan nodes are marked as “not returning any
records”. In other words, if the predicates are such that there is no need to scan the
table, the scan nodes will be replaced by the VALUES nodes. As a result, the table is
not scanned during query execution, thereby improving the query execution.

Example 1-2 shows the output of the EXPLAIN statement for a query when the Control
Query Default (CQD), CHECK_CONSTRAINT_PRUNING, is set to ON and OFF.

For information on CHECK_CONSTRAINT_PRUNING CQD, see the SQL/MX
Reference Manual.

Note. The constraint based query pruning feature is supported only on systems running
J06.08 and later J-series RVUs and H06.19 and later H-series RVUs.

Note. The constraint-based query pruning feature has the following limitations:

1. Only scan node is converted to the VALUES node.

2. The pruning logic is not rolled-up to other nodes.

3. The constraint based query pruning feature includes the following operators that are used
in table constraints or selection predicates or both:

<, >, <=, >=, =, <>, IS NULL, IS NOT NULL

4. The pruning logic does not roll-up for correlated sub queries.

5. The pruning logic does not work for OR predicates. It works only on AND predicates and
constraints.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-17

Compiling and Executing a Query Improving Query Performance

TP663851.fm Page 18 Monday, October 17, 2011 11:48 AM

Example 1-2. EXPLAIN statement OPTIONS ‘f’ Output for Query Using
CHECK_CONSTRAINT_PRUNING

>>showddl t1;
CREATE TABLE CAT.SCH.T1
 (
 COL1 INT DEFAULT NULL
 , COL2 INT DEFAULT NULL

)
 LOCATION \DMR11.$DATA04.ZSDLPGGW.VBNG7V00
 NAME DMR11_DATA04_ZSDLPGGW_VBNG7V00
 ;

ALTER TABLE CAT.SCH.T1
 ADD CONSTRAINT CAT.SCH.CHK1 CHECK (CAT.SCH.T1.COL1 > 100)
DROPPABLE ;

--- SQL operation complete.

>>control query default check_constraint_pruning 'off';

--- SQL operation complete.
>>prepare xx from select * from t1 where col1 = 10;

--- SQL command prepared.
>>explain options 'f' xx;

LC RC OP OPERATOR OPT DESCRIPTION CARD
--- --- --- --------- ------ ----------- -------
2 . 3 root 1.00E+0
1 . 2 partition_access 1.00E+0
. . 1 file_scan fs fr T1 (s) 1.00E+0

--- SQL operation complete.

>>control query default check_constraint_pruning 'on';

--- SQL operation complete.
>>
>>prepare xx from select * from t1 where col1 = 10;

--- SQL command prepared.
>>explain options 'f' xx;

LC RC OP OPERATOR OPT DESCRIPTION CARD
--- --- --- --------- ------ ----------- -------
1 . 2 root 1.00E+0
. . 1 values 1.00E+0

--- SQL operation complete.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-18

Compiling and Executing a Query Factors That Can Affect Compile Time

TP663851.fm Page 19 Monday, October 17, 2011 11:48 AM
 Factors That Can Affect Compile Time

 The number of tables joined, which is the most important factor in determining
query complexity

 Other query complexity factors, such as the number of group bys, unions, and
subqueries

 The number of predicates on the query and the number of columns in the predicate

 The presence of indexes, which can increase complexity as the new access path
must be considered

 Whether statistics have been updated and the number of intervals in the
histograms

 Default settings (see Section 4, Reviewing Query Execution Plans), especially the
optimization controls such as OPTIMIZATION_LEVEL

Remember that the number of joins is not the only factor that can affect compile time.
For example, a 4-way natural join on a 200-column table can take considerably more
time than an 8-way join between tables with only a few columns.

How the Executor Processes the Plan
NonStop SQL/MX uses a data-flow and scheduler-driven task model to execute
queries. After a query is optimized, the optimizer generates an optimized, executable
query plan that goes to the executor. The executor prepares a node for each operator.

Each operator is an independent task and data flows between operators through in-
memory queues (up and down) or by interprocess communication. The queue pair
operates between two operators. Queues between tasks allow operators to exchange
multiple requests or result rows at a time. A scheduler coordinates the execution of
tasks and runs whenever it has data on one of its input queues.

Join

Group byScan

Scan

Tasks

Queues

VST014.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-19

Compiling and Executing a Query How the Executor Processes the Plan

TP663851.fm Page 20 Monday, October 17, 2011 11:48 AM
The task model makes it easy to perform all internal operations asynchronously so that
a single server thread can have multiple I/Os outstanding. This model also provides
parallelism for both shared memory and distributed memory architectures. In-memory
queues are used for communication, and exchange operators are used for distributed
memory.

Concurrent or overlapping work can be performed on rows as they flow through the
different stages of the execution plan. For example, while the left child of a nested-loop
join is working on producing more rows or waiting for a reply from a DAM process, the
right child can be working on obtaining matches on the rows already produced by the
left child. For more information about parallelism, see Section 8, Parallelism.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
1-20

TP663851.fm Page 1 Monday, October 17, 2011 11:48 AM
2 Accessing SQL/MX Data

Access methods provide different degrees of efficiency in accessing data contained in
key-sequenced tables and indexes. Use the information in this section to understand
the various access methods used by NonStop SQL/MX:

 Access Methods on page 2-1

 MultiDimensional Access Method (MDAM) on page 2-13

Access Methods
This subsection describes the access methods used by the SQL/MX compiler.

 Storage-key access
 Index-only access
 Alternate index access

Each access method and its attendant cost are discussed in these subsections. An
alternative to using keyed access is a full table scan. For more information, see Full
Table Scan on page 2-5.

Storage-Key Access

The storage key refers to the physical order in which rows of the base table are stored
on disk. This key can be the primary key, clustering key, or syskey, depending on which
type of key was defined for the table.

The optimizer might choose storage-key access when:

 The WHERE clause contains a storage-key value.

 The estimated cost of the storage-key access is lower than the estimated cost of
an index-only or alternate index access.

The next figure shows a query that contains a storage-key value (empnum) in the
WHERE clause. The executor goes directly to the value indicated by the information in
the WHERE clause to retrieve the row. The right portion of the figure shows the query
execution plan generated by the query.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-1

Accessing SQL/MX Data Index-Only Access

TP663851.fm Page 2 Monday, October 17, 2011 11:48 AM
Storage-Key Approximate Cost

The cost of retrieving information through a storage key depends on how many blocks
of data you must access.

Index-Only Access

Index-only access refers to an index that fully satisfies a query without accessing the
base table. That is, all columns that the query references can be found in the index.
For sequential access, an index-only scan can be superior to storage-key access of
the base table. The index row sizes are usually considerably smaller than the base
table row sizes (resulting in many more rows being retrieved per physical I/O).

An index contains one or more columns plus the columns that make up the clustering
key. An index benefits the query most when all the columns needed by the query are
located in the index. Although indexes can improve scan performance, they have a
significant cost during updates, deletes, and inserts. Indexes usually use keys other
than on the primary key, so you have alternate access paths to the data.

The optimizer is likely to choose access through an index when any of these conditions
are true:

 The SELECT and WHERE clauses reference columns from the index.

 All the information can be retrieved from the index (index-only access) at less cost
than accessing the base table.

 ORDER BY, GROUP BY, or DISTINCT is specified and can be satisfied by using
the index.

empnum first_name last_name deptnum jobcode salary

TABLE employee

93

Base Table

SELECT * From employee WHERE empnum = 93;

ROOT

PARTITION_ACCESS

FILE_SCAN_UNIQUE

QUERY PLAN

VST021.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-2

Accessing SQL/MX Data Index-Only Access

TP663851.fm Page 3 Monday, October 17, 2011 11:48 AM
Index-only access is not used if any of these conditions are true:

 The columns required by the query are not all included in the index.

 The query performs an update. Even if the index contains the column, the base
table column (and any other index containing the column) also needs to be
updated.

The next figure shows a query that contains an indexed item (deptnum) in the WHERE
clause. The empnum column is the clustering key for the table and is also a column of
the index. (Remember that an index contains one or more columns plus the columns
that make up the clustering key of the table.) The compiler goes directly to the index to
retrieve the information because:

 The cost is much less than using a full table scan.
 The query requests information that is contained in the index.

The query execution plan shows the index-only access.

empnum first_name last_name deptnum jobcode salary

TABLE employee

Base Table

SELECT empnum FROM employee

WHERE deptnum = 3100;

ROOT

PARTITION_ACCESS

INDEX_SCAN

QUERY PLAN

deptnum empnum

3100

3100

3100

3100

3100

3100

3100

43

93

228

229

993

994
995

INDEX xempdept

vst022.vsdIndex on deptnum
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-3

Accessing SQL/MX Data Alternate Index Access

TP663851.fm Page 4 Monday, October 17, 2011 11:48 AM
Index-Only Approximate Cost

The approximate cost for index-only access is comparable to storage-key access. It
might be better because typically index tables are smaller than base tables.

Alternate Index Access

In alternate index access, a join is made between the index and the base table (an
index-base table join). Access is not made through the clustering index.

The index row is located by positioning to the requested data. When the index does not
contain all the data requested, the index is joined with the base table to provide the
requested data. When accessing the base table through an index, rows in the base
table are usually read randomly, and some blocks containing those rows might be read
more than once.

The next figure shows a query that requests all columns that satisfy the WHERE
clause. Because the index contains only a subset of the columns, a join is made
between the index and the base table to retrieve the row that satisfies the WHERE
clause. The query plan shows the nested join that joins the index (represented by the
INDEX_SCAN operator) and the base table (represented by the FILE_SCAN operator).

empnum first_name last_name deptnum jobcode salary

TABLE employee

100

Base Table

SELECT * FROM employee

WHERE deptnum = 9000;

ROOT

PARTITION_ACCESS

INDEX_SCAN

QUERY PLAN

VST023.vsd

Roger Green 9000 100 1755000.00

337 Dinah Clark 9000 900 37000.00

deptnum empnum

9000 100

9000 900

INDEX xempdept

Index on deptnum

NESTED JOIN

PARTITION_ACCESS

FILE_SCAN
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-4

Accessing SQL/MX Data Full Table Scan

TP663851.fm Page 5 Monday, October 17, 2011 11:48 AM
Alternate Index Access Approximate Cost

Because alternate index access relies on a join between an index and a base table,
the cost associated with alternate index access can be high and is chosen only when
the cost of a full table scan is even higher.

Full Table Scan

In a full table scan, SQL reads the entire base table from beginning value to end value
in storage-key order. (If necessary, SQL can also read the table in reverse order.) Full
table scans can be quite costly in terms of performance; response time is directly
proportional to the number of rows or blocks processed.

The optimizer might choose to scan the entire table when:

 Small tables are being processed.

 No suitable index is available.

 The estimated cost of reading the index and the corresponding base table rows
exceeds the cost of reading the entire table.

To avoid or minimize table scans:

 Define a new index consisting only of required columns on frequently used queries.

 Use the CONTROL QUERY DEFAULT INTERACTIVE_ACCESS. See Minimizing
Full Table Scans on page 2-6.

 Do not disable MDAM. For further information, see MultiDimensional Access
Method (MDAM) on page 2-13.

To check for full table scans, use the EXPLAIN function. If in your EXPLAIN output for
the scan node, the entries for the begin and end key contain the minimum and
maximum values for each key column, the scan is reading the entire table. The
maximum value of a key column depends on the data type of that column.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-5

Accessing SQL/MX Data Full Table Scan

TP663851.fm Page 6 Monday, October 17, 2011 11:48 AM

Full Table Scan Approximate Cost

A full table scan can be significantly higher in cost than the other methods.

Minimizing Full Table Scans

Use the INTERACTIVE_ACCESS CONTROL QUERY DEFAULT when you want to
minimize the number of expensive full table scans. You might be interested only in the
first few rows of the query result set, such as when using [First N] option. Because
the SQL/MX compiler optimizes queries based on the cost of returning a full result set,
the plan chosen could be inefficient for applications that require only the first few rows.

By setting INTERACTIVE_ACCESS to ON, the optimizer gives a higher preference to
plans that utilize indexes for key lookup over plans that use full table or index scans.
An index key lookup could be in the form of a search key or MDAM key on a primary or
secondary index. Among plans with minimum number of full table or index scans, the
optimizer chooses the plan with the lowest cost.

The following describes the optimizer strategy when INTERACTIVE_ACCESS is set to
OFF or ON:

INTERACTIVE_ACCESS 'OFF' (default)

 Optimizer considers various plans for query execution.

 Optimizer chooses the plan with the lowest estimated cost.

INTERACTIVE_ACCESS 'ON'

 Optimizer considers various plans for query execution.

TABLE employee
End Value

Begin Value
SELECT * FROM employee;

ROOT

PARTITION_ACCESS

FILE_SCAN

Query Plan

VST024.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-6

Accessing SQL/MX Data Full Table Scan

TP663851.fm Page 7 Monday, October 17, 2011 11:48 AM
 Among the set of all plans considered, the optimizer chooses the set of plans with
the minimum number of full table or index scans.

 Among the set of plans with a minimum number of full table or index scans, the
optimizer chooses the plan with the lowest estimated cost.

These examples indicate the optimizer strategy when INTERACTIVE_ACCESS is set
to ON:

T1(a,b,c,d,e,f) with indexes clustering(a), T1_b(b), T1_c(c)

T2(a,b,c,d,e,f) with indexes clustering(a,b,c), T2_b(b)

T3(a,b,c,d,e,f) with indexes clustering(a), T3_b(b)

T4(a,b,c,d,e,f) with indexes clustering(a,b), T4_c(c)

Example 1

select * from T1 where c=3;

The INTERACTIVE_ACCESS plan uses the index T1_c for efficient key lookup on
column T1.c.

Example 2

select * from T1 where a=3;

The INTERACTIVE_ACCESS plan uses the T1 clustering index for efficient key lookup
on column T1.a.

Example 3

select * from T1 where a=3 and b=6;

The INTERACTIVE_ACCESS plan could use either T1 clustering index (for key lookup
on column a) or index T1_b (for key lookup on column T1.b).

Example 4

select * from T2 where b=3;

When INTERACTIVE_ACCESS is ON, the optimizer considers the index T2_b. In
addition, if there is cost-efficient MDAM access to the clustering key, the optimizer also
considers using the clustering index for the MDAM search. This strategy depends on
the table size and UEC of column T2.a.

Example 5

select T1.c from T1, T3 where T3.b=5 and T1.c=T3.c;

The plan with the maximum number of index usages is:

 NJ

 / \

 T3_b T1_c
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-7

Accessing SQL/MX Data Full Table Scan

TP663851.fm Page 8 Monday, October 17, 2011 11:48 AM
This plan does not have any full table or index scans because both index T3_b and
T1_c are used for key lookup for the predicates T3.b=5 and T1.c=T3.c,
respectively. In comparison, this hash join plan has one index used for lookup and one
index fully scanned:

 HJ

 / \

 T3_b T1_c

The only index used for lookup in the previous hash join plan is T3_b. The index T1_c
might have been chosen because of its smaller size, but it cannot be used for
predicate evaluation on its key. As a result, the index T1_c will be fully scanned. In this
scenario, when INTERACTIVE_ACCESS is set to ON, the optimizer frequently gives
preference to nested join plans because they have a better chance of utilizing indexes
for lookups.

Example 6

select T1.* from T1, T3 where T3.b=5 and T1.c=T3.c;

The plan with the minimum number of full table or index scans is:

 NJ

 / \

 T3_b NJ

 / \

 T1_c T1

No full table or index scans are performed in this plan.

Example 7

select T4.a, T1.f from T1, T4 where T1.c=T4.b and T4.c=5 and
 T1.a between 12 and 20;

In this case, several plans have the minimum number of full table or index scans. For
example:

 HJ

 / \

 T4_c T1

This plan uses index T4_c for key lookup on T4.c and the clustering index on T1 for
key lookup on T1.a.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-8

Accessing SQL/MX Data Understanding Unexpected Access Paths

TP663851.fm Page 9 Monday, October 17, 2011 11:48 AM
Another plan with no full table or index scans would be:

 NJ

 / \

 T4_c NJ

 / \

 T1_c T1

Understanding Unexpected Access Paths

Sometimes the optimizer does not choose the preferred or expected access path. If
this happens, check:

 Does a WHERE clause refer to base table columns that do not have corresponding
indexes?

 Do too many rows in the base table have to be randomly retrieved to justify using
alternate-index access? (See WHERE Clause Indicates Base-Table Access on
page 2-9.)

 Was index-only access not possible because of the columns that must be
retrieved?

 Does the request UPDATE index columns? (See How the Compiler Avoids the
Halloween Update Problem on page 2-9.)

 Did a CONTROL QUERY SHAPE statement instruct the compiler to take a
different access path? (See Forcing an Access Path on page 2-11.)

 Did a CONTROL QUERY DEFAULT statement influence the compiler to take a
different access path?

WHERE Clause Indicates Base-Table Access

The restriction specified by a WHERE clause might not result in a low enough
selectivity to justify alternate-index access. The overall estimated cost might be higher
for alternate-index access than for storage-key access.

How the Compiler Avoids the Halloween Update Problem

An alternate index might be ignored if a cursor or stand-alone SET UPDATE is
specified for a column that is part of the alternate index. An update of an alternate
index column might result in the deletion and reinsertion of the alternate index row after
the current row position. This updated row might then be encountered again and
updated again and again (the so-called Halloween update problem, named after the
holiday on which it was discovered).

For example, suppose that PRICE is the first column of an index and is being
incremented by 10 percent. As the column is updated, the row is inserted after its
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-9

Accessing SQL/MX Data Understanding Unexpected Access Paths

TP663851.fm Page 10 Monday, October 17, 2011 11:48 AM
original position. The cursor or set update will once again encounter the row and
increment it by 10 percent.

Selecting an index for an UPDATE query could result in a query plan that does not
terminate when executed. Consider this query:

UPDATE INVNTRY SET RETAIL_PRICE = RETAIL_PRICE * 1.1;

The query requests that the price of all items in the INVNTRY table be increased by 10
percent. Suppose that RETAIL_PRICE has a nonunique index and that the index
contains these rows before the update:

RETAIL_PRICE

 10
 40

Suppose that the index on RETAIL_PRICE is the chosen access plan for a query
requesting rows that satisfy the predicate:

RETAIL_PRICE > 20

The SQL/MX compiler finds the row with a retail price of 40 and updates it to 44. When
the system looks for the next row that satisfies the predicate, it finds the same row, but
with a value of 44 for RETAIL_PRICE. This process goes on forever.

A variation of this update problem occurs when newly inserted index rows satisfy the
search condition for the query. In this case, some rows are updated twice, causing the
reported “number of rows updated” to exceed the actual number of rows that satisfy
the search condition. For example:

UPDATE INVNTRY
SET RETAIL_PRICE = 200
WHERE RETAIL_RICE BETWEEN 100 AND 400;

The SQL/MX compiler always avoids these types of update situations. One solution is
to ignore the index on the column being updated (RETAIL_PRICE in the previous
example) and choose another index as the access path, but this can result in an
inefficient access plan.

If no other index for the INVNTRY table exists and the index on RETAIL_PRICE is not
used, the whole table must be read. If the table is large, using the index is much more
efficient.

SQL will likely use an alternate index for the scan operation of the update if any of
these conditions are true:

 The alternate index contains no column that will be updated.

 The scan is guaranteed to be a unique access, in which case the compiler will not
evaluate the same row more than once.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-10

Accessing SQL/MX Data Understanding Unexpected Access Paths

TP663851.fm Page 11 Monday, October 17, 2011 11:48 AM
 All columns to be updated have an equality predicate in the WHERE clause. For
example:

UPDATE INVNTRY
SET RETAIL_PRICE = RETAIL_PRICE * 1.1
WHERE RETAIL_PRICE = 20 AND ITEM = 7;

The rows will either get changed, in which case the selection condition does not
qualify for the newly updated row, or the rows will get updated to the same exact
value as before, in which case the index row does not change.

 No column is referenced on the right-hand side of the SET clause; as follows:

UPDATE INVNTRY
SET RETAIL_PRICE = 20
WHERE RETAIL_PRICE > 80 AND ITEM > 10;

Because the columns are being updated to a constant value, the Halloween
update problem is avoided.

A variation of this update problem occurs when newly inserted index rows satisfy the
search condition for a query. In this case, some rows are updated twice, causing the
reported “number of rows updated” to exceed the actual number of rows that satisfy
the search condition.

Forcing an Access Path

You can use the CONTROL QUERY SHAPE statement to force the access path for a
query. The CONTROL QUERY SHAPE statement applies to any DML statement.
Check the EXPLAIN output to see if the access path used is the path that you want. If
the access path is not what you want, you can force your query execution plan with the
CONTROL QUERY SHAPE statement. Follow the directions in Section 5, Forcing
Execution Plans, to specify a new access path for your query execution plan.

If you think that you might benefit from the use of one of the CONTROL QUERY
SHAPE options, check your application with and without forcing the plan by using
actual statistics from production data.

If you use one of the options, you might want to change the forced shape later for
reasons such as:

 The query might not be able to use a more efficient index that might be created in
the future.

 The query might not be able to benefit from future enhancements to SQL.

 Changes to the database structure (such as dropping an index) can require
recompilation when the option is in use.

Therefore, make occurrences of CONTROL QUERY SHAPE easy to find and change
by using one or more of these alternatives:
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-11

Accessing SQL/MX Data Understanding Unexpected Access Paths

TP663851.fm Page 12 Monday, October 17, 2011 11:48 AM
 Make sure the forced shape applies only to the statement and table intended. Turn
the forced shape off as soon as you are finished (CONTROL QUERY SHAPE
OFF).

 Isolate this forced shape in its own section and perform it from the inline
application code.

 Place all statements affected by the forced shape in separate modules, called as
services by other modules.

This example shows placing a statement affected by a forced shape into a
separate module. Assume that an application uses a set of statically precompiled
SQL statements that are in a module named ansiMXSmd.esql. In addition, part
of the contents of this module include a frequently used query named
primarykeysQ1:

...

/* SQL statement_name=primarykeysQ1 */

exec sql select ... from
:"hv_schemata_table" prototype 'N.SCH.SCHEMATA' sc,
:"hv_objects_table" prototype 'N.DSCH.OBJECTS' ob,
:"hv_cols_table" prototype 'N.DSCH.COLS' co,
:"hv_keycolusage_table" prototype 'N.DSCH.KEY_COL_USAGE' ky,
:"hv_tblconstraints_table" prototype 'N.DSCH.TBL_CONSTRAINTS' tc
where sc.SCHEMA_VERSION = :"hv_schema_version1"
and (sc.SCHEMA_NAME = :"hv_param2" or trim(sc.SCHEMA_NAME)
 LIKE :"hv_param3" ESCAPE '\')
and (ob.OBJECT_NAME = :"hv_param4" or trim(ob.OBJECT_NAME)
 LIKE :"hv_param5" ESCAPE '\')
and sc.SCHEMA_UID = ob.SCHEMA_UID and ob.OBJECT_UID = tc.TABLE_UID
 and tc.CONSTRAINT_TYPE = 'P'
and ob.OBJECT_UID = co.OBJECT_UID and tc.CONSTRAINT_UID =
 ky.CONSTRAINT_UID and ky.COLUMN_NUMBER = co.COLUMN_NUMBER
FOR READ UNCOMMITTED ACCESS order by 1, 2, 3, 5 ;
...

Assume you want to force the primarykeysQ1 query to use a given plan. You
can extract this query from its original ansiMXSmd.esql module and place it into
its own separate module, for example, primarykeysQ1.esql:

...
exec sql control query shape sort(
hybrid_hash_join(
nested_join(
hybrid_hash_join(
nested_join(cut,cut),
cut),
cut),
cut));
/* SQL statement_name=primarykeysQ1 */
exec sql select ... from
:"hv_schemata_table" prototype 'N.SCH.SCHEMATA' sc,
:"hv_objects_table" prototype 'N.DSCH.OBJECTS' ob,
:"hv_cols_table" prototype 'N.DSCH.COLS' co,
:"hv_keycolusage_table" prototype 'N.DSCH.KEY_COL_USAGE' ky,
:"hv_tblconstraints_table" prototype 'N.DSCH.TBL_CONSTRAINTS' tc
where sc.SCHEMA_VERSION = :"hv_schema_version1"
and (sc.SCHEMA_NAME = :"hv_param2" or trim(sc.SCHEMA_NAME)
 LIKE :"hv_param3" ESCAPE '\')
and (ob.OBJECT_NAME = :"hv_param4" or trim(ob.OBJECT_NAME)
 LIKE :"hv_param5" ESCAPE '\')
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-12

Accessing SQL/MX Data MultiDimensional Access Method (MDAM)

TP663851.fm Page 13 Monday, October 17, 2011 11:48 AM
and sc.SCHEMA_UID = ob.SCHEMA_UID and ob.OBJECT_UID = tc.TABLE_UID
 and tc.CONSTRAINT_TYPE = 'P'
and ob.OBJECT_UID = co.OBJECT_UID and tc.CONSTRAINT_UID =
 ky.CONSTRAINT_UID and ky.COLUMN_NUMBER = co.COLUMN_NUMBER
FOR READ UNCOMMITTED ACCESS order by 1, 2, 3, 5 ;

exec sql control query shape off;
...

By extracting the query from its original module and placing it into a separate
module, you assure:

 The forced plan is applied only to the SQL compilation of the query.

 You can easily find and maintain the query in case you need to change it again
to force a different plan.

MultiDimensional Access Method (MDAM)
The MultiDimensional Access Method (MDAM) provides optimal access to certain
types of information when predicates contain key columns. Based on the predicates
you specify, MDAM reads the minimal set of records and retrieves rows in key order,
allowing the optimizer to avoid sorts when it can and to do merge joins. MDAM is
costed by the optimizer whenever a key predicate is contained in the query and
statistics exist for the key. The decision to choose MDAM is based on whether the
access is less expensive than single subset access.

Use MDAM to:

 Save indexes. With MDAM, you need fewer indexes and so can save the
maintenance and space associated with extra indexes.

 Save resources.

 Obtain good performance in situations where previously a full table scan was
needed.

 To add rows to a table without suffering performance penalties.

Specifying MDAM

MDAM is enabled by default. Enable means that the SQL/MX compiler can choose to
use MDAM if it will provide a better quality plan. Several SQL/MX compiler control
settings affect MDAM:

 CONTROL QUERY DEFAULT provides a system-wide “master” switch for the
current session. You can switch MDAM off or on and enable MDAM if it is disabled.

 With CONTROL QUERY SHAPE, you can force columns to be used by MDAM,
and you can also force enumeration algorithms. For more information about
enumeration algorithms, see MDAM’s Use of DENSE and SPARSE Algorithms on
page 2-18.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-13

Accessing SQL/MX Data Comparing MDAM With Single Subset Access

TP663851.fm Page 14 Monday, October 17, 2011 11:48 AM
 With CONTROL TABLE, you can control MDAM at the current process level or for
a specific table or index. The * (asterisk) option specifies all tables. If you specify
CONTROL TABLE * MDAM ‘OFF,‘ MDAM is disabled for all tables and indexes. If
you specify CONTROL TABLE * MDAM ‘ON‘, only MDAM access will be tried for
all indexes and tables.

Turn MDAM off only if you find the query runs better without it.

Comparing MDAM With Single Subset Access

Without MDAM, tables are accessed by the single subset access method.

This figure shows single subset access on table T1. The lines in the table indicate the
rows that are being accessed by the predicates on the query. Notice that the entire
range from beginning to end is scanned to return the rows requested. Between the
requested rows are a number of rows that contain information that is not needed.

Single subset access is characterized by scanning a range of values, from begin key to
end key, that results in reading all the rows between the begin and end keys. The cost
associated with single subset access is equal to:

Cost of reading N blocks
+ cost of applying M predicates to R records
+ cost of moving the passed records

The cost of moving the passed records is a fixed cost, so it cannot be changed. The
other costs, however, can be improved.

Note. If you use CONTROL TABLE tablename MDAM ‘OFF‘, the compiler could still use
MDAM for an index of the same table.

TABLE T1
End Value

Begin Value

VST025.vsd

S
in

g
le

 S
u

bs
e

t
A

cc
e

ss

Requested Row

Requested Row
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-14

Accessing SQL/MX Data How MDAM Processes Queries

TP663851.fm Page 15 Monday, October 17, 2011 11:48 AM
As shown in the next figure, the scan of the single subset access starts with the begin
value and finishes at the end value when the last row is read. To reduce the cost of
reading N blocks, you could break the table up into a series of smaller ranges with a
high potential for hits. By reducing the number of blocks read, you also reduce the cost
of applying the predicates to the records, because fewer records are scanned.

With MDAM, access is based on the key-column predicates, and the table is accessed
in a series of smaller begin and end ranges. This scenario requires more key
positionings.

With MDAM, the begin and end key range is determined at run time. The executor
does the key positionings based on information provided by the optimizer.

The cost associated with MDAM access is determined through this formula:

Cost of reading N blocks (covered by ranges)
+ cost of applying M predicates against R records
+ cost of moving the passed rows (again, a fixed cost)
+ number of key positions required

This formula works best for low selectivity columns (low unique entry count (UEC) =
fewer key positionings).

How MDAM Processes Queries

When processing a query, MDAM:

 Enables range predicates on leading or intervening key columns
 Accommodates missing predicates on leading or intervening key columns
 Performs general OR optimization
 Handles IN lists on multiple key columns
 Eliminates redundant and contradictory predicates

TABLE T1 VST26.vsd

M
D

A
M

 A
cc

e
ss

Rows Requested

Rows Not
Requested

Begin

End

Begin

End

Begin
End

Begin
End

Begin
End
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-15

Accessing SQL/MX Data How MDAM Processes Queries

TP663851.fm Page 16 Monday, October 17, 2011 11:48 AM
 Does not read the same row twice
 Maintains sort order

Intervening Range Predicates

An intervening range predicate occurs when another key column predicate follows the
first predicate:

A > 5 AND B = 2

MDAM processes range predicates by stepping through the existing values for the
column on which the range has been specified. Data outside the bounds is not read
from disk or handled in any way.

Missing Key Predicates

When no predicates have been specified for a leading or intervening key column,
MDAM can still use the subsequent columns for keyed access. MDAM is most effective
when a skipped column (no predicate) has a low UEC. Consider this query where the
index contains DEPT, SALES_DATE, ITEM_CLASS, and STORE, in that order:

SELECT SALES_DATE, SUM(TOTAL_SALES)
 FROM SALES
 WHERE SALES_DATE BETWEEN DATE'06/01/95' AND DATE'06/30/95'
 AND ITEM_CLASS=20 AND STORE=250 GROUP BY DEPT, SALES_DATE;

Notice that no predicate was provided for the first key column, DEPT. Without MDAM,
the compiler would have to resort to a full table scan for the query. MDAM treats the
missing predicate for DEPT as an implied range of MIN_VALUE to MAX_VALUE
(including NULL values). These values are respectively the minimum and maximum
permissible values supported for the data type of the missing key column.

OR Predicates

MDAM works with OR operators to:

 Avoid creating duplicates:

A IN (1, 2, 3, 2)

MDAM reads 1, 2, 3. The last 2 is not read.

 Allow WHERE clauses that are not in disjunctive normal form; that is, WHERE
clauses can have more than one level of OR operations.

IN Lists

An IN predicate equivalent is the result when an IN predicate is converted into a series
of ORs:

COL1 IN (1, 2, 3)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-16

Accessing SQL/MX Data Influencing the Optimizer to Use MDAM

TP663851.fm Page 17 Monday, October 17, 2011 11:48 AM
This IN predicate is converted into:

COL1 = 1 OR COL1 = 2 OR COL1 = 3

Consider:

SELECT * FROM T WHERE
 ((A = 4 AND B IN (2,5))
 OR (A = 7 AND B IN (6,9)) ;

The optimizer transforms this query into these predicate sets:

(A = 4 AND B = 2) OR
(A = 4 AND B = 5) OR
(A = 7 AND B = 6) OR
(A = 7 AND B = 9)

Redundant and Contradictory Predicates

MDAM eliminates predicates that conflict with other predicates. For example, this
query shows conflicting predicates:

SELECT * FROM T1
 WHERE DIMENSION_2
 BETWEEN 2 AND 3 AND DIMENSION_2=1;

MDAM recognizes that these predicates conflict and removes both of them, resulting in
no table accesses (that is, DIMENSION_2 cannot be both 1 and [2 through 3]). In
addition, at run time, MDAM resolves conflicting predicates and combines overlapping
ranges and IN lists within a single disjunct.

Duplicate Rows

MDAM avoids reading the same data twice so that it does not have to do post-read
operations to accomplish duplicate elimination. MDAM combines overlapping ranges
among the disjuncts and separates the disjuncts into nonoverlapping accesses.

Sort Order

MDAM orders the retrievals in the order of the index being accessed. The order can be
ascending or descending. MDAM maintains the index order even when reading the
index backward, which satisfies ordering requirements and prevents a sort of the
query.

Influencing the Optimizer to Use MDAM

You can influence the optimizer to choose MDAM as the access path by ordering your
key columns in your index design:

 Perform UPDATE STATISTICS on leading columns. As the UECs for leading
columns increase (and if the columns do not have predicates on them in the
query), the number of seeks to the table increases. The UECs of leading columns
are the single most important factor in MDAM access.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-17

Accessing SQL/MX Data Controlling the Number of Key Columns Used by
MDAM

TP663851.fm Page 18 Monday, October 17, 2011 11:48 AM
 Order your key columns by the columns that you access most frequently. If you
frequently perform a query that uses department number, include the DEPTNUM
column in your key-column index.

For example, if the EMPLOYEE table contains the columns STATE, JOBCODE,
DEPTNUM, LAST_NAME, FIRST_NAME and you frequently perform queries
based on JOBCODE, STATE, and DEPTNUM, place the columns in that order.

Controlling the Number of Key Columns Used by MDAM

In most cases, you should allow MDAM to choose the number of key columns to use
for MDAM processing. Occasionally, MDAM chooses more or fewer key columns than
you expect. On these occasions, you can force MDAM use with the CONTROL
QUERY SHAPE statement to specify the number of key columns for MDAM to use. For
information about using CONTROL QUERY SHAPE, see Section 5, Forcing Execution
Plans.

Suppose that four columns of the key have predicates. You have determined the
Unique Entry Count (UEC) of the third key column used in a predicate. (You have
found the count by updating statistics or querying the count for the column.) If you do
not want MDAM to step through all the different values for the third column, you can
specify the number of columns for MDAM to use. If you specify two, only predicates on
the first two key columns are used.

If you specify a number of columns that is less than or equal to zero, SQL returns an
error. If the number you specify exceeds the number of key columns available for the
index, the optimizer uses the maximum number of key columns usable by MDAM for
each predicate set. Specifying SYSTEM for the number of key columns enables
MDAM to choose the number of key columns.

MDAM’s Use of DENSE and SPARSE Algorithms

A dense key column has all (or almost all) the possible values for a column. If a column
has 100 unique values and the column value ranges from 0 through 99, the column is
considered dense. When a dense column is recognized, MDAM has to add only one to
the previous value to find the next value in the column.

A sparse key column has missing possible values. A column is considered sparse
when the number of actual values in the column is small relative to the set of all
possible values. Sparse columns contain gaps in the ranges specified for the key
column. The optimizer detects these gaps by analyzing the UEC and high and low
values of the column.

The compiler and executor use adaptive DENSE and SPARSE algorithms for the
leading key column only. The algorithm chosen by the compiler might not be rigidly
followed by the executor. For example, if the optimizer chooses a DENSE algorithm
and the executor finds the DENSE algorithm is inefficient for accessing the column, the
executor adapts by switching to a SPARSE algorithm when it discovers that many
values are missing. The executor chooses the appropriate algorithm for the density or
sparseness of data.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-18

Accessing SQL/MX Data MDAM’s Use of DENSE and SPARSE Algorithms

TP663851.fm Page 19 Monday, October 17, 2011 11:48 AM
When the compiler chooses a SPARSE algorithm, the executor executes only the
SPARSE algorithm and does not attempt to switch to a DENSE algorithm.

You can force the choice by specifying the SPARSE or DENSE option in the
CONTROL QUERY SHAPE statement. If you force a DENSE algorithm, the executor
does an adaptive DENSE or SPARSE and switches accordingly when it finds that the
chosen algorithm is not efficient for the column it is accessing. If you force a SPARSE
algorithm, the executor uses only the SPARSE algorithm.

In the next figure, Table A shows that Col. 1 has values that always increase by one. If
the compiler chooses MDAM DENSE, the executor starts with DENSE until it discovers
a gap in the useful information requested, and then it switches to SPARSE. With the
SPARSE algorithm, the executor must retrieve a row to determine the next actual value
in a column. If the compiler chooses SPARSE, the executor does not attempt DENSE.

TABLE A, Col 1

VST027.vsd

5
6
7

Dense

15
16
17
18
19

Sparse

Dense
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-19

Accessing SQL/MX Data MDAM’s Use of DENSE and SPARSE Algorithms

TP663851.fm Page 20 Monday, October 17, 2011 11:48 AM
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
2-20

TP663851.fm Page 1 Monday, October 17, 2011 11:48 AM
3 Keeping Statistics Current

When you update statistics, information about a table is updated in the histogram
tables so that the information more accurately represents the current content and
structure of the database. Use the information in this section to understand when and
why you should update statistics:

 Histogram Statistics on page 3-1

 Sampling and UPDATE STATISTICS on page 3-5

 Testing the Results of UPDATE STATISTICS on page 3-8

You must execute the UPDATE STATISTICS statement for each table. NonStop
SQL/MX does not automatically update statistics.

Histogram Statistics
Histograms are critical to the optimizer’s ability to differentiate between plans. The
optimizer uses histograms to estimate the row count that flows out of each operator in
a query execution plan and uses these estimates to calculate the total cost of a plan.
Different plans are then compared to find the best plan.

The best practice is to update statistics for every table column involved in a query (that
is, every column in every predicate, join, group by, and order by expression). However,
you might decide that the cost of updating statistics is not justified by the gain in
optimizer accuracy. In this case, you can adjust the default setting constant values for
histograms. For information about histogram default settings, see the
SYSTEM_DEFAULTS table entry of the SQL/MX Reference Manual.

When you update statistics, histogram statistics for a group of columns or individual
columns are collected, including for each column or set of columns:

 Current number of rows in the table
 Number of unique entries in the table
 Highest value for the table column
 Lowest value for the table column
 Number of intervals in the histogram
 Number of unique entry counts (UEC) in each interval
 Number of rows in each interval
 Interval boundary

Histogram statistics are updated by using the UPDATE STATISTICS statement with the
ON clause. Stored in the user catalog, histogram statistics are stored for the entire
table and columns in the HISTOGRAM and HISTOGRAM_INTERVALS user metatdata
tables. Histogram statistics are discussed under Updating Histogram Statistics on
page 3-2.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
3-1

Keeping Statistics Current Updating Histogram Statistics

TP663851.fm Page 2 Monday, October 17, 2011 11:48 AM
For the syntax of the UPDATE STATISTICS statement and for more information about
histogram tables, see the SQL/MX Reference Manual.

Updating Histogram Statistics

When you update statistics on a column or a group of columns, NonStop SQL/MX
generates histogram statistics. Histogram statistics enable the optimizer to create
efficient access plans.

Histogram statistics are stored in two tables. The name and location of these tables
depends on whether you are using SQL/MX or SQL/MP tables.

Table 3-1 shows the temporary tables information created for histograms.

Note. The compiler uses default statistics if no updated statistics exist for the table and
column. When the compiler uses default statistics, the execution plan provided might not be
the optimal plan. If statistics have not been updated, the compiler uses the block count from
the file label. However, if the block count is zero, the compiler uses the default value for the
HIST_NO_STATS_ROWCOUNT attribute. The compiler issues warnings if statistics have not
been generated for a relevant column when the table contains more rows than the value
defined by the default HIST_ROWCOUNT_REQUIRING_STATS.

Table 3-1. Histogram Temporary Tables

Statistics SQL/MX Objects SQL/MP Objects

Registration Registered in the same
catalog.schema as the table.

Registered in the catalog of the
primary partition of the table.

Location Located in the same
catalog.schema as the table.

Located in the same \node.$vol
as the primary partition, in the
ZZMXTEMP subvolume.

File names catalog.schema.
SQLMX_<object_uid_of_table
name>_<seconds_part_from_c
urrent_timestamp>_<microse
conds_part_from_current_ti
mestamp>

\node.$vol.ZZMXTEMP.
tablename

Size Limits Files are always format 2, limited to
1 TB or the amount of available
space on the disk volume.

File format is determined by the
format of the base table’s primary
partition.

Format 1: The temporary table is
limited to 2 GB.

Format 2: The temporary table is
limited to 1 TB of the space available
on the disk volume.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
3-2

Keeping Statistics Current Updating Histogram Statistics

TP663851.fm Page 3 Monday, October 17, 2011 11:48 AM
Table 3-2 compares histogram statistics table information.

The HISTOGRAMS and HISTOGRM tables store histogram-specific table and column
information. The HISTOGRAM_INTERVAL and HISTINTS tables store interval
information for the data distribution of a column or group of columns. When you run
UPDATE STATISTICS again for the same user table, the new data replaces the data
previously generated and stored in the histogram tables.

The HISTOGRAMS and HISTOGRM tables show how data is distributed with respect
to a column or a group of columns. When generating a histogram for a table, NonStop
SQL/MX distributes the values of the specified columns into some number of intervals.
An interval represents a range of values for the column. The range of values for each
interval is selected by NonStop SQL/MX so that every interval represents
approximately the same number of rows in the table.

For example, if a table contains 1 million rows and UPDATE STATISTICS generates 20
intervals for a column in that table, each interval represents 50,000 rows. (This is
sometimes known as “equal height” distribution over the histogram intervals.) The
optimizer computes statistics associated with each interval and uses the statistics to
devise optimized plans.

The ON EVERY COLUMN clause of the UPDATE STATISTICS statement generates
separate histogram statistics for every individual column and any multicolumns that
make up the primary key and indexes in the table.

Consider a table that contains columns A, B, C, D, and E. The ON EVERY COLUMN
option generates a single column histogram for columns A, B, C, D, E. The number of
multicolumn histograms generated depends on the primary key definition and the
indexes defined. With the primary key defined on A, B, and C and no index defined,
NonStop SQL/MX generates two multicolumn histograms (A, B, C) and (A, B). Using
the same table and columns, the next example shows when multicolumn histograms
are generated based on the primary key and defined indexes:

Table has columns A, B, C, D, E

Case 1
KEY: (A, B, C,) => (A, B, C), (A, B)
INDEX: none => none
RESULT: (A, B, C), (A, B)

Table 3-2. Histogram Statistics Tables

Statistics SQL/MX Objects SQL/MP Objects

Registration Registered in the same
catalog.schema as the table.

Registered in the catalog of the primary
partition of the table.

Location Located in the same
catalog.schema as the table.

Located in the same
\node.$vol.subvol as the catalog.

File names catalog.schema.HISTOGRAMS
catalog.schema.
HISTOGRAM_INTERVALS

\node.$vol.subvol.HISTOGRM
\node.$vol.subvol.HISTINTS
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
3-3

Keeping Statistics Current Updating Histogram Statistics

TP663851.fm Page 4 Monday, October 17, 2011 11:48 AM
In Case 2, the index (E) is defined as nonunique, so the KEY is added to the end of the
INDEX, and the index is INDEX+KEY:

Case 2
KEY: (A, B, C) => (A, B, C), (A, B)
INDEX: (E) nonunique => (E, A, B, C), (E, A, B), (E, A)
RESULT: (A, B, C), (A, B), (E, A, B, C), (E, A, B), (E, A)

In Case 3, because the index (E) is defined as a unique index, the KEY is not added to
the end of the INDEX. The index is INDEX. Because the index is a single column, it is
processed as a single-column histogram only (no multicolumn histograms are
generated).

Case 3
KEY: (A, B, C) => (A, B, C), (A, B)
INDEX: (E) unique = > no multicolumn histogram
RESULT: (A, B, C), (A, B)

Histogram tables are not automatically updated when you update a table for which
statistics are stored. To keep the histogram statistics current, execute the UPDATE
STATISTICS statement after significantly updating tables.

NonStop SQL/MX reduces compile time for less complex queries by caching
histograms. When the histogram is cached, it can be retrieved from the cache rather
than from the disk for future queries on the same table. Histogram caching provides
faster access to histograms.

Several default settings for histogram tables can be changed. For more information,
see the SYSTEM_DEFAULTS table entry in the SQL/MX Reference Manual.

Knowing When to Update Statistics

Before you update statistics, consider:

 Using sampling to reduce the amount of time required for updating statistics. See
Sampling and UPDATE STATISTICS on page 3-5.

 Updating statistics only after a table has been loaded with data.

Other performance issues to consider when you experience reduced response time
are:

 The node containing the table might have heavy disk usage because of long ad
hoc queries or reports.

 If the table or index is distributed, the network might be rerouted or might have
heavy use.

 NonStop SQL/MX does not automatically recompile your programs when you
update statistics.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
3-4

Keeping Statistics Current Sampling and UPDATE STATISTICS

TP663851.fm Page 5 Monday, October 17, 2011 11:48 AM
Analyzing the Possible Impact of Updating Statistics

Depending on the size of the table, updating statistics can take longer than you would
like. Consider updating statistics during the hours when peak performance is not
required.

If you want to preserve the existing query execution plan, be aware that updating
statistics might cause the optimizer to choose a different plan. Usually, you can
improve performance by updating the statistics on a table to reflect the current status.
The update statistics operations, however, might not improve performance, as
discussed next:

 You can update statistics to perform a sampling of rows to determine the statistical
information. Depending on your sample size, this procedure could take a long time.
(That is, the larger the sample, the longer it might take.) Because this is a statistical
sampling method, the statistics gathered are not exact. Inaccurate statistics (wrong
by more than 10 percent) can adversely affect the plan. See Sampling and
UPDATE STATISTICS.

 Because the UPDATE STATISTICS statement does not automatically recompile
programs, the operation does not invalidate the dependent programs. If you want
to take advantage of the new statistics, however, you must explicitly recompile the
dependent programs.

Sampling and UPDATE STATISTICS
Use sampling to control the amount of time spent calculating statistics. If you do not
specify sampling, statistics are collected by scanning the entire table. The optional
SAMPLE clause provides several methods of producing a sample set, based on a
ratio, to determine the histograms. The SQL/MX Reference Manual describes each
sampling method in detail.

You might want to use sampling because of the amount of time required to update
statistics on the entire table. Sampling techniques that do not perform full large table
scans result in significant performance gain. You can use SAMPLE without specifying
the number of rows. By default, NonStop SQL/MX samples two percent of the table up
to a maximum of two million rows. You might want to explicitly specify a larger sample
size to increase statistics accuracy or a smaller sample size to reduce the running
time.

When you use the SAMPLE option with UPDATE STATISTICS, a temporary table is
created. You can use the HIST_SCRATCH_VOL default attribute for SQL/MX and
SQL/MP tables. For SQL/MX tables, NonStop SQL/MX creates a single partition or
hash partitions across multiple volumes as specified in the HIST_SCRATCH_VOL
default attribute. NonStop SQL/MX determines how many partitions are needed based
on the sample set retrieved by the SAMPLE option. It randomly selects the volume or
volumes to use from the list of volumes specified in the HIST_SCRATCH_VOL default
attribute. NonStop SQL/MX creates only as many partitions as specified with
HIST_SCRATCH_VOL. If the default attribute is not used, the temporary table is
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
3-5

Keeping Statistics Current Sampling and UPDATE STATISTICS

TP663851.fm Page 6 Monday, October 17, 2011 11:48 AM
created in the default volume specified by the _DEFAULTS define. For SQL/MP tables,
a single partition is created on the volume specified in the HIST_SCRATCH_VOL
default attribute. If the default attribute is not used, the temporary table is created in the
same volume as the primary partition of the table. Because the temporary table is used
for data gathering and calculation purposes, you must have adequate disk space to
accommodate it on your system. For more information about the
HIST_SCRATCH_VOL default attribute, see the SQL/MX Reference Manual.

Starting with SQL/MX Release 2.3.2, the temporary table can be created as a
partitioned table. When you use the USING SAMPLE TABLE WITH PARTITIONS
clause, SQL/MX creates a temporary table that is partitioned the same way as the
base table for which the statistics are collected. The partitioned temporary table can
increase the speed of the UPDATE STATISTICS command significantly because both
write and read operations on the table can occur simultaneously.

Use a partitioned temporary table when the UPDATE STATISTICS command takes
several tens of minutes to complete—there might not be any gain when the command
takes only a few minutes.

The performance with partitioned temporary tables is heavily dependent on the degree
of parallelism in the operations that the UPDATE STATISTICS command uses to write
to and read from the temporary table. The following steps are recommended for
obtaining the maximum parallelism from SQL/MX:

 Ensure that the number of partitions is a multiple of the number of CPUs in the
system.

 Distribute the data records evenly across all partitions.

 Distribute the partitions evenly across all available disks.

 Distribute the disks evenly across all available CPUs.

An uneven distribution might degrade the performance with partitioned temporary
tables. You can resolve this problem, in some cases, by creating a temporary table and
specifying it for the command to use. To do this, use the USING SAMPLE TABLE
table-name clause. The temporary table must meet these criteria:

 The column attributes must be the same as the base table—the number of
columns, order, and data types must match.

 There must not be any indexes or triggers.

 There must be no constraints.

 The table must be empty.

When partitioning the temporary table, avoid using the disks and CPUs that are heavily
loaded and try to distribute the partitions evenly across the remaining disks and CPUs.

When the USING SAMPLE TABLE clause is used, the HIST_SCRATCH_VOL default
attribute will be ignored.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
3-6

Keeping Statistics Current Performance Issues and Accuracy in Sampling

TP663851.fm Page 7 Monday, October 17, 2011 11:48 AM
From SQL/MX 2.3.2 onwards, it is also possible to push the sampling operation down
into DP2. As a result, the number of read and discarded records reduces, thereby
improving the performance of the command. This technique is effective for low
sampling percentages. Use the ALLOW_DP2_ROW_SAMPLING default attribute to
control the sampling. The attribute values are SYSTEM, ON, and OFF. The default
value is SYSTEM. When the attribute is set to SYSTEM, UPDATE STATISTICS
pushes the sampling down into DP2 for sampling percentages up to 5%. When it is set
to ON, UPDATE STATISTICS pushes the sampling down into DP2 for sampling
percentages up to 50%. When set to OFF, the sampling is not pushed down into DP2.

When you use the sampling option, you can increase the efficiency by specifying a row
count for the columns you want to update. The next statement provides a way to obtain
the row count for the EMPNUM column of the EMPLOYEE table:

SELECT COUNT(*) FROM EMPLOYEE;

Use the value returned from running the SELECT COUNT (*) statement (125000) to
specify the valid row count in the UPDATE STATISTICS statement:

UPDATE STATISTICS FOR TABLE EMPLOYEE ON (EMPNUM)
 SAMPLE 5000 ROWS SET ROWCOUNT 125000

Performance Issues and Accuracy in Sampling

Certain sampling options provide more accurate statistics than others, but higher
accuracy can mean performance trade-offs. When you need high accuracy or quality in
your sample, use random row sampling. In this method, the intermediate table being
sampled is scanned, and each row is selected with probability n/100, where n is the
sample percentage.

A faster alternative to random row sampling is cluster sampling. Use this method when
performance is a high priority, or when the quality of a sample is determined to be good
enough, based on the knowledge of the table for which statistics are being updated.

In cluster sampling, only disk blocks that are actually part of the result set are read and
processed. If the sampling percentage is small, which is typically the case, the
performance advantage of cluster sampling over other sampling methods can be
dramatic. For example, consider two queries, one that selects a 1 PERCENT row
sample of a table and another that selects a 1 PERCENT cluster sample of the same
table. Because cluster sampling requires reading and processing only approximately 1
percent of the table, and row sampling reads and processes the entire table, cluster
sampling can be up to 100 times faster than random row sampling. However, the trade-
off for this performance is less accuracy than random row sampling provides.

Other sampling methods, such as PERIODIC, do not provide additional performance or
accuracy but provide semantics that are appropriate in certain situations. Use
PERIODIC sampling (for example, choosing 1 of every 10 rows) when it is important to
compute statistics from all parts of a table. For example, if a table is ordered by
timestamp and column values vary widely over time, the use of PERIODIC sampling
ensures that statistics are computed from rows spread evenly throughout the entire
table, resulting in accurate statistics.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
3-7

Keeping Statistics Current Collecting Statistics for Multiple Columns

TP663851.fm Page 8 Monday, October 17, 2011 11:48 AM
These sampling options perform a full table scan prior to selecting the sample set:

SAMPLE RANDOM x PERCENT

SAMPLE PERIODIC x ROWS EVERY y ROWS

These sampling options do not perform a full table scan to determine the sample set.
In addition, the accuracy of all these examples is equivalent to SAMPLE RANDOM x
PERCENT CLUSTER OF y BLOCKS:

SAMPLE

SAMPLE r ROWS

SAMPLE SET ROWCOUNT c

SAMPLE r ROWS SET ROWCOUNT c

Collecting Statistics for Multiple Columns

Multicolumn unique entry count (UEC) is the UEC for a combination of columns. It is
the total number of unique combinations for the set of columns. The multicolumn UEC
enables the optimizer to give a better prediction of the number of rows and to provide
better plans. Specifically, the multicolumn UEC enables the optimizer to predict the
number of rows resulting from a grouping operation on multiple columns and in the
case of multicolumn joins.

If you have a set of columns you normally use for grouping (such as JOBCODE and
DEPTNUM), without multicolumn statistics, the optimizer multiplies the UECs of the
columns together to get the combined UEC. However, this result can be orders of
magnitude higher than the real number of combinations. Likewise for joins, if you have
two tables joined by two or more columns, a multicolumn histogram for the set of join
columns from each table gives a better result.

Testing the Results of UPDATE STATISTICS
Because updating statistics can have a significant impact on plan quality, you can try to
determine the benefits of the operation before you decide to update the histogram
tables.

Testing the Results for SQL/MP Tables

To test the results of updating statistics:

1. Prepare a sample query from your application. (Consider using a commonly used
query from your application.)

2. Execute the query.

3. Use EXPLAIN to obtain the cost information for your query. For information about
reviewing plans with the EXPLAIN function, see Displaying Selected Columns of
the Execution Plan on page 4-5.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
3-8

Keeping Statistics Current Testing the Results for SQL/MX Tables

TP663851.fm Page 9 Monday, October 17, 2011 11:48 AM
4. Determine the effect of the UPDATE STATISTICS statement and optionally back
out the generated histogram if necessary:

a. In SQLCI, back up current histogram tables, if any:

SQLCI> DUP histogrm, myogrm;

SQLCI> DUP histints, myints;

b. In MXCI, issue the UPDATE STATISTICS command for required column
groups.

c. In MXCI, recompile the query.

d. In MXCI, use EXPLAIN to review the cost information for your query.

e. In MXCI, use DISPLAY STATISTICS to determine which plan is better.

f. If necessary, use the UPDATE STATISTICS CLEAR option (in MXCI) to
remove histograms for unwanted column groups.

g. If necessary, in SQLCI, restore backup histogram tables:

SQLCI> DROP TABLE histogrm;

SQLCI> DROP TABLE histints;

SQLCI> DUP myogrm, histogrm;

SQLCI> DUP myints, histints;

Testing the Results for SQL/MX Tables

To test the results of updating statistics:

1. Prepare a sample query from your application. (Consider using a commonly used
query from your application.)

2. Execute the query.

3. Use EXPLAIN to obtain the cost information for your query. For more information,
see Displaying Selected Columns of the Execution Plan on page 4-5.

4. Determine the effect of the UPDATE STATISTICS statement and optionally back
out the generated histogram if necessary:

a. In MXCI, back up current histogram tables, if any:

> CREATE TABLE myhist LIKE HISTOGRAMS;

> INSERT INTO myhist SELECT * FROM HISTOGRAMS;

> CREATE TABLE myhistint LIKE HISTOGRAM_INTERVALS;

> INSERT INTO myhistint SELECT * FROM HISTOGRAM_INTERVALS;

b. Issue the UPDATE STATISTICS command for required column groups.

c. Recompile the query.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
3-9

Keeping Statistics Current Testing the Results for SQL/MX Tables

TP663851.fm Page 10 Monday, October 17, 2011 11:48 AM
d. Use EXPLAIN to review the cost information for your query.

e. Use DISPLAY STATISTICS to determine which plan is better.

f. If necessary, use the UPDATE STATISTICS CLEAR option to remove
histograms for unwanted column groups.

g. If necessary, restore backup histogram tables:

> DELETE FROM HISTOGRAMS;

> INSERT INTO HISTOGRAMS SELECT * FROM myhist where
table_uid in (select object_uid from
CAT.DEFINITION_SCHEMA_VERSION_3000.OBJECTS);

> DELETE FROM HISTOGRAM_INTERVALS;

> INSERT INTO HISTOGRAM_INTERVALS SELECT * FROM myhistint
where table_uid in (select object_uid from
CAT.DEFINITION_SCHEMA_VERSION_3000.OBJECTS);
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
3-10

TP663851.fm Page 1 Monday, October 17, 2011 11:48 AM
4
Reviewing Query Execution Plans

Use the information in this section to display and understand how your query is
optimized. At a later time, you might use this information to make decisions about
forcing execution plans, described in Section 5, Forcing Execution Plans.

 Displaying Execution Plans on page 4-1

 Using the EXPLAIN Statement to Review the Execution Plan on page 4-6

 Optimization Tips on page 4-9

 Reviewing Run-Time Statistics on page 4-21

Displaying Execution Plans
Use these methods to display the query execution plan:

 Use the EXPLAIN function to query and display certain columns or all columns of
information about execution plans.

 Use the EXPLAIN statement shortcut to display all available information about
execution plans.

 Use the Visual Query Planner graphical user interface (GUI) to extract and display
execution plans generated by the SQL/MX optimizer for DML statements.

When you view information using the EXPLAIN function, the results are displayed in
the machine-readable format. However, when you use the EXPLAIN statement to view
the information, the results are displayed in the machine-readable format. Although you
can interpret the results of the execution plans, you can view results better using the
Visual Query Planner application.

Using the EXPLAIN Function

The EXPLAIN function is a table-valued stored function that returns information about
execution plans for SQL DML statements. You can use the information in the EXPLAIN
output for these types of tasks:

 Reviewing the chosen execution plan.
 Identifying problems and tuning queries.
 Determining whether the optimizer chose the optimal plan.

You can query and display certain columns or all columns of the information about
execution plans by using the EXPLAIN function.

You can selectively display columns from the execution plan by using the EXPLAIN
function:
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-1

Reviewing Query Execution Plans Using the EXPLAIN Statement Shortcut

TP663851.fm Page 2 Monday, October 17, 2011 11:48 AM
1. In MXCI, prepare the query:

PREPARE FINDSAL FROM
 SELECT FIRST_NAME, LAST_NAME FROM EMPLOYEE
 WHERE SALARY > 40000.00;

2. Display selected rows of the execution plan for the prepared statement FINDSAL
by using the EXPLAIN function:

SELECT SEQ_NUM, OPERATOR, TOTAL_COST
 FROM TABLE (EXPLAIN (NULL, 'FINDSAL'));

Output results from the query are:

SEQ_NUM OPERATOR TOTAL_COST
----------- ---------------------------- --------------
 1 FILE_SCAN 2.1645594E-002
 2 PARTITION_ACCESS 2.1645594E-002
 3 ROOT 1.1964559E-001

--- 3 row(s) selected.

For a description of all column fields of the EXPLAIN function, see Description of the
EXPLAIN Function Results on page 4-3.

For a detailed description of the EXPLAIN function, see Displaying Selected Columns
of the Execution Plan on page 4-5.

Using the EXPLAIN Statement Shortcut

You can display all the columns of the execution plan using the EXPLAIN statement.
This command is a shortcut for the EXPLAIN function.

In MXCI, enter the EXPLAIN statement followed by your query. For example:

EXPLAIN
SELECT FIRST_NAME, LAST_NAME FROM EMPLOYEE
 WHERE SALARY > 40000.00;

You can also use the EXPLAIN statement to display the plan for a prepared query.

For more information about the EXPLAIN statement, see Using the EXPLAIN
Statement to Review the Execution Plan on page 4-6.

Using the Visual Query Planner

1. To start the Visual Query Planner, do one of the following:

 Select Start > Programs > NonStop SQL-MX >Visual Query Planner.

 Navigate to the C:\Program Files\Hewlett Packard\NonStop SQL-MX folder
and select Visual Query Planner.

2. Select Explain > Connect to ODBC to connect to your ODBC data source.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-2

Reviewing Query Execution Plans The Optimizer and Executor

TP663851.fm Page 3 Monday, October 17, 2011 11:48 AM
For further information about creating ODBC data sources, see the ODBC Driver
Manual for Windows.

3. In the top pane of the Visual Query Planner window, enter your query.

4. Select Explain > Get Explain Plan to display your query execution plan.

The operator tree for the query execution plan appears in the lower left pane of the
Visual Query Planner window. Summary detail for the operators displays in the
lower right pane. Additional information about each operator is included in the
Properties dialog box, which is available from the Explain menu.

For a detailed description of the Visual Query Planner, see Using the Visual Query
Planner on page 4-14.

The Optimizer and Executor

The optimizer creates an execution plan for each operator in the operator tree for the
query. The cost is an estimate of the resources needed to execute a plan. Each
operator has a local cost, which is dependent on the algorithm chosen for
implementing the operator and the values that the operator receives as input. The local
cost is the cost for the leaf node. From then on, the local cost is the cumulative cost of
that branch of the node.

The execution plan is chosen based on what is determined to be the optimal
performance plan: the total cost to produce the first row of output or last row of output.
Total cost is estimated by using a number of formulas to roll up the local costs. The
formulas depend on the characteristics of each of the operators in the tree.

Description of the EXPLAIN Function Results

An operator tree is a structure that represents operators used in a query execution plan
as nodes, with at most one parent node for each node in the tree, and with only one
root node. Each row in the EXPLAIN output corresponds to one node in the tree. A
node of an operator tree is a point in the tree that represents an event (involving an
operator) in a plan. Each node might have subordinate nodes—that is, each event
might generate a subordinate event or events in the plan. For a graphical view of an
operator tree, see Figure 4-2 on page 4-16.

The next table lists the columns, data types, and descriptions for each item in the
EXPLAIN result table:

Column Name Data Type Description

MODULE_NAME CHAR(60) Module name as specified in the argument to the
EXPLAIN function; NULL for dynamic SQL
statements (prepared statements); truncated on the
right if longer than 60 characters.

STATEMENT_NAME CHAR(60) Statement name after wild-card expansion; truncated
on the right if longer than 60 characters.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-3

Reviewing Query Execution Plans Description of the EXPLAIN Function Results

TP663851.fm Page 4 Monday, October 17, 2011 11:48 AM
The DETAIL_COST column of the EXPLAIN function results contains these cost
factors:

PLAN_ID LARGEINT Unique system-generated plan ID automatically
assigned by SQL; generated at compile time.

SEQ_NUM INT Sequence number of the current node in the
operator tree; indicates the sequence in which the
operator tree is generated.

OPERATOR CHAR(30) Current node type. For a full list of valid operator
types, see Section 7, SQL/MX Operators.

LEFT_CHILD_
SEQ_NUM

INT Sequence number for the first child operator of the
current node (or operator); null if node has no child
operators.

RIGHT_CHILD_
SEQ_NUM

INT Sequence number for the second child operator of
the current node (or operator); null if node does not
have a second child.

TNAME CHAR(60) For operators in scan group, full name of base table,
truncated on the right if too long for column. If
correlation name differs from table name, simple
correlation name first and then table name in
parentheses.

CARDINALITY REAL Estimated number of rows that will be returned by
the current node.

OPERATOR_COST REAL Estimated cost associated with the current node to
execute the operator.

TOTAL_COST REAL Estimated cost associated with the current node to
execute the operator, including the cost of all
subtrees in the operator tree.

DETAIL_COST VARCHAR
(200)

Cost vector of five items, which are described in
detail in the next table.

DESCRIPTION VARCHAR
(3000)

Additional information about the operation in the
form of a stream of token pairs. For a detailed look at
the tokens for all operators, see Section 7, SQL/MX
Operators.

CPU_TIME An estimate of the number of seconds of processor time it might take
to execute the instructions for this node. A value of 1.0 is 1 second.

IO_TIME An estimate of the number of seconds of I/O time (seeks plus data
transfer) to perform the I/O for this node.

MSG_TIME An estimate of the number of seconds it takes for the messaging for
this node. The estimate includes the time for the number of local and
remote messages and the amount of data sent.

Column Name Data Type Description
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-4

Reviewing Query Execution Plans Displaying Selected Columns of the Execution Plan

TP663851.fm Page 5 Monday, October 17, 2011 11:48 AM
Displaying Selected Columns of the Execution Plan

This query execution plan example is a simple query using the PERSNL schema and
querying against the EMPLOYEE table:

PREPARE s1 FROM SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE ORDER BY SALARY;

In this query, the EXPLAIN function extracts these columns: SEQ_NUM, OPERATOR,
TOTAL_COST, and DESCRIPTION:

SELECT SEQ_NUM, OPERATOR, TOTAL_COST, DESCRIPTION
 FROM TABLE (EXPLAIN (NULL, 'S1'));

This output is formatted for readability. The EXPLAIN function and EXPLAIN statement
use machine-readable format for application program access.

1 FILE_SCAN 2.0646531E-002
scan_type: file_scan SAMDBCAT.PERSNL.EMPLOYEE
scan_direction: forward
key_type: simple
lock_mode: not specified
access_mode: not specified
columns_retrieved: 6
fast_scan: used
fast_replydata_move: used
key_columns: indexcol(SAMDBCAT.PERSNL.EMPLOYEE.EMPNUM)
begin_key: (indexcol(SAMDBCAT.PERSNL.EMPLOYEE.EMPNUM) = 0)
end_key: (indexcol(SAMDBCAT.PERSNL.EMPLOYEE.EMPNUM) = 9999)

2 PARTITION_ACCESS 2.0646531E-002
buffer_size: 31000
record_length: 44

3 SORT 1.4921140E-001

4 ROOT 2.4723619E-001
statement_index: 0
statement: select last_name, first_name, salary from
samdbcat.persnl.employee
order by salary;
return select_list:
indexcol(SAMDBCAT.PERSNL.EMPLOYEE.LAST_NAME),
indexcol(SAMDBCAT.PERSNL.EMPLOYEE.FIRST_NAME),
indexcol(SAMDBCAT.PERSNL.EMPLOYEE.SALARY)
order_by: indexcol(SAMDBCAT.PERSNL.EMPLOYEE.SALARY)

IDLETIME An estimate of the number of seconds to wait for an event to happen.
The estimate includes the amount of time to open a table or start an
ESP process.

PROBES The number of times the operator will be executed. Usually, this value
is 1, but can be greater when you have, for example, an inner scan of
a nested-loop join.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-5

Reviewing Query Execution Plans Extracting EXPLAIN Output From Embedded SQL
Programs

TP663851.fm Page 6 Monday, October 17, 2011 11:48 AM
Four nodes (operators) appear in the plan: FILE_SCAN, PARTITION_ACCESS, SORT,
and ROOT. Operators are listed under Section 7, SQL/MX Operators.

This query requires a full table scan (FILE_SCAN), because the query selected all
employees, and required a SORT, because employee names are ordered by salary.

Four rows have been selected. The EXPLAIN function returns one row for each
operator used to evaluate the query.

Note that the description field contains different information for each operator. The
description for the FILE_SCAN node indicates the scan type and file name of the input,
the begin and end keys, the read direction, and other unspecified file access
information. The description for the SORT node indicates the key for sorting. The
description for the ROOT node lists all the columns in the SELECT statement list, the
ordering by column for the output, and the SQL statement. For full details of the
description column for each operator, see Section 7, SQL/MX Operators.

Extracting EXPLAIN Output From Embedded SQL Programs

You can easily extract the EXPLAIN output from embedded SQL programs. You must
supply the module name, which you can supply in the program itself with a MODULE
clause, or you can check for the name in the module definition file. For example,
suppose that the module name of your embedded program is
MYCAT.MYSCH.MYMOD.

If your program contains multiple statements, this query explains all statements in the
order that they appear in your module:

SELECT * FROM TABLE (EXPLAIN('MYCAT.MYSCH.MYMOD', '%'));

You can review the EXPLAIN output any time after you have compiled the program,
and you will see the plan that was actually chosen at compile time. Note that the
second argument to the EXPLAIN is a LIKE pattern that is used on the statement-
name column.

Using the EXPLAIN Statement to Review the Execution Plan

The next example of the EXPLAIN statement shows the information in the execution
plan for a query that uses predicates. The EXPLAIN statement displays all the columns
for the execution plan.

>>EXPLAIN
+>SELECT last_name, first_name, salary
+>FROM employee WHERE
+>salary > 40000.00 AND jobcode=450;

When you use the EXPLAIN statement, you must page down to see the entire output:

MODULE_NAME
STATEMENT_NAME
PLAN_ID
SEQ_NUM
OPERATOR
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-6

Reviewing Query Execution Plans Using the EXPLAIN Statement to Review the
Execution Plan

TP663851.fm Page 7 Monday, October 17, 2011 11:48 AM
LEFT_CHILD_SEQ_NUM
RIGHT_CHILD_SEQ_NUM
TNAME
CARDINALITY OPERATOR_COST TOTAL_COST DETAIL_COST
DESCRIPTION

?
EXPL_NAME__
211977924124011276 1 FILE_SCAN ? ?
SAMDBCAT.PERSNL.EMPLOYEE
2.0000000E+000 2.0646531E-002 2.0646531E-002
CPU_TIME: 0.000287
IO_TIME: 0.020647
MSG_TIME: 0
IDLETIME: 0
PROBES: 1
scan_type: file_scan SAMDBCAT.PERSNL.EMPLOYEE
scan_direction: forward
key_type: simple
lock_mode: not specified
access_mode: not specified
columns_retrieved: 6
fast_scan: used
fast_replydata_move: used
key_columns: indexcol(SAMDBCAT.PERSNL.EMPLOYEE.EMPNUM)
executor_predicates: (indexcol(SAMDBCAT.PERSNL.EMPLOYEE.SALARY)
40000.00) and (indexcol(SAMDBCAT.PERSNL.EMPLOYEE.JOBCODE) = 450)
begin_key: (indexcol(SAMDBCAT.PERSNL.EMPLOYEE.EMPNUM) = 0)
end_key: (indexcol(SAMDBCAT.PERSNL.EMPLOYEE.EMPNUM) = 9999)

?
EXPL_NAME__
211977924124011276 2 PARTITION_ACCESS 1
?
2.0000000E+000 2.0422223E-003 2.0646531E-002
CPU_TIME: 0.002329
IO_TIME: 0.020647
MSG_TIME: 0
IDLETIME: 0
PROBES: 1
buffer_size: 31000
record_length: 44

?
EXPL_NAME__
211977924124011276 3 ROOT 2
?
2.0000000E+000 9.8000802E-002 1.1864653E-001
CPU_TIME: 0.002433
IO_TIME: 0.020647
MSG_TIME: 0
IDLETIME: 0.098
PROBES: 1
statement_index: 0
statement: SELECT last_name, first_name, salary from
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-7

Reviewing Query Execution Plans Using the EXPLAIN Statement to Review the
Execution Plan

TP663851.fm Page 8 Monday, October 17, 2011 11:48 AM
samdbcat.persnl.employee
where salary > 40000.00 and jobcode=450;
return select_list:
indexcol(SAMDBCAT.PERSNL.EMPLOYEE.LAST_NAME),
 indexcol(SAMDBCAT.PERSNL.EMPLOYEE.FIRST_NAME),
indexcol(SAMDBCAT.PERSNL.EMPLOYEE.SALARY)

--- SQL operation complete.

This output for the FILE_SCAN operator is formatted for clarity of illustration:

Column Name EXPLAIN statement Output

MODULE_NAME Null

STATEMENT_NAME __EXPL_NAME

PLAN_ID 211977924124011276

SEQ_NUM 1

OPERATOR FILE_SCAN

LEFT_CHILD_
SEQ_NUM

Null

RIGHT_CHILD_
SEQ_NUM

Null

TNAME SAMDBCAT.PERSNL.EMPLOYEE

CARDINALITY 2.0000000E+000

OPERATOR_COST 2.0646531-002
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-8

Reviewing Query Execution Plans Optimization Tips

TP663851.fm Page 9 Monday, October 17, 2011 11:48 AM
Optimization Tips
NonStop SQL/MX relies on system-defined default settings for hundreds of attributes.
Most of these settings are finely tuned already. However, some attributes have values
that you can change.

You can change the default settings for externalized attributes in the
SYSTEM_DEFAULTS table in the system catalog. The settings are stored in the
NONSTOP_SQLMX_<systemname>.SYSTEM_DEFAULTS_SCHEMA.SYSTEM_DEFAULTS table.
You can also use the CONTROL QUERY DEFAULT command to change the values on
a per-process basis. For information about the precedence of the commands and the
ways you can specify the default settings, in addition to a listing of all externalized
attributes, see the SQL/MX Reference Manual.

This subsection provides information about certain optimization-related externalized
attributes. For reference information about each attribute, see the SQL/MX Reference
Manual.

 GEN_EIDR_BUFFER_SIZE and GEN_PA_BUFFER_SIZE

These default settings determine the buffer size for PARTITION_ACCESS
operators. The settings must match for both attributes. These attributes provide
suggestions to the compiler, which will adjust the size of the buffer as necessary.

TOTAL_COST 2.0646531-002

DETAIL_COST CPU_TIME: 0.000287 IO_TIME: 0.020647 MSG_TIME: 0
IDLETIME: 0 PROBES: 1

DESCRIPTION scan_type: file_scan SAMDBCAT.PERSNL.EMPLOYEE
scan_direction: forward
key_type: simple
lock_mode: not specified
access_mode: not specified
columns_retrieved: 6
fast_scan: used
fast_replydata_move: used
key_columns:
indexcol(SAMDBCAT.PERSNL.EMPLOYEE.EMPNUM)
executor_predicates:
(indexcol(SAMDBCAT.PERSNL.EMPLOYEE.SALARY)
40000.00) and
(indexcol(SAMDBCAT.PERSNL.EMPLOYEE.JOBCODE) =
450)
begin_key:
(indexcol(SAMDBCAT.PERSNL.EMPLOYEE.EMPNUM) =
0)
end_key:
(indexcol(SAMDBCAT.PERSNL.EMPLOYEE.EMPNUM) =
9999)

Column Name EXPLAIN statement Output
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-9

Reviewing Query Execution Plans Optimization Tips

TP663851.fm Page 10 Monday, October 17, 2011 11:48 AM
For OLTP queries that use OLT optimization, the settings are not relevant because
SQL determines the buffer size depending on the row size.

For non-OLT optimized queries that return or insert multiple rows, the buffer size is
set to the default value to maximize the number of rows returned. If the actual
number of rows is smaller than the default value, only the actual bytes are shipped.
The EXPLAIN function output for the PARTITION_ACCESS operator shows the
size of the buffer that SQL choses and any overrides you caused by setting the
CQDs. Although the maximum size is 31 kilobytes for remote nodes and 56
kilobytes for local nodes, SQL only uses as many bytes as necessary to send the
number of rows in that buffer. If you set a large buffer size, memory consumption is
affected; however, messaging is not affected. If you know a query will return only a
few rows, you can lower the buffer size. If you reduce the buffer size to a small
value and the number of rows returned does not fit, more messages and buffers
will be shipped between DP2 and the executor.

You might want to analyze whether the buffer size is appropriate and whether any
changes you make to the buffer size cause more messaging to occur. You can use
the Measure product and the DISPLAY STATISTICS command to make these
decisions. For information about the Measure product, see the Measure User’s
Guide. For information about DISPLAY STATISTICS, see the SQL/MX Reference
Manual.

 JOIN_ORDER_BY_USER

This attribute provides an easy alternative to CONTROL QUERY SHAPE that you
can use when you want to specify the order of the tables but not the join type. The
first table specified in the FROM clause is the outer table in the query.

 OPTIMIZATION_LEVEL

The settings for this attribute indicate increasing effort in optimizing SQL queries:

Optimization
Level Description

0 The compiler optimization effort at this level is minimal (it uses
heuristics to perform one-pass optimization for the shortest possible
compilation time). This level is most suitable for small tables or when
plan quality is not important.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-10

Reviewing Query Execution Plans Optimization Tips

TP663851.fm Page 11 Monday, October 17, 2011 11:48 AM
To maintain compatibility, the compiler accepts the previous optimization settings of
MINIMUM, MEDIUM and MAXIMUM. The values are mapped as follows:

 OPTS_PUSH_DOWN_DAM

For compound statements, the predicates for each statement must identify the
DAM process so that the single DAM process is identified by the compiler.
Remember that NonStop SQL/MX requires more than one statement within a

2 The compiler uses a combination of heuristics and limited search
space enumeration. In general, this level produces good quality plans,
although it might miss a globally optimal plan. The compilation time is
significantly shorter in comparison with the higher optimization levels
(3 and 5).

3 (default) This default optimization level is recommended for general use.

The compiler performs a thorough two-pass optimization. For more
complex queries (above 5-way joins), it uses a combination of
heuristics, search space enumeration and compile time controlling
algorithms to find the best possible plan within a reasonable compile
time. For simple queries (5-way joins and below), the compiler does
an exhaustive search.

The compiler compiles plans for up to 40-way joins. The generated
plans are significantly better than the plans produced with optimization
level 0 and, in general, better than the plans generated at level 2.

To get faster query compilation time, you might consider optimization
2.

To perform a complete exhaustive search, which might lead to a better
plan but requires longer compilation time, you might consider
optimization 5.

5 The compiler performs a full optimization of the query using
exhaustive search algorithms.

The resulting plan is a globally optimal one, but the trade off is that it
might take a long compilation to find it. For complex queries (11-way
joins and higher), the compilation time can be prohibitively long. This
compilation time threshold is even longer (9-way joins) for queries that
involve semi-joins, outer joins, or subqueries.

Note. Optimization level values must be either 0, 2, 3 or 5. Values outside this range
return an error 2055 (invalid value for DEFAULTS attribute OPTIMIZATION_LEVEL).
Values 1 and 4 are currently reserved and should not be specified. If you specify these
values, the compiler replaces the value with the next lowest optimization level. For
example, 4 is replaced by 3, and 1 is replaced by 0.

SQL/MX Release 1.x SQL/MX Release 3.0

MINIMUM 0

MEDIUM 3

MAXIMUM 5
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-11

Reviewing Query Execution Plans Optimization Tips

TP663851.fm Page 12 Monday, October 17, 2011 11:48 AM
compound statement, so the strategy of placing a single SELECT statement
between a BEGIN and END statement to push down the SELECT to the DAM
process does not work.

The first statement contained in the compound statement:

 Cannot be an INSERT statement with a VALUES clause.

 If the statement is a SELECT or an UPDATE statement, it cannot have rowset
host variables in the WHERE clause.

For statements (after the first statement) contained in the compound statement:

 If the statement is an INSERT statement, it cannot have rowset host variables
corresponding to partition key columns inside the VALUE clause.

 If the statement is a SELECT or UPDATE statement, it cannot have rowset
host variables corresponding to partition key columns in the WHERE clause.

For all statements contained in compound statements:

 All partition key columns should be covered by the same set of scalar
(nonrowset) host variables so that the compiler can determine that only one
partition can be accessed during run time.

 Aggregates are not allowed.

Nested joins between no more than three tables and indexes can be considered
for pushing down to DAM. This option can be used for OLTP type of queries
touching a few blocks of participating tables. This option is not recommended for
complex DSS type queries for two reasons:

 It could considerably increase compile time because of increasing optimization
search space.

 Concurrent scans on the same physical volume could cause lots of extra
unexpected seeks and query performance could degrade.

When pushing a plan down to DAM is possible (because you have correctly
identified the DAM process in the predicates, and the OPTS_PUSH_DOWN_DAM
attribute value is set to ON), NonStop SQL/MX might not push down the plan
because of the plan cost. The system-defined default setting (OFF) means that
NonStop SQL/MX does not attempt to push down.

You can verify if statements have been pushed down to DAM by reviewing the
EXPLAIN output for the plan. If the plan shows the PARTITION_ACCESS operator,
DAM access is being used, and the operators below the PARTITION_ACCESS
operator have been pushed down to DAM.

For a discussion of compound statements, see the SQL/MX Programming Manual
for C and COBOL.

 REMOTE_ESP_ALLOCATION
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-12

Reviewing Query Execution Plans Verifying DAM Access

TP663851.fm Page 13 Monday, October 17, 2011 11:48 AM
Use the OFF setting to force NonStop SQL/MX to bring up all ESPs on the local
system only. Consider this setting in these cases:

 If the network connection is slow and you want to reduce network traffic
(depending on the partition distribution of the tables in the query)

 You want to reduce the consumption of memory on remote systems

 If joins increase the number of rows produced

This setting also forces NonStop SQL/MX to try to achieve maximum parallelism
without consideration for communication across the network.

Use the SYSTEM setting when you want to use all active nodes. Consider this
setting in these cases:

 Nodes where partitions exist on at least two tables

 Nodes where partitions exist on a single table

Use the ON setting to use all nodes where partitions reside.

 ZIG_ZAG_TREES

In a left linear tree, the right child is always a single table or subquery, and the left
child is a subtree of one or more tables. In a zig-zag tree, one child is always a
table, and the other child is a subtree of one or more tables, usually formed in zig-
zag fashion. When the default value is set to OFF (the default setting), the
optimizer examines predominately left linear trees and only a few promising zig-
zag trees. When the default is set to ON, the optimizer is directed to enumerate
larger numbers of zig-zag trees in the search for the optimal plan. Figure 4-1 on
page 4-13 shows left linear and zig-zag trees.

Verifying DAM Access

You can verify if operators are executing in DAM by reviewing the EXPLAIN output for
the plan. If the plan shows the PARTITION_ACCESS operator, DAM access is being

Figure 4-1. Left Linear and Zig-Zag Trees

Left Linear Tree

T5

T4

T3

T1 T2

Zig-Zag Tree

T5

T4

T3

T2T1

VST041.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-13

Reviewing Query Execution Plans Using the Visual Query Planner

TP663851.fm Page 14 Monday, October 17, 2011 11:48 AM
used. Operators appearing below the PARTITION_ACCESS operator are executing in
DAM.

Using the Visual Query Planner
Visual Query Planner is a Microsoft Windows NT GUI application that enables you to
extract and display query execution plans generated by the SQL/MX optimizer for DML
statements. Visual Query Planner uses the EXPLAIN function internally to extract the
information about the query plan.

You can save plans that you generate for further analysis. Saved plans can be sent to
anyone who can look at them without having to access the actual database. You can
also provide plans to the Global Customer Support Center (GCSC) in case of
problems. Visual Query Planner also provides the ability to force the optimizer to
present the plan that you design. For further information, see Section 5, Forcing
Execution Plans.

Visual Query Planner Requirements

In addition to NonStop SQL/MX, Visual Query Planner requires that you have data
sources defined for ODBC. You must have a PC or workstation with Windows NT 4.0
(or later) to use Visual Query Planner. For information about installing Visual Query
Planner, see the SQL/MX Installation and Management Guide. For information about
defining ODBC data sources with the Microsoft ODBC Data Source Administrator, see
the ODBC Driver for Windows Manual.

Getting Help for Visual Query Planner

To access the Visual Query Planner online help facility, select Help > Visual Query
Planner Help. Access additional context-sensitive help by pressing F1 or through the
Properties dialog box. For more information, see Accessing Additional Information
About Operators on page 4-17.

Graphically Displaying Execution Plans

1. To start the Visual Query Planner, do one of the following:

 Select Start > Programs > NonStop SQL-MX > Visual Query Planner.

 Navigate to the C:\Program Files\Hewlett Packard\NonStop SQL-MX folder
and select and open Visual Query Planner.

After the program starts, you will notice that a default file name, VQP1,
appears on the title bar and that status messages appear along the bottom of
the window.

Note. To avoid unexpected results, turn off query caching at the start of your VQP session.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-14

Reviewing Query Execution Plans Graphically Displaying Execution Plans

TP663851.fm Page 15 Monday, October 17, 2011 11:48 AM
2. Select Explain > Connect to ODBC to connect to your ODBC data source.

For more information about connecting to MXCS, see the SQL/MX Connectivity
Services Manual.

After you are connected to your data source, notice that the status message along
the bottom of the window displays the data source name. Also notice that the
Connect to ODBC icon on the toolbar is dimmed, indicating that the connection
has been made.

3. In the top pane of the Visual Query Planner window, enter your query.

You must enter (or copy) the query rather than trying to execute a prepared query.
Visual Query Planner internally prepares the query and assigns it a statement
name.

4. Select Explain > Get Explain Plan to direct the EXPLAIN function to prepare and
display the query.

The operator tree for the query execution plan appears in the lower left pane of the
window (operator tree pane). Summary details for the operators appear in the right
lower pane of the window (summary detail pane). You can sort the summary detail
by clicking a column name to sort on that column. Figure 4-2 on page 4-16 shows
a query in the top pane and the subsequent query execution plan in the left lower
pane of the window.

Note. MXCS must be running on the server before you can connect Visual Query Planner
to MXCS.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-15

Reviewing Query Execution Plans Graphically Displaying Execution Plans

TP663851.fm Page 16 Monday, October 17, 2011 11:48 AM

5. Select File > Save to save your query execution plan. The default name for the
session appears in the Save dialog box. If you choose to provide a different name
for the query execution plan, the new name appears on the title bar.

Selecting Tasks on the Toolbar

You can also select tasks on the toolbar positioned immediately below the menu bar.

Click the icon buttons to:

Figure 4-2. Visual Query Planner

Create a new file

Open an existing file

Save a file

vst501.vsd

VST502.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-16

Reviewing Query Execution Plans Graphically Displaying Execution Plans

TP663851.fm Page 17 Monday, October 17, 2011 11:48 AM
These tasks are also available from the menus.

Accessing Additional Information About Operators

To access additional information about each operator in the Properties dialog box,
right-click an operator entry. A dialog box appears that contains Properties and Tree
Depth, shown next. You can also access the Properties dialog box by double-clicking
an operator or by selecting Explain > Properties.

Cut text within the edit window

Copy text within the edit window

Paste text within the edit window

Connect to an ODBC source

Disconnect from the ODBC data source

Execute the query

Open help

Note. Tree depth refers to the number of levels you want to display in the operator tree. A fully
expanded operator tree appears when you select All Levels.

VST503.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-17

Reviewing Query Execution Plans Graphically Displaying Execution Plans

TP663851.fm Page 18 Monday, October 17, 2011 11:48 AM
The Operator Properties dialog box, shown next, provides three tabs:

 Node details
 Cost details
 Description

Notice the pushpin and ? icon in the upper left corner of the dialog box. You can pin the
dialog box open by selecting the pushpin so that you can select on another operator
without having to reopen the Properties dialog box. Select the ? icon for context-
sensitive help for the operator. The tabs in the Operator Properties dialog box are
described next.

Node Details

 Statement Name is the name assigned to the prepared query; in this case, Q2.

 Plan ID is a unique identifier generated during compile time.

 Node Name describes the operator type; in this case, INDEX_SCAN.

VST504.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-18

Reviewing Query Execution Plans Graphically Displaying Execution Plans

TP663851.fm Page 19 Monday, October 17, 2011 11:48 AM
 Node Seq. Num. is 1, which indicates that the node was first in sequence during
optimization.

 Left Child Seq. Num. is 0, which indicates that this is not a join.

 Right Child Seq. Num. is 0, which indicates that this is not a join. If both the left
and right child sequence numbers contain values, the node is a join.

 Table Name provides the catalog.schema.tablename of the table scanned.

 Cardinality provides the estimated rows returned by the INDEX_SCAN.

 Operator Cost provides the estimated cost associated with the current node to
execute the INDEX_SCAN.

 Total Cost provides the estimated cost associated with the current node to
execute the INDEX_SCAN, including the cost of all subtrees in the operator tree.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-19

Reviewing Query Execution Plans Graphically Displaying Execution Plans

TP663851.fm Page 20 Monday, October 17, 2011 11:48 AM
Reviewing the Cost Details

The items listed in the Cost Details tab are the same as those items described in the
DETAIL_COST column of the EXPLAIN function results. For a detailed description of
each of these items, see Description of the EXPLAIN Function Results on page 4-3.

VST505.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-20

Reviewing Query Execution Plans Reviewing Run-Time Statistics

TP663851.fm Page 21 Monday, October 17, 2011 11:48 AM
Additional Table Information

The Description tab provides additional table information, including key columns, scan
type, scan direction, and so on.

The token descriptions for each operator are described in Section 7, SQL/MX
Operators.

Reviewing Run-Time Statistics
NonStop SQL/MX provides statistics for an executed query. Use the DISPLAY
STATISTICS command to view statistics.

The DISPLAY STATISTICS command is described in the SQL/MX Reference Manual.

vst506.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-21

Reviewing Query Execution Plans Simple Query Example

TP663851.fm Page 22 Monday, October 17, 2011 11:48 AM
Simple Query Example

This query selects all rows and columns from the EMPLOYEE table:

>>prepare q1 from
+>select * from employee;

--- SQL command prepared.

>>execute Q1;

The query returns this result:

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY
------ ----------- ---------- ------- -------- ------
 1 ROGER GREEN 9000 100 175500.00

 568 JESSICA CRINER 3500 300 39500.00

--- 62 row(s) selected.

To obtain statistics about the query, after the query executes, enter:

>>DISPLAY STATISTICS;

The statistics are returned:

Start Time 2005/11/04 10:45:53.916
End Time 2005/11/04 10:45:53.975
Elapsed Time 00:00:00.059
Compile Time 00:00:00.000
Execution Time 00:00:00.059

Table Name Records Records Disk Message Message Lock
 Accessed Used I/Os Count Bytes

SAMDBCAT.PERSNL.EMPLOYEE

 62 62 2 2 14608 0

If you want to display statistics automatically, enter SET STATISTICS ON at any point
during the session. As a result, the statistics appear immediately after each command
executes.

Using Measure

Use the Measure product to gather statistics on an SQL/MX database and application
programs. The Measure product provides statistics on process execution (SQLPROC)
and on individual statement execution (SQLSTMT). For information on using Measure
with NonStop SQL/MX, see the SQL/MX Installation and Management Guide. For
information about the Measure product, see the Measure Reference Manual.

Process Execution (SQLPROC)

For each process, the Measure product provides these statistics:
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-22

Reviewing Query Execution Plans Using Measure

TP663851.fm Page 23 Monday, October 17, 2011 11:48 AM
 The number of times static SQL statements were recompiled and the elapsed time
needed for recompilation

 The number of times the executor server processes were started up and the
elapsed time to do this

 The number of open requests issued by SQL and the elapsed time to do this

Statement Execution (SQLSTMT)

The SQLSTMT report provides information for specific statements of modules
executed by an SQL process. For each statement, the Measure product provides these
statistics:

 The number of times the statement was executed
 The total elapsed time to execute the statement
 The number of rows accessed and returned or altered
 The number of disk reads needed for execution
 The number and length of messages sent to execute the statement
 The number of sorts performed and the elapsed time to do them
 The number of recompilations and the elapsed time to do them
 The number of timeouts, lock escalations, and lock waits

SQLSTMT entities gather statistics for all statements of a process selected for
measurement; there is one SQLSTMT entity for each statement. The SQLSTMT report
identifies the SQLSTMT section for each statement by the module name and the
statement index. A statement index identifies each SQL statement that can be
measured. This number appears in the generated SQL module definition file, and you
can use it to look up the corresponding Measure SQLSTMT counters.

Evaluating Measure Data

Use the SQLSTMT report to form a baseline performance picture, which you can then
use to compare to subsequent versions as you tune your queries.

Optimally, measure each transaction or query in isolation. Otherwise, you do not get a
clear view of the transaction of interest. If you do not know which of several
transactions is performing poorly, you can execute each transaction separately,
measure it, and compare performance among the group of transactions.

When reviewing the SQLSTMT reports for poorly performing queries, examine and
isolate queries based on the number of I/O operations, total time consumed relative to

Note. The run unit reported by Measure is the name of the procedure or COBOL run unit for
NonStop SQL/MP. In NonStop SQL/MX, the run unit is the name of the SQL module. The
length of the name is 128 bytes.

Note. To translate the statement index back into SQL statements, you can also use the
EXPLAIN function. See the statement_index and statement tokens for the PROBE_CACHE
Operator on page 7-59.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-23

Reviewing Query Execution Plans Using Measure

TP663851.fm Page 24 Monday, October 17, 2011 11:48 AM
other queries, frequency of execution within a single transaction, and other
performance-related measurements. Then, generate query plans with the Explain
function for the queries to help identify reasons for poor performance. Sometimes a
specific type of problem is common to a set of queries.

Stopwatch measurements can also be helpful. When compared to Measure
information, they can reveal network problems or other types of delays.

It can be important to establish response-time requirements for specific queries. This
strategy permits identification of a specific goal and completion framework for tuning.

When evaluating changes to queries, consider other transactions that might be
adversely affected by the change. For example, if you add an index, compare
performance before and after for INSERT and UPDATE transactions. Consider the
volume of the query being addressed and compare it with the volume of UPDATE and
DELETE transactions.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
4-24

TP663851.fm Page 1 Monday, October 17, 2011 11:48 AM
5 Forcing Execution Plans

Use the information in this section to make decisions about forcing query execution
plans.

 Why Force a Plan? on page 5-1

 Checklist for Forcing Plans on page 5-2

 Displaying the Optimized Plan on page 5-2

 Reviewing the Optimized Plan on page 5-3

 Translating the Operator Tree to Text Format on page 5-5

 Writing the Forced Shape Statement on page 5-8

The SQL/MX optimizer attempts to generate the most cost-efficient plan available. In
some situations, you might find that you want to vary the plan selected by the
optimizer.

When you force an execution plan, you are instructing the executor how you want the
plan to execute. You use the CONTROL QUERY SHAPE statement to force a
particular plan shape on a query. This statement is presented in SQL syntax as an
SQL/MX extension to the ANSI standard. You need to understand the internal query
tree structure to force a plan. You can place any allowed syntax within the CONTROL
QUERY SHAPE statement, but the syntax does not ensure that a valid plan will be
generated.

CONTROL QUERY SHAPE is very dependent on the internal design of the optimizer.
Future improvements to the optimizer might make it necessary for users to change
their CONTROL QUERY SHAPE statements.

For more information about the CONTROL QUERY SHAPE statement, see the
SQL/MX Reference Manual.

Why Force a Plan?
Some of the possible reasons for forcing a plan include:

 Testing purposes. You might want to try different execution scenarios than those
provided by the optimizer.

 The optimizer might not have found the optimal plan. This situation could occur
because of lack of recent statistics and calibration, data skew, or aggressive
pruning.

Caution. If you use the CONTROL QUERY SHAPE statement, you can override the
optimizer’s standard cost estimates and cause negative performance. In addition, if you try to
force an invalid plan, no plan will be returned to you. Use CONTROL QUERY SHAPE only if
the optimizer does not produce the optimal plan. You might want to contact your service
provider for assistance.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-1

Forcing Execution Plans Checklist for Forcing Plans

TP663851.fm Page 2 Monday, October 17, 2011 11:48 AM
In these situations, forcing a plan gives you the power to control the plan shape. The
optimizer chooses the optimal plan that matches the forced shape.

Checklist for Forcing Plans
Before you can force a plan, you need to know the contents of the plan:

1. Display the optimized plan for a prepared statement with the EXPLAIN function.

2. Review the optimized plan and costs associated with the operations.

3. Translate the operator tree into a text format by using the SHOWSHAPE utility or
the format rules.

4. Use the CONTROL QUERY SHAPE statement to reshape the operator tree based
on the text format that you specify.

Each of these steps is described in greater detail in the next subsections.

Displaying the Optimized Plan
Follow the steps in Section 4, Reviewing Query Execution Plans to display the query
execution plan and to understand the operator tree provided by the optimizer. Note that
you can view the optimized plan in several formats:

 Use the EXPLAIN function to display portions of the optimized plan.

 Use the EXPLAIN statement to view the entire optimized plan.

 Use the Visual Query Planner (VQP) to graphically display the entire optimized
plan.

This sample query is used throughout this section to show how you can force an
execution plan:

SELECT EMPLOYEE.LAST_NAME, EMPLOYEE.FIRST_NAME, DEPT.MANAGER,
EMPLOYEE.DEPTNUM, JOB.JOBCODE
 FROM DEPT, EMPLOYEE, JOB
 WHERE DEPT.DEPTNUM=3100 AND EMPLOYEE.DEPTNUM=3100 AND
 JOB.JOBCODE=300;

Note. To avoid unexpected results, turn off query caching at the beginning of your VQP
session.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-2

Forcing Execution Plans Reviewing the Optimized Plan

TP663851.fm Page 3 Monday, October 17, 2011 11:48 AM
Reviewing the Optimized Plan
The next example shows the EXPLAIN output for the optimized sample query. While
this output simply shows the operators and sequence numbers, you will also want to
select the costing columns to review the estimated costs of each operation.

>>SET SCHEMA samdbcat.persnl;
>>PREPARE s1 FROM SELECT employee.last_name, employee.first_name,
>+dept.manager, employee.deptnum, job.jobcode
>+FROM dept, employee, job
>+WHERE dept.deptnum=3100 AND employee.deptnum=3100
>+AND job.jobcode=300;

--- SQL command prepared.

>>SELECT seq_num, operator, left_child_seq_num, right_child_seq_num
>+FROM table (EXPLAIN(NULL, 'S1'));

SEQ_NUM OPERATOR LEFT_CHILD_SEQ_NUM RIGHT_CHILD_SEQ_NUM
-------- ------------------ ------------------ -------------------
5 FILE_SCAN ? ?
6 PARTITION_ACCESS 5 ?
3 FILE_SCAN_UNIQUE ? ?
4 PARTITION_ACCESS 3 ?
7 HYBRID_HASH_JOIN 6 4
1 FILE_SCAN_UNIQUE ? ?
2 PARTITION_ACCESS 1 ?
8 HYBRID_HASH_JOIN 7 2
9 ROOT 8 ?

--- 9 row(s) selected.

The output shows that the query plan consists of three scan operators in DAM with
exchange (PARTITION_ACCESS) operators that are responsible for the
communication between the application process and DAM, two hybrid hash join
operators, and a root node.

When you review the output, look at the sequence numbers for the node and the left
and right child sequence numbers. Start reading from the root node. The output shows
that the ROOT node has one child, a HYBRID_HASH_JOIN. This node has two
children, another HYBRID_HASH_JOIN and a PARTITION_ACCESS with a file scan
operation. The second HYBRID_HASH_JOIN also has two children nodes, each a
PARTITION_ACCESS node with file scan operations. For more information about the
operators, see Section 7, SQL/MX Operators.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-3

Forcing Execution Plans Reviewing the Optimized Plan

TP663851.fm Page 4 Monday, October 17, 2011 11:48 AM
Now, view the output in a more visual tree format that shows the parent and child
relationships. The sequence numbers and table names are also shown in Figure 5-1.

You need to understand the relationships and which operations occur in the left and
right hand sides of the operator tree before you can translate the operator tree into a
text format that can be used to force the execution plan.

An easier way to see the operator tree for a query is to use the Visual Query Planner
application. The Visual Query Planner provides the query execution plan in a graphical
form so that you can easily see the operator tree.

Figure 5-1. Query Plan Output in Visual Tree Format

ROOT 9

HYBRID_HASH_JOIN 8

HYBRID_HASH_JOIN 7 PARTITION_ACCESS 2

PARTITION_ACCESS 6 PARTITION_ACCESS 4 FILE_SCAN_UNIQUE 1
DEPT

FILE_SCAN 5
EMPLOYEE

FILE_SCAN_UNIQUE 3
JOB VST062.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-4

Forcing Execution Plans Translating the Operator Tree to Text Format

TP663851.fm Page 5 Monday, October 17, 2011 11:48 AM

Translating the Operator Tree to Text Format
You must translate the operator tree into a text format. The text format used to
represent the tree to the CONTROL QUERY SHAPE statement is written in a LISP-like
format. (LISP stands for list processor, a high-level programming language.)

Using SHOWSHAPE and SET SHOWSHAPE to View the Text
Format

If you are using MXCI to execute your queries, you can use the SHOWSHAPE and
SET SHOWSHAPE commands to view the text format for the CONTROL QUERY
SHAPE statement. The SHOWSHAPE command simply shows the text format for the
shape of the statement you execute; it does not show the Explain output.

>>SHOWSHAPE SELECT last_name, first_name, manager,
+>employee.deptnum, job.jobcode FROM dept, employee, job
+>WHERE dept.deptnum=3100 AND employee.deptnum=3100 AND
+>job.jobcode=300;

control query shape
hybrid_hash_join(hybrid_hash_join(partition_access(
scan(path 'SAMDBCAT.PERSNL.EMPLOYEE',

vst601.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-5

Forcing Execution Plans Using Visual Query Planner to Get the Shape

TP663851.fm Page 6 Monday, October 17, 2011 11:48 AM
forward, blocks_per_access 1, mdam off)),partition_access(
scan(path 'SAMDBCAT.PERSNL.JOB', forward, blocks_per_access 1 ,
mdam off))),partition_access(scan(path 'SAMDBCAT.PERSNL.DEPT',
forward, blocks_per_access 1 , mdam off)));

--- SQL operation complete.

Use the additional command, SET SHOWSHAPE, to display the execution plans in
effect. The text format for the shape is displayed immediately before the query output.
If you use the SET SHOWSHAPE command prior to executing the sample query, your
output appears as shown:

control query shape
hybrid_hash_join(hybrid_hash_join(partition_access(
scan(path 'SAMDBCAT.PERSNL.EMPLOYEE',
forward, blocks_per_access 1, mdam off)),partition_access(
scan(path 'SAMDBCAT.PERSNL.JOB', forward, blocks_per_access 1 ,
mdam off))),partition_access(scan(path 'SAMDBCAT.PERSNL.DEPT',
forward, blocks_per_access 1 , mdam off)));

Last Name First Name Mgr Dept/Num Job/Code
-------------------- --------------- ----- -------- --------

WINTER PAUL 43 3100 300
Farley Walt 43 3100 300
Buskett Emmy 43 3100 300
Buskett Paul 43 3100 300
STRICKER GEORGE 43 3100 300
WELLINGTON PETE 43 3100 300
TAYLOR DONALD 43 3100 300

--- 7 row(s) selected.

Using Visual Query Planner to Get the Shape

When you execute a plan with the Visual Query Planner, the text format for shaping the
query can be found by choosing the Show Query Shape option from the Explain
menu. The next figure shows the shape from the sample query.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-6

Forcing Execution Plans Manually Writing the Shape

TP663851.fm Page 7 Monday, October 17, 2011 11:48 AM
You can make changes to the shape and then force a new shape by selecting the Get
Shape icon (the middle icon in the upper left corner). In addition, from the Explain
menu, you must execute Get Explain Plan to see the revised plan.

For more information about the SHOWSHAPE and SET SHOWSHAPE commands,
see the SQL/MX Reference Manual. For more information about using the Visual
Query Planner, see Section 4, Reviewing Query Execution Plans. The Visual Query
Planner online help system also provides useful information.

Manually Writing the Shape

You translate the tree by recursively writing the tree with this rule (starting from the
root):

TEXT (node) = node-identifier + '(' + TEXT(child1) + ',' +
 TEXT(child2) + ... + ')'

node Operator tree node being transformed

node-identifier Identifier of the node.

child i The ith child, if any, from left to right

vst602.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-7

Forcing Execution Plans Writing the Forced Shape Statement

TP663851.fm Page 8 Monday, October 17, 2011 11:48 AM
Using the sample query, you can translate the operator tree into this text format:

ROOT(HYBRID_HASH_JOIN (HYBRID_HASH_JOIN
 (PARTITION_ACCESS (FILE_SCAN_UNIQUE),
 PARTITION_ACCESS(FILE_SCAN)),
 PARTITION_ACCESS (FILE_SCAN_UNIQUE)))

To refine a CONTROL QUERY SHAPE statement, several conditions apply to the text
format:

 Leave off the ROOT node.

 Leave off EXPR nodes.

 Write FILE_SCAN and FILE_SCAN_UNIQUE nodes as SCAN.

 Replace SPLIT_TOP(PARTITION_ACCESS(...)) with SPLIT_TOP_PA(...).

 If no syntax exists for an operation in an operator tree (for example,
SORT_SCALAR_AGGR or SHORTCUT_SCALAR_AGGR), use something similar,
such as SORT_GROUPBY or SHORTCUT_GROUPBY. For the valid operators,
check Section 7, SQL/MX Operators.

The refined text format looks like this:

HYBRID_HASH_JOIN (HYBRID_HASH_JOIN
 (PARTITION_ACCESS (SCAN),
 PARTITION_ACCESS (SCAN)),
 PARTITION_ACCESS (SCAN))

Writing the Forced Shape Statement
You use the CONTROL QUERY SHAPE statement to write the forced shape
statement, using the text format that you previously formulated, and to replace the
operators that you want to force. The CONTROL QUERY SHAPE statement is
described in the SQL/MX Reference Manual. To understand why a plan uses certain
operators, see Section 7, SQL/MX Operators.

In many cases, you arrive at the decision to force a plan through experimentation.
Guidelines that can help you formulate plans follow.

Scope of CONTROL QUERY SHAPE

The result of the execution of a CONTROL QUERY SHAPE statement stays in effect
until the end of the current MXCI session or until changed or turned off by another
CONTROL QUERY SHAPE statement. Executing the CONTROL QUERY SHAPE
statement does not affect the execution of CONTROL statements, the EXPLAIN
function and EXPLAIN statement, LOCK and UNLOCK statements, DDL, and
transaction statements.

Caution. Always turn off CONTROL QUERY SHAPE after you force a shape for a particular
query. Otherwise, when you try to compile another query, the compiler fails to find a plan that
matches the persisting forced shape.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-8

Forcing Execution Plans Shaping Portions of an Operator Tree

TP663851.fm Page 9 Monday, October 17, 2011 11:48 AM
Use the CUT, ANYTHING, or OFF option to turn off the shape:

CONTROL QUERY SHAPE OFF;

Shaping Portions of an Operator Tree

You can use the ANYTHING option to partially shape an operator tree. Use this option
when you want a certain operation only and do not care how the rest of the plan is
optimized. If you specify a partial tree, ANYTHING marks the point where you want the
optimizer to “take over” and choose the best solution. This example shows the partial
shape of an operator tree:

CONTROL QUERY SHAPE join (anything, union (anything, scan));

Using Logical and Physical Specifications

You can use logical or physical operators with the CONTROL QUERY SHAPE
statement. Logical operators are relational operators that do not denote an
implementation. Examples include join, group by, and scan. Physical operators are
relational operators that specify the actual implementation or run-time algorithm, such
as merge join, hash group by, or file scan.

If you want to specify that an operation occurs, but you do not really care which
algorithm the optimizer chooses to implement, use the logical specification. For
example, you might want to specify that table EMPLOYEE is scanned as the last table
of a join, but you want the optimizer to choose the join algorithm. In that case, use the

Logical Operators Physical Operators

scan FILE_SCAN, INDEX_SCAN

hash_join HYBRID_HASH_JOIN,
ORDERED_HASH_JOIN

join NESTED_JOIN, MERGE_JOIN,
HYBRID_HASH_JOIN,
ORDERED_HASH_JOIN

groupby SORT_GROUPBY, HASH_GROUPBY,
SHORTCUT_GROUPBY

union UNION

sort SORT

exchange PARTITION_ACCESS (file system interface
for communicating with DAM)
REPARTITION (redistributes data)
SPLIT_TOP_PA (reads data from multiple
partitions in parallel, parallel version of
PARTITION_ACCESS node)

expr EXPR (internally generated node, not
necessary to specify)

tuple TUPLE
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-9

Forcing Execution Plans Forcing Shapes on Views

TP663851.fm Page 10 Monday, October 17, 2011 11:48 AM
logical JOIN specification, with SCAN(EMPLOYEE) as the second argument of the
join. The optimizer is free to choose nested, merge, or hash join as the implementation.

When you force a plan by using the physical operator SHORTCUT_GROUPBY, the
SHORTCUT_SCALAR_AGGR operator appears in the EXPLAIN output. If the
optimizer cannot produce a plan with SHORTCUT_SCALAR_AGGR, no plan is
returned.

Forcing Shapes on Views

When you prepare a query and use the EXPLAIN output to look at compiled statistics,
the output shows that the compiler expands the view and that the operation occurs on
underlying base tables. To affect a new shape on a SQL view, reference the underlying
base tables in your CONTROL QUERY SHAPE statement.

What Happens if No Plan Is Returned?

If you try to shape a plan and the optimizer fails to return a plan, consider these
reasons:

 The forced shape might be incompatible with the issued query. That is, the shape
has no match in the optimizer search space defined by the optimizer rules. For
example, a plan is not returned if you attempt to force a table scan shape on a two-
table join query.

 The forced shape might be compatible with the query, but matching plans are
pruned by optimizer heuristics. In this case, you might try changing the default
value for the DATA_FLOW_OPTIMIZATION and the
CROSS_PRODUCT_CONTROL attributes to OFF and try the plan again to see if
the results are different.

Migrating Forced Shapes From NonStop SQL/MP

If you forced plans in NonStop SQL/MP by using the CONTROL TABLE statement, you
will need to rewrite your plans by using CONTROL QUERY SHAPE, which provides
more control. Note that, while CONTROL TABLE enables you to force a single
operation, CONTROL QUERY SHAPE requires that you force the entire tree structure.

Forcing Group By Operations to the Data Access Manager

The SQL/MX compiler has two methods for performing grouping and aggregation.

 Sort group by requires the child of the group by to be ordered on the group-by
column and thus preserves ordering. This method incurs additional sort operations
unless input is already sorted on the grouping columns.

Note. GROUP BY operators are sometimes used even when no GROUP BY clause is
specified. The SQL/MX compiler inserts a GROUP BY operator into a SELECT DISTINCT
query to remove duplicate rows.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-10

Forcing Execution Plans Forcing Group By Operations to the Data Access
Manager

TP663851.fm Page 11 Monday, October 17, 2011 11:48 AM
 Hash group by uses hashing operations to perform grouping and has no ordering
requirement on children. In general, hash group by is more cost effective than sort
group by.

The compiler uses algorithms based on cost to determine which group by to perform,
hash or sort. The aggregate functions are AVG, COUNT, MAX, MIN, STDDEV, SUM,
and VARIANCE. For further information about aggregate functions, see the individual
entries in the SQL/MX Reference Manual.

Single table operations can always be pushed down to the DAM level, as shown in
Figure 5-2.

Notice that messages are exchanged from the SCAN operator in DAM to the GROUP
BY operator in the executor through the EXCHANGE node. For tables with millions of
rows, this amount of messaging can be inefficient. The group by operation can be
pushed down to DAM to reduce the message traffic between DAM and the executor,
as demonstrated in the next example.

Consider this query against an EMPLOYEE table that contains 50,000 rows
(employees) and uses 18 partitions:

SELECT COUNT(*) FROM EMPLOYEE;

When the compiler presents a query plan like the plan shown in Figure 5-2, the SCAN
operator passes messages in blocks to the EXCHANGE node. The EXCHANGE node
passes the messages to the GROUP BY operator.

Figure 5-2. Group By Operator Not Using DAM

ROOT

GROUPBY

SCAN

DAM

Executor
messages

EXCHANGE

VST067.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-11

Forcing Execution Plans Forcing Group By Operations to the Data Access
Manager

TP663851.fm Page 12 Monday, October 17, 2011 11:48 AM
To reduce this message traffic, move the GROUP BY operator down to DAM, as
shown in Figure 5-3.

The message traffic is reduced as follows. The SCAN operation still scans all 50,000
rows. However, the group by operation yields one result for each table partition (18).
This result is passed on to the EXCHANGE node. You should include another GROUP
BY operator above the EXCHANGE node to combine the results of the lower group by
operation, as shown in Figure 5-4.

General Case for Group By Operations

Pushing down group by operations for partitioned tables (more than one partition) and
for any hash group by operations requires an additional group by operation. The lower
group by performs the grouping and aggregation per partition, and the upper group by
performs the final aggregation across all groups. For hash group by situations, the
upper group by is required to handle any overflow that occurs in DAM.

Figure 5-3. GROUP BY Operator at the DAM Level

Figure 5-4. Two GROUP BY Operations

VST060.vsd

Executor

DAM

Groupby

Scan

Exchange

VST061.vsd

Root

Merges results from the partition
grouping

Partition grouping and aggregate
operationsGroupby

Scan

Groupby

Exchange
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-12

Forcing Execution Plans Forcing Parallel Plans

TP663851.fm Page 13 Monday, October 17, 2011 11:48 AM
Special Case for Sorted Group By Operations

For single partition sorted group by operations, only one GROUP BY operator is
required. Sort group by operations can be performed only if the input to the group by is
already ordered on the group by columns. In this case, the compiler can perform an
index scan or file scan for the group, and the additional cost of sorting is avoided. The
input into the sort group by must already be ordered, because DAM cannot perform the
sort.

Forcing Parallel Plans

The optimizer tries to present you with the most cost-efficient plan available. You might
find, however, that the optimizer does not always present the parallel plan that you
want. If you choose to use CONTROL QUERY SHAPE to force a parallel plan, note
that overriding the optimizer’s standard cost estimates can cause negative
performance.

Forcing ESP Parallelism

To get ESP parallelism, you can put an ESP_EXCHANGE operator in front of the
operator you want to run in parallel.

You might also get ESP parallelism by entering this command:

CONTROL QUERY SHAPE ESP_EXCHANGE(CUT);

You can force the number of ESPs used. For joins, specify the number of ESPs when
you specify the join. For nonjoin operations, specify the EXCHANGE logical operator
with the number of ESPs. Do not use the CUT keyword for the child. Otherwise, you
might not get the intended result.

Forcing DAM Parallelism

To get DAM parallelism, force SPLIT_TOP_PA above the item you want to run in DAM:

CONTROL QUERY SHAPE SPLIT_TOP_PA (ANYTHING);

Use this query:

SELECT JOBCODE, AVG(SALARY) FROM EMPLOYEE
 WHERE JOBCODE > 55 AND SALARY <= 3000
 GROUP BY JOBCODE

Note. To use ESP parallelism, you must have ATTEMPT_ESP_PARALLELISM set to ON or
SYSTEM. In addition, you must have more than one CPU in your system.

Caution. When you force the number of ESPs, you completely override the internal settings of
the optimizer. Use this option carefully and only if the optimizer does not choose the number of
ESPs that you think you need.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-13

Forcing Execution Plans Forcing Parallel Plans

TP663851.fm Page 14 Monday, October 17, 2011 11:48 AM
This shape forces a partial grouping in DAM with a consolidator grouping in the ESP or
master executor, as shown in Figure 5-5.

CONTROL QUERY SHAPE
 GROUPBY(
 SPLIT_TOP_PA(
 GROUPBY(SCAN))
);

To force an operator to execute in the DAM without DAM parallelism, force a
PARTITION_ACCESS operator on top of the operator you want to run in the DAM.
However, the operator must be capable of the request. For example, a join cannot be
used for a direct request to the DAM. The operators that can make a direct request to
the DAM include scans and group bys.

Forcing Joins

The syntax for CONTROL QUERY SHAPE provides the ability to force certain types of
joins for parallel plans, as described next. For more information on Type1 (matching
partition algorithm) and Type2 (parallel access to the inner table) joins, see Section 8,
Parallelism.

 Forcing a Type1 join

The matching partitions algorithm can be forced by specifying Type1 as part of the
join specification. To force a Type1 join without repartitioning, all criteria must
match for both tables. To force a Type1 join when the table criteria does not match,

Figure 5-5. Query Tree for the Forced Plan

root

hash_partial_groupby_root

split_top

partition_access

hash_partial_groupby_leaf

file_scan

DAM fragment

Master Executor

VST614.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-14

Forcing Execution Plans Forcing Parallel Plans

TP663851.fm Page 15 Monday, October 17, 2011 11:48 AM
use a CUT for the children, or use an ESP_EXCHANGE above the children for any
necessary repartitioning.

This example shows forcing a Type1 join:

CONTROL QUERY SHAPE
 ESP_EXCHANGE(
 MERGE_JOIN(
 EXCHANGE(SCAN('DEPT')),
 EXCHANGE(SCAN('EMP')),
 TYPE1)
);

The example uses the logical specification for the lower exchange operators to
enable the optimizer to choose parallel access (SPLIT_TOP_PA operator) or serial
access (PARTITION_ACCESS operator), as shown in Figure 5-6.

For more information about Type1 joins, see Parallelism on page 8-1.

 Forcing a Type2 join

The join with parallel access to the inner table algorithm can be forced by using
Type2 as a part of the join specification. To force a Type2 nested join, the left child
must be partitioned. To force a Type2 hash join, the left child must be partitioned,
and you need to specify either CUT or ESP_EXCHANGE above the right child to
handle the broadcast replication.

The next statement forces a Type2 hash join, as shown in Figure 5-7 on page 5-16.

CONTROL QUERY SHAPE
 ESP_EXCHANGE(
 HYBRID_HASH_JOIN (
 EXCHANGE(SCAN('DEPT')),
 ESP_EXCHANGE(EXCHANGE(SCAN('EMP'))),
 TYPE2)
);

Figure 5-6. Logical Specification and Lower Exchange Operators

root

esp exchange

merge_join

exchange exchange

scan 'DEPT' scan 'EMP'

VST650.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-15

Forcing Execution Plans Forcing Parallel Plans

TP663851.fm Page 16 Monday, October 17, 2011 11:48 AM
For more information about Type2 joins, see Parallelism on page 8-1.

 Deferring to the optimizer to choose exchange or sort operators

In the preceding forced join examples, you needed to specify the choice of
exchange and sort operators as part of the CONTROL QUERY SHAPE statement.
To eliminate this step and simplify the process of writing a valid CONTROL
QUERY SHAPE statement, you can use one of the options listed below with the
CONTROL QUERY SHAPE statement. Using these options enables you to focus
on join orders, join types, and other plan types while deferring the choice of
exchange or sort operators to the optimizer:

 IMPLICIT EXCHANGE enables the optimizer to add exchange nodes at any
location necessary to make the CONTROL QUERY STATEMENT valid. The
optimizer chooses the optimal placement of the exchange nodes. You can still
explicitly add in exchange nodes and the compiler must add them.

 IMPLICIT SORT enables the optimizer to add sort nodes at any location
necessary to make the CONTROL QUERY STATEMENT valid. The optimizer
chooses the optimal placement of the sort nodes.You can still explicitly add in
sort nodes and the compiler must add them.

 IMPLICIT EXCHANGE_AND_SORT enables the optimizer to add both
exchange and sort nodes at any location necessary to make the CONTROL
QUERY STATEMENT valid. The optimizer chooses the optimal placement of
the exchange and sort nodes. You can still explicitly add in enforcers and the
compiler must add them.

Figure 5-7. Type2 Hash Join

root

hybrid_hash_join

scan 'DEPT' exchange

scan 'EMP'

exchange esp_exchange

esp_exchange

VST651.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-16

Forcing Execution Plans Forcing Parallel Plans

TP663851.fm Page 17 Monday, October 17, 2011 11:48 AM
This statement enables the optimizer to add exchange nodes:

CONTROL QUERY SHAPE IMPLICIT EXCHANGE
 HYBRID_HASH_JOIN (
 SCAN('DEPT'),
 SCAN('EMP'),
 TYPE2);

For syntax and more information, see the SQL/MX Reference Manual.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-17

Forcing Execution Plans Forcing Parallel Plans

TP663851.fm Page 18 Monday, October 17, 2011 11:48 AM
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
5-18

TP663851.fm Page 1 Monday, October 17, 2011 11:48 AM
6 Query Plan Caching

Use the information in this section to understand query plan caching:

 Types of Cacheable Queries on page 6-2

 Choosing an Appropriate Size for the Query Cache on page 6-6

 Query Plan Caching Statistics on page 6-6

 SYSTEM_DEFAULTS Table Settings for Query Plan Caching Attributes on
page 6-7

Overview
Query Plan Caching is a feature of the SQL/MX compiler that provides the ability to
cache the plans of certain queries. This feature improves performance when the plan
can be produced from the cache rather than through a full compilation. The
performance improvement is typically 60 to 80 percent (compile time) for simple
TP-style queries.

Certain default settings used with the CONTROL QUERY DEFAULT statement apply to
query plan caching. For more information, see SYSTEM_DEFAULTS Table Settings for
Query Plan Caching Attributes on page 6-7.

The query plan caching feature has been designed to operate transparently. No
SQL/MX application source code changes are required. When given a query, NonStop
SQL/MX produces the same plan with or without query caching. This correctness
requirement implies that the SQL/MX compiler honors CONTROL QUERY DEFAULT
and CONTROL TABLE statements even when query caching is active. To illustrate this
behavior, suppose that:

 The table timeout setting for table T is set to infinite (-1).

 The SQL/MX compiler is asked to compile “SELECT * FROM T”

 The SQL/MX compiler compiles and caches a plan for “SELECT * FROM T”

 A CONTROL TABLE statement changes the timeout setting for table T to five
seconds

 The SQL/MX compiler is asked to compile “SELECT * FROM T” again

The SQL/MX compiler cannot use the previously cached plan for “SELECT * FROM T”
because the plan has an infinite timeout setting for Table T. If the compiler were to use
the cached plan, the compiler would effectively ignore the CONTROL TABLE
statement that changed the timeout for Table T to five seconds. Therefore, the compiler
can compile and cache one or more plans for one query with each plan associated with
a different set of control settings.

A query that is compiled repeatedly, each time with a new set of control settings, does
not result in a cache hit. A query that is compiled subsequently, with a set of control
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-1

Query Plan Caching Types of Cacheable Queries

TP663851.fm Page 2 Monday, October 17, 2011 11:48 AM
settings that was in effect when this query was previously compiled, results in a cache
hit, assuming that all other criteria for a cache hit are met.

For example, consider how the compiler responds to a sequence of control statements
and query compilation requests:

CONTROL TABLE T TIMEOUT 500;
SELECT * FROM T; -- mxcmp adds "SELECT * FROM T; T TIMEOUT 500" to
cache

CONTROL TABLE T TIMEOUT -1;
SELECT * FROM T; -- mxcmp adds "SELECT * FROM T; T TIMEOUT
-1" to cache

CONTROL TABLE T TIMEOUT 500;
SELECT * FROM T; -- mxcmp hits on "SELECT * FROM T; T TIMEOUT 500"

CONTROL TABLE T TIMEOUT -1;
SELECT * FROM T; -- mxcmp hits on "SELECT * FROM T; T TIMEOUT -1"

The SQL/MX compiler responds similarly to CONTROL QUERY DEFAULT statements.

Types of Cacheable Queries
The queries that are considered for query plan caching include simple TP-style inserts,
updates, deletes, selects, and joins. Two queries are considered equivalent for the
purposes of caching if their canonical forms are the same. For query caching, the
canonical form of a query is constructed by:

 Removing unmeaningful white space differences

 Removing unmeaningful case differences

 Expanding ‘*’ notation in select lists

 Resolving all object names to fully qualified names

 Replacing most constant literals with parameters

 Encoding all CONTROL QUERY DEFAULT and CONTROL TABLE statements that
have been previously executed in the current SQL/MX compiler session

Query caching is restricted to only those queries whose compiled plans and plan
quality are unaffected by the actual values of their literal constants and that have a
high probability for reuse.

UPDATE STATISTICS does not affect query caching. Cacheable queries remain
cacheable, and noncacheable queries remain noncacheable with or without updating
statistics.

The SQL/MX compiler generates the same plan for many TP-style queries that are
guaranteed to return or update at most one row. The next examples are all guaranteed
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-2

Query Plan Caching Examples of Cacheable Expressions

TP663851.fm Page 3 Monday, October 17, 2011 11:48 AM
to update or return at most one row if table T has K as its primary key column. These
are all cacheable queries:

DELETE FROM T WHERE K=1;

UPDATE T SET C=1 WHERE K=2;

SELECT * FROM T WHERE K=1;

INSERT INTO T(K,C) VALUES(2,1);

Examples of Cacheable Expressions

 Dynamic parameters are cacheable

UPDATE T SET C=? WHERE K=?;

 Arithmetic expressions are cacheable

SELECT m + n - p * q / r FROM T WHERE K=?;

 Aggregate functions (MAX, MIN, SUM, AVG, COUNT are cacheable):

SELECT MAX(i), MIN(i), SUM(i), AVG(i), COUNT(DISTINCT i)
FROM T WHERE K=?;

 Concatenation is cacheable

UPDATE T SET D=D||'1', E=CONCAT(E,'z') WHERE K=?;

 String functions (CHAR LENGTH, OCTET LENGTH, LCASE, LOWER, UCASE,
UPPER, UPSHIFT are cacheable):

SELECT CHAR LENGTH(d), OCTET LENGTH(d), LCASE(d), LOWER('A'),
UCASE(d), UPPER('a'), UPSHIFT('b') FROM T;

 Datetime functions (CONVERTTIMESTAMP, JULIANTIMESTAMP, CURRENT
TIMESTAMP, CURRENT DATE, CURRENT TIME, CURRENT, NOW,
DATEFORMAT, DAY, DAYNAME, DAYOFMONTH, DAYOFWEEK, DAYOFYEAR,
FIRSTDAYOFYEAR, HOUR, MINUTE, MONTH, MONTHNAME, QUARTER,
SECOND, WEEK, YEAR FUNCTIONS are cacheable):

UPDATE T SET
TS=CONVERTTIMESTAMP(JULIANTIMESTAMP(CURRENT_TIMESTAMP))
WHERE K=?;

SELECT CURRENT_DATE, CURRENT_TIME, DATEFORMAT(NOW(),USA),
DATEFORMAT(NOW(),EUROPEAN), DAY(CURRENT), DAYNAME(NOW(),
DAYOFMONTH(NOW()), DAYOFWEEK(NOW()), DAYOFYEAR(NOW()),
FIRSTDAYOFYEAR(NOW()), HOUR(NOW()), MINUTE(NOW)),
MONTH(NOW()), MONTHNAME(NOW()), QUARTER(NOW()),
SECOND(NOW()), WEEK(NOW()), YEAR(NOW()) FROM (VALUES(1)) AS
T;

 Case expressions are cacheable:

SELECT CASE i WHEN 3 THEN 'YES' ELSE 'NO' END FROM T;
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-3

Query Plan Caching Examples of Queries That Are Not Cacheable

TP663851.fm Page 4 Monday, October 17, 2011 11:48 AM
 Math functions (ABS, ATAN, ATAN2, CEILING, COS, COSH, DEGREES, EXP,
FLOOR, LOG, LOG10, PI, POWER, RADIANS, SIGN, SIN, SINH, SQRT, TAN,
TANH are cacheable):

SELECT ABS(i), ATAN(10), ATAN2(x,y), CEILING(r), COS(i),
COSH(i), DEGREES(i), EXP(i), FLOOR(i), LOG(i), LOG10(i),
PI(), POWER(b,e), RADIANS(i), SIGN(i), SIN(i), SINH(i),
SQRT(i), TAN(i), TANH(i) FROM T;

 Replace functions are cacheable:

UPDATE T SET job=replace(job, 'IM', 'IT') WHERE K=?;

 Two-table single row joins are cacheable. This two-table single row join is
cacheable, assuming table T has K as its primary (or partition) key and table U has
J as its primary (or partition) key:

SELECT * FROM T, U WHERE (K,J)=(?,?) AND K=J;

All other functions not listed here are not cacheable.

The SQL/MX compiler is guaranteed to generate the same plans for similar TP-style
queries that differ only in their literal values. These examples yield the same plan:

DELETE FROM T WHERE K=9999;

DELETE FROM T WHERE K=7;

DELETE FROM T WHERE K=?;

The next three examples also yield the same plan:

UPDATE T SET C=35 WHERE K=14;

UPDATE T SET C=7 WHERE K=31;

UPDATE T SET C=? WHERE K=?;

Query plan caching effectively treats most literal values in TP-style queries as wild
cards when comparing a query against previously cached queries. However, not all
literal values are treated as wild cards. For example, the pattern and escape literals in
this example are not treated as wild cards during query comparison:

SELECT * FROM T WHERE K=1 AND S LIKE '_C%' escape '\';

The previous query is not considered the same as the next query during query
comparison:

SELECT * FROM T WHERE K=1 AND S LIKE '\$C%' escape '\';

Examples of Queries That Are Not Cacheable

 Queries that have only LIKE predicates are not cacheable:

SELECT * FROM T WHERE S LIKE 'c%'; --is not cacheable
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-4

Query Plan Caching Examples of Queries That Are Not Cacheable

TP663851.fm Page 5 Monday, October 17, 2011 11:48 AM
However, a LIKE predicate conjunct of a key equipredicate is cacheable:

SELECT * FROM T WHERE K=? AND S LIKE 'c%';

 Queries that have only OR predicates are not cacheable:

SELECT * FROM T WHERE a=1 OR b=2; -- is not cacheable

However, an OR predicate conjunct of a key equipredicate is cacheable:

SELECT * FROM T WHERE K=? and (a=1 OR b=2);

 Queries that have BETWEEN predicates are not cacheable:

SELECT * FROM T WHERE a BETWEEN 1 AND 9; -- is not cacheable

SELECT * FROM T WHERE K=? AND (a BETWEEN 1 AND 9); -- is not
cacheable

 Queries that have only IN predicates are not cacheable:

SELECT * FROM T WHERE i IN (1,2); -- is not cacheable

However, an IN predicate conjunct of a key equi-predicate is cacheable:

SELECT * FROM T WHERE K=? AND i IN (1,2); -- is cacheable

Also, a single-value key IN predicate is cacheable:

SELECT * FROM T WHERE K IN (1);

 Queries that have only NOT predicates are not cacheable:

SELECT * FROM T WHERE NOT(i IN (1,2)); -- is not cacheable

SELECT * FROM T WHERE NOT (K<>1); -- is not cacheable

However, a NOT predicate conjunct of a key equipredicate is cacheable:

SELECT * FROM T WHERE K=? AND NOT (i IN (1,2));

 Queries that have function calls other than those listed in Examples of Cacheable
Expressions on page 6-3 are not cacheable:

SELECT * FROM T WHERE K=? AND SUBSTRING(c,1,1)='z'; --is not
cacheable

 Queries that have subqueries are not cacheable:

SELECT * FROM T WHERE K=? AND N=(SELECT MAX (b) FROM t); --is
not cacheable

 Queries that have relational unions, intersections, differences, divisions, and table-
value stored procedures are not cacheable:

SELECT a FROM t UNION SELECT b FROM s; -- is not cacheable

 Queries that have compound statements or rowsets are not cacheable.

 Queries that have transpose, sample, sequence, offset, or other data mining
predicates are not cacheable.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-5

Query Plan Caching Choosing an Appropriate Size for the Query Cache

TP663851.fm Page 6 Monday, October 17, 2011 11:48 AM
 Data Definition Language (DDL) statements are not cacheable.

 Data Control Language (DCL) statements are not cacheable.

Choosing an Appropriate Size for the Query
Cache

To adequately choose an appropriate size for the query cache, examine your
applications.

Static applications that precompile their queries once during application development
and rarely recompile their queries during application deployment and operation should
turn off plan caching by specifying a QUERY_CACHE default setting of 0.

Dynamic applications, such as a book search engine that processes many queries
whose text is not known beforehand, can specify a QUERY_CACHE size that can hold
most of the frequently processed queries. For example, if an application processes 40
classes of queries and the average plan size of a query is 100 KB, a QUERY_CACHE
size of 4000 KB might be optimal. The steps for finding the size of an entry are
explained under QUERYCACHE Function on page 6-9.

An application can change the QUERY_CACHE size during operation with the
CONTROL QUERY DEFAULT command. For example, a mixed mode application that
does both transaction processing (TP) and decision support system (DSS) queries can
increase the QUERY_CACHE size just before it switches to TP mode to hold and
cache more TP queries. Likewise, the application might reduce the QUERY_CACHE
size just before it switches to DSS mode.

Dynamic applications that spend a significant amount of time compiling and executing
queries can hold and cache more queries for any given QUERY_CACHE size by
turning off the GENERATE_EXPLAIN default setting. Turning off
GENERATE_EXPLAIN reduces the average plan size by about 15 percent for TP-style
queries. As a result, a query plan cache can hold about 15 percent more queries.

Query Plan Caching Statistics
NonStop SQL/MX provides a convenient way to determine important information about
the caching process in addition to the current state of stored plans. This information is
provided in two virtual tables. You query these tables at the MXCI prompt by using the
SELECT statement as if they were physical tables.

If no query plans have been cached, no rows are returned.

For syntax information, see the QUERYCACHE and QUERYCACHEENTRIES
functions in the SQL/MX Reference Manual.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-6

Query Plan Caching SYSTEM_DEFAULTS Table Settings for Query Plan
Caching Attributes

TP663851.fm Page 7 Monday, October 17, 2011 11:48 AM
SYSTEM_DEFAULTS Table Settings for Query
Plan Caching Attributes

This subsection provides additional information about the query plan caching
externalized attributes. The SYSTEM_DEFAULTS table entry of the SQL/MX
Reference Manual provides reference information about these settings:

 QUERY_CACHE

System-defined default setting: 1024 kilobytes (KB)
Allowable values: 0 to 4194303

The value of QUERY_CACHE indicates the KB size to which the cache is allowed
to grow. The default setting, 1024, activates a query cache that can grow to 1024
KB in the current session.

Although the maximum value for QUERY_CACHE is 4194303, you should not set
the QUERY_CACHE limit to a value greater than or equal to a fraction of the
physical memory of the host machine. Doing so is likely to result in reduced
performance as the HP NonStop operating system repeatedly swaps the SQL/MX
compiler (bloated by a huge cache) in and out of the host machine's physical
memory. A good strategy might be to avoid setting QUERY_CACHE to more than
10 percent of the host machine’s physical memory.

If a new entry causes the size of the query cache to exceed the value of the
QUERY_CACHE default, current entries are removed on a “least recently used”
basis, taking into account pinned entries and the value of the default
QUERY_CACHE_MAX_VICTIMS. See QUERY_CACHE_STATEMENT_PINNING
on page 6-9.

To deactivate the query cache in the current session, set QUERY_CACHE to 0. If a
query cache is allocated, this setting frees it.

 QUERY_CACHE_MAX_VICTIMS

System-defined default setting: 10 cache entries
Allowable values: 0 to 4194303

This attribute indicates the maximum number of cache entries that can be
displaced to accommodate a new entry and stay within the size limit of the cache.
When considering displacement of entries in the cache, the compiler looks for the
least recently used unpinned entries of a combined size that is greater than the
size of the new entry. If there are not enough least recently used unpinned entries,
the compiler looks for any least recently used pinned entries to displace. Setting
this attribute to a very large value means that all the cache entries could be
displaced to accommodate one very large query.

Setting this attribute to 0 means that, when the cache becomes full, no cache
entries (pinned or unpinned) can be displaced, and no new entries can be entered
into the cache. The first n queries occupy the cache (where n is the number of
entries it takes to fill the cache). If the cache is full and a new query comes along,
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-7

Query Plan Caching SYSTEM_DEFAULTS Table Settings for Query Plan
Caching Attributes

TP663851.fm Page 8 Monday, October 17, 2011 11:48 AM
the new entry is not added to the cache, and no resident entries can be displaced.
Because the query plan cache feature is transparent, no error messages are
issued.

If QUERY_CACHE_MAX_VICTIMS is later set to a nonzero value, replacement
resumes as usual. The number of entries that the cache can hold depends on the
size of the cache and the size of the cached plans. The system-defined default
setting limits the number of cache entries that can be displaced to 10 cache
entries.

 QUERY_CACHE_REQUIRED_PREFIX_KEYS

System-defined default setting: 255
Allowable values: 0 to 255

This attribute specifies how many and which columns of a composite primary or
partition key are required for an equality predicate to be considered cacheable. If
the attribute is set to a value greater than the number of columns in a composite
key, all columns of the key are required. The system-defined default setting is 255,
which means that only complete primary or partition key equality predicates are
cacheable. To avoid compromising query plan quality, it is recommended that you
keep the system-defined default setting of 255.

The value 0 means that the presence of any one column of a composite primary or
partition key in an equality key predicate is sufficient to make that predicate
cacheable. A value n that is greater than zero but less than the number of columns
in the key indicates that the first n columns of the key are required to be present in
a key predicate for that predicate to be considered cacheable.

Suppose that the QUERY_CACHE_REQUIRED_PREFIX_KEYS setting is 1, and
the table T has a composite primary key consisting of columns (a, b, and c). With
the setting of 1, provided that the first column of the key (a) is an equality
predicate, the query is cacheable. If the
QUERY_CACHE_REQUIRED_PREFIX_KEYS setting is 2, the only valid prefixes
of (a, b, c) are (a, b) and (a, b, c). That is, these queries are cacheable:

SELECT * FROM T WHERE a=1 AND b = 20;
DELETE FROM T WHERE (a,b,c)=(9,909,10);

However, these queries are not cacheable:

SELECT * FROM T WHERE a=77;
DELETE FROM T WHERE (b,c)=(1,23);

This attribute can be used to force certain noncacheable queries into cacheable
queries. In the previous example, SELECT * FROM T WHERE A=77 is not
cacheable because its equi-predicate specifies only the first of a three-column key.
To make it cacheable, specify CONTROL QUERY DEFAULT
QUERY_CACHE_REQUIRED_PREFIX_KEYS ‘1,’ and the query becomes
cacheable.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-8

Query Plan Caching QUERYCACHE Function

TP663851.fm Page 9 Monday, October 17, 2011 11:48 AM
 QUERY_CACHE_STATEMENT_PINNING

System-defined default setting: OFF
Allowable values: ON, OFF, CLEAR

This attribute controls whether queries are entered into the cache as pinned or
unpinned. You might have important, compile-time critical queries that you want to
ensure are in the cache when needed. When a query is pinned in the cache, it
usually cannot be displaced from the cache unless the cache becomes full of
pinned queries. In this case, the least recently used pinned entries also become
displaceable.

The system-defined default setting, OFF, means that all subsequent query cache
entries are unpinned.

The value CLEAR means that all subsequent query cache entries are unpinned,
and all pinned entries in the cache are also unpinned.

The value ON means that all subsequent query cache entries are pinned.

QUERYCACHE Function

The query plan cache automatically collects statistics regarding its use. When invoked,
the QUERYCACHE table-valued stored function collects and returns the current state
of these statistics in a single row table. The statistics are reinitialized when an mxcmp
session is started, and each mxcmp session maintains an independent set of statistics.

This table describes the various statistics of the QUERYCACHE table:

Column Name Data Type Description

AVG_PLAN_SIZE INT UNSIGNED Total KB size of all cache entries
divided by the number of entries.

CURRENT_SIZE INT UNSIGNED Current KB size of the query cache.

MAX_CACHE_SIZE INT UNSIGNED Maximum cache size in KB.

MAX_NUM_VICTIMS INT UNSIGNED Maximum number of plans that can
be removed from the cache to
make room for a new entry.

NUM_ENTRIES INT UNSIGNED Total number of query entries in the
cache.

NUM_PINNED INT UNSIGNED Total number of pinned entries.

NUM_COMPILES INT UNSIGNED Total number of complete compile
requests (excludes DESCRIBE and
SHOWSHAPE).

NUM_RECOMPILES INT UNSIGNED Total number of recompilations.
Recompilation of a cached plan
occurs when a referenced table has
been re-created or altered.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-9

Query Plan Caching QUERYCACHE Function

TP663851.fm Page 10 Monday, October 17, 2011 11:48 AM
NUM_RETRIES INT UNSIGNED Number of successful compiles that
initially fail with caching on (caused
by a defect in mxcmp) and that
succeed with caching off.

NUM_CACHEABLE_PARSING INT UNSIGNED Total number of SQL statements
that mxcmp has processed after
parsing and before binding the
query that satisfy the conditions for
caching.

NUM_CACHEABLE_BINDING INT UNSIGNED Total number of SQL statements
that mxcmp has processed after
binding and before transformation
of the query that satisfy the
conditions for caching.

NUM_CACHE_HITS_PARSING INT UNSIGNED Total number of SQL statements
that mxcmp has processed after
parsing and before binding that
have produced hits.

NUM_CACHE_HITS_BINDING INT UNSIGNED Total number of SQL statements
that mxcmp has processed after
binding and before transformation
of the query that have produced
hits.

NUM_PIN_HITS_PARSING INT UNSIGNED Total number of hits on pinned
entries that occurred after parsing
and before binding.

NUM_PIN_HITS_BINDING INT UNSIGNED Total number of hits on pinned
entries that occurred after binding
and before transformation.

NUM_CACHEABLE_TOO_LARGE INT UNSIGNED Number of SQL statements
processed by mxcmp that satisfy the
conditions for cacheability but with
plans too large to fit in the cache.

NUM_DISPLACED INT UNSIGNED Number of entries removed from
the cache to make room for new
entries or as a consequence of a
resizing of the cache or
recompilation.

OPTIMIZATION_LEVEL CHAR(10) Indicates the current desired level
of query optimization. Can be 0, 2,
3, or 5.

PINNING_STATE CHAR(4) Current state of pinning. Can be ON
or OFF.

Column Name Data Type Description
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-10

Query Plan Caching QUERYCACHEENTRIES Function

TP663851.fm Page 11 Monday, October 17, 2011 11:48 AM
QUERYCACHEENTRIES Function

The query plan cache automatically collects statistics on each entry of the cache.
When invoked, the QUERYCACHEENTRIES table-valued stored function collects and
returns these statistics in a table with one row for each entry of the cache. The
statistics are reinitialized when an mxcmp session is started. Each mxcmp session
maintains an independent set of statistics.

This table describes the statistics of the QUERYCACHEENTRIES table:

Column Name Data Type Description

ROW_ID INT UNSIGNED A zero-based sequential number.
Entry number 0 is the most recently
used entry. When a new entry is
cached or matches the query
issued, it occupies zero, and all
other cache entries not displaced
are increased by one. Entry number
1 is the most recently used entry
after the most recent. Entries with
the highest row IDs are the ones
replaced; they are the least recently
used entries.

PLAN_ID LARGEINT Primary key. System-generated
timestamp stored within each plan
that uniquely identifies it. This
column appears in the EXPLAIN
table and enables joins between the
two tables.

TEXT CHAR(1024) Text of the original SQL statement.

ENTRY_SIZE INT UNSIGNED Size in bytes of this entry.

NUM_HITS INT UNSIGNED Total number of hits for this entry.

PHASE CHAR(10) Contains the mxcmp phase after
when the plan associated with this
entry was cached (parsing or
binding)

OPTIMIZATION_LEVEL CHAR(10) Indicates the desired level of code
optimization at the time the query
was compiled. Can be 0, 2, 3, or 5.

CATALOG_NAME CHAR(40) Name of default catalog under
which the query was compiled.

SCHEMA_NAME CHAR(40) Name of default schema under
which the query was compiled.

NUM_PARAMS INT UNSIGNED Number of constants in the query
that were changed internally into
parameters during compilation.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-11

Query Plan Caching QUERYCACHEENTRIES Function

TP663851.fm Page 12 Monday, October 17, 2011 11:48 AM
PARAM_TYPES CHAR(1024) Comma-separated list of the types
of constants that were changed into
parameters. Blank if none.

PLAN_LENGTH INT UNSIGNED Size in bytes of the compiled plan
associated with this query.

IS_PINNED CHAR(6) Indicates whether the entry is
pinned. Can be ON or OFF.

COMPILATION_TIME INT UNSIGNED Time in milliseconds it took to
compile the query associated with
this entry.

AVERAGE_HIT_TIME INT UNSIGNED Time in milliseconds it took on
average to process a query as a
cache hit against this entry.

SHAPE CHAR (1024) Required CONTROL QUERY
SHAPE of the query associated with
this entry. Blank if no required
shape.

ISOLATION_LEVEL CHAR(20) Transaction isolation level
associated with the query. Can be
READ_UNCOMMITTED,
READ_COMMITTED,
REPEATABLE_READ,
SERIALIZABLE, NOT_SPECIFIED.

ACCESS_MODE CHAR(20) Transaction access mode value
associated with the query. Can be
READ_ONLY, READ_WRITE, or
NOT_SPECIFIED.

AUTO_COMMIT CHAR(15) Transaction auto-commit value
associated with the query. Can be
ON, OFF, or NOT_SPECIFIED.

ROLLBACK_MODE CHAR(15) Transaction rollback mode value
associated with the query. Can be
WAITED, NOWAITED, or
NOT_SPECIFIED.

Column Name Data Type Description
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-12

Query Plan Caching Querying the Query Plan Caching Virtual Tables

TP663851.fm Page 13 Monday, October 17, 2011 11:48 AM
Querying the Query Plan Caching Virtual Tables

You can query and display certain columns or all columns of the query plan caching
virtual tables. You specify the virtual table in a SELECT statement preceded by the
keyword table and surrounded by parenthesis. In addition, a pair of parentheses must
follow the table name. Information is returned in machine-readable format.

If the query plan cache does not contain any stored plans, no rows are returned.

For example, this query selects all columns from the QUERYCACHE virtual table. Only
one plan was stored in the cache as reflected by the NUM_ENTRIES value of 1.

SELECT * FROM TABLE(QUERYCACHE());
AVG_TEMPLATE_SIZE 31
CURRENT_SIZE 35
MAX_CACHE_SIZE 1024
MAX_NUM_VICTIMS 10
NUM_ENTRIES 1
NUM_PLANS 2
NUM_COMPILES 2
NUM_RECOMPILES 53
NUM_RETRIES 0
NUM_CACHEABLE_PARSING 0
NUM_CACHEABLE_BINDING 0
NUM_CACHE_HITS_PARSING 2
NUM_CACHE_HITS_BINDING 0
NUM_CACHEABLE_TOO_LARGE 0
NUM_DISPLACED 0
OPTIMIZATION_LEVEL 3
TEXT_CACHE_HITS 0
AVG_TEXT_SIZE 500
TEXT_ENTRIES 0
DISPLACED_TEXTS 0
NUM_LOOKUPS 2

--- 1 row(s) selected.

Although the QUERYCACHE function is a one-row multi-column table, this output has
been formatted for readability.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-13

Query Plan Caching Querying the Query Plan Caching Virtual Tables

TP663851.fm Page 14 Monday, October 17, 2011 11:48 AM
This query selects all columns of the QUERYCACHEENTRIES virtual table (formatted
for readability):

SELECT * FROM TABLE(QUERYCACHEENTRIES());

ROW_ID PLAN_ID TEXT ENTRY_SIZE
------ ------------------ -------------------------- ----------
 0 211894097543468116 select * from employee; 32410
 1 211894097552547493 select * from job; 24968
 2 211894097548497817 select * from dept; 29730

NUM_HITS PHASE OPTIMIZATION_LEVEL CATALOG_NAME SCHEMA_NAME
-------- ---------- ---------------------- ------------ -----------
 1 BINDING 2 SAMDBCAT PERSNL
 0 BINDING 2 SAMDBCAT PERSNL
 0 BINDING 2 SAMDBCAT PERSNL

NUM_PARAMS PARAM_TYPES PLAN_LENGTH COMPILATION_TIME
---------- ----------- ----------- -----------------
 0 31752 334
 0 24504 54
 0 29144 96

AVERAGE_HIT_TIME SHAPE ISOLATION_LEVEL_ ACCESS_MODE AUTO_COMMIT
 FOR_UPDATES
---------------- ------- --------------- ------------ -----------
41 Cut (0) READ COMMITTED READ/WRITE ON
0 Cut (0) READ COMMITTED READ/WRITE ON
0 Cut (0) READ COMMITTED READ/WRITE ON

ROLLBACK_MODE
-------------- -----------
NOT SPECIFIED
NOT SPECIFIED
NOT SPECIFIED

--- 3 row(s) selected.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-14

Query Plan Caching Reviewing the Query Plan Caching Statistics With
the DISPLAY_QC and DISPLAY_QC_ENTRIES

TP663851.fm Page 15 Monday, October 17, 2011 11:48 AM
Reviewing the Query Plan Caching Statistics With the
DISPLAY_QC and DISPLAY_QC_ENTRIES Commands

The DISPLAY_QC and DISPLAY_QC_ENTRIES commands provide a quick look at
the most commonly accessed columns of the query plan caching statistics. The
commands are entered at the MXCI prompt with no parameters. If no query plans have
been cached, no rows are returned.

DISPLAY_QC Command

The DISPLAY_QC command accesses the information in the QUERYCACHE function
and displays these columns:

>>DISPLAY_QC;

AVGSIZE CURSIZE MAXSIZE NPINNED NRECOM NRETR NCACHE NHITS

------- -------- -------- -------- -------- -------- -------- --------

31 35 1024 0 0 0 1 0

--- SQL operation complete.

Column Name Type Source column in QUERYCACHE Function

AVGSIZE CHAR(8) AVG_PLAN_SIZE

CURSIZE CHAR(8) CURRENT_SIZE

MAXSIZE CHAR(8) MAX_CACHE_SIZE

NPINNED CHAR(8) NUM_PINNED

NRECOM CHAR(8) NUM_RECOMPILES

NRETR CHAR(8) NUM_RETRIES

NCACHE CHAR(8) NUM_CACHEABLE_PARSING +
NUM_CACHEABLE_BINDING

NHITS CHAR(8) NUM_CACHE_HITS_PARSING +
NUM_CACHE_HITS_BINDING
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-15

Query Plan Caching Reviewing the Query Plan Caching Statistics With
the DISPLAY_QC and DISPLAY_QC_ENTRIES

TP663851.fm Page 16 Monday, October 17, 2011 11:48 AM
DISPLAY_QC_ENTRIES Command

The DISPLAY_QC_ENTRIES command accesses the information in the
QUERYCACHEENTRIES function and displays these columns:

DISPLAY_QC_ENTRIES;

ROWID TEXT NUMHITS PH COMPTIME AVGHTIME
-------- ------------------------------------ -------- - -------- --------

0 select * from job; 0 B 88 0
1 select * from dept; 0 B 115 0
2 select * from employee; 0 B 1605 0

--- SQL operation complete.

Column Name Type
Source column in QUERYCACHEENTRIES
Function

ROWID CHAR(8) ROW_ID

TEXT CHAR(36) TEXT

NUMHITS CHAR(8) NUM_HITS

PH CHAR(1) PHASE

COMPTIME CHAR(8) COMPILATION_TIME

AVGHITTIME CHAR(8) AVERAGE_HIT_TIME
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
6-16

TP663851.fm Page 1 Monday, October 17, 2011 11:48 AM
7 SQL/MX Operators

Use the information in this section to understand the DESCRIPTION column when you
use the EXPLAIN function and when you view query execution plans with the Visual
Query Planner. Operators are frequently called nodes or node types throughout the
SQL/MX documentation set. For information about using the EXPLAIN function and
Visual Query Planner, see Section 4, Reviewing Query Execution Plans.

This section defines all operators in alphabetic order:

 BLOCKED_UNION Operator on page 7-5
 CALL Operator on page 7-6
 CURSOR_DELETE Operator on page 7-8
 CURSOR_UPDATE Operator on page 7-9
 EXPLAIN Operator on page 7-16
 ESP_ACCESS Operator on page 7-11
 ESP_EXCHANGE Operator on page 7-12
 EXPR Operator on page 7-16
 EXPLAIN_CMD Operator on page 7-17
 FILE_SCAN Operator on page 7-17
 FILE_SCAN_UNIQUE Operator on page 7-19
 FirstN Operator on page 7-22
 HASH_GROUPBY Operator on page 7-22
 HASH_PARTIAL_GROUPBY_LEAF Operator on page 7-24
 HASH_PARTIAL_GROUPBY_ROOT Operator on page 7-25
 HYBRID_HASH_ANTI_SEMI_JOIN Operator on page 7-26
 HYBRID_HASH_JOIN Operator on page 7-27
 HYBRID_HASH_SEMI_JOIN Operator on page 7-28
 INDEX_SCAN Operator on page 7-29
 INDEX_SCAN_UNIQUE Operator on page 7-31
 INSERT Operator on page 7-33
 INSERT_VSBB Operator on page 7-34
 LEFT_HYBRID_HASH_JOIN Operator on page 7-35
 LEFT_MERGE_JOIN Operator on page 7-36
 LEFT_NESTED_JOIN Operator on page 7-38
 LEFT_ORDERED_HASH_JOIN Operator on page 7-39
 MATERIALIZE Operator on page 7-40
 MERGE_ANTI_SEMI_JOIN Operator on page 7-41
 MERGE_JOIN Operator on page 7-42
 MERGE_SEMI_JOIN Operator on page 7-44
 MERGE_UNION Operator on page 7-45
 MultiUnion Operator on page 7-46
 NESTED_ANTI_SEMI_JOIN Operator on page 7-46
 NESTED_JOIN Operator on page 7-47
 NESTED_SEMI_JOIN Operator on page 7-49
 NEXTVALUEFOR Operator on page 7-50
 NESTED_SEMI_JOIN Operator on page 7-50
 ORDERED_HASH_JOIN Operator on page 7-52
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-1

SQL/MX Operators

TP663851.fm Page 2 Monday, October 17, 2011 11:48 AM
 ORDERED_HASH_SEMI_JOIN Operator on page 7-53
 ORDERED_UNION Operator on page 7-54
 PACK Operator on page 7-56
 PARTITION_ACCESS Operator on page 7-57
 PROBE_CACHE Operator on page 7-59
 PROBE_CACHE Operator on page 7-59
 SAMPLE Operator on page 7-61
 SAMPLE_FILE_SCAN Operator on page 7-62
 SEQUENCE Operator on page 7-63
 SEQUENCEGENERATOR Operator on page 7-65
 SORT Operator on page 7-67
 SORT_GROUPBY Operator on page 7-68
 SORT_PARTIAL_AGGR_LEAF Operator on page 7-69
 SORT_PARTIAL_AGGR_ROOT Operator on page 7-69
 SORT_PARTIAL_GROUPBY_LEAF Operator on page 7-70
 SORT_PARTIAL_GROUPBY_ROOT Operator on page 7-71
 SORT_SCALAR_AGGR Operator on page 7-73
 SPLIT_TOP Operator on page 7-74
 SUBSET_DELETE Operator on page 7-75
 SUBSET_UPDATE Operator on page 7-76
 TRANSPOSE Operator on page 7-78
 TUPLE_FLOW Operator on page 7-79
 TUPLELIST Operator on page 7-80
 UNARY_UNION Operator on page 7-81
 UNIQUE_DELETE Operator on page 7-83
 UNIQUE_UPDATE Operator on page 7-84
 UNPACK Operator on page 7-85
 VALUES Operator on page 7-86

For information about reading the EXPLAIN output, see Description of the EXPLAIN
Function Results on page 4-3.

Operator groups are used to conveniently group operators of a similar type. For
example, the Join group contains all operators that use joins.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-2

SQL/MX Operators

TP663851.fm Page 3 Monday, October 17, 2011 11:48 AM
Group Operator

User-Defined
Routine

CALL

DAM Subset FILE_SCAN
INDEX_SCAN
SUBSET_DELETE
SUBSET_UPDATE

DAM Unique CURSOR_DELETE
CURSOR_UPDATE
FILE_SCAN_UNIQUE
INDEX_SCAN_UNIQUE
UNIQUE_DELETE
UNIQUE_UPDATE

Data Mining SAMPLE
SEQUENCE
TRANSPOSE

Exchange ESP_EXCHANGE
PARTITION_ACCESS
SPLIT_TOP

Groupby HASH_GROUPBY
HASH_PARTIAL_GROUPBY_LEAF
HASH_PARTIAL_GROUPBY_ROOT
SHORTCUT_SCALAR_AGRR
SORT_GROUPBY
SORT_PARTIAL_AGGR_LEAF
SORT_PARTIAL_AGGR_ROOT
SORT_PARTIAL_GROUPBY_LEAF
SORT_PARTIAL_GROUPBY_ROOT
SORT_SCALAR_AGGR

Insert INSERT
INSERT_VSBB
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-3

SQL/MX Operators

TP663851.fm Page 4 Monday, October 17, 2011 11:48 AM
Join HYBRID_HASH_ANTI_SEMI_JOIN
HYBRID_HASH_JOIN
HYBRID_HASH_SEMI_JOIN
LEFT_HYBRID_HASH_JOIN
LEFT_MERGE_JOIN
LEFT_NESTED_JOIN
LEFT_ORDERED_HASH_JOIN
MERGE_ANTI_SEMI_JOIN
MERGE_JOIN
MERGE_SEMI_JOIN
NESTED_ANTI_SEMI_JOIN
NESTED_JOIN
NESTED_SEMI_JOIN
ORDERED_HASH_ANTI_SEMI_JOIN
ORDERED_HASH_JOIN
ORDERED_HASH_SEMI_JOIN
TUPLE_FLOW

Materialize MATERIALIZE

Union BLOCKED_UNION
MERGE_UNION
ORDERED_UNION
UNARY_UNION

Root ROOT

Rowset PACK
UNPACK

Sort SORT

Stored Function EXPLAIN

Tuple EXPR
TUPLELIST
VALUES

Group Operator
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-4

SQL/MX Operators Operators

TP663851.fm Page 5 Monday, October 17, 2011 11:48 AM
Operators

BLOCKED_UNION Operator

The BLOCKED_UNION operator always executes the left child element first and then
the right. The execution of the right child is always blocked until that of the left child
completes. The description field for this operator contains:

The following is an example of the BLOCKED_UNION operator:

create table table_a
(col1 char(5) NOT NULL NOT DROPPABLE
, col2 int NOT NULL NOT DROPPABLE
, col3 smallint
, CONSTRAINT table_a_PRIMARY_KEY PRIMARY KEY (col1 ASC, col2
 ASC) NOT DROPPABLE
);

create table table_b
(col1 char(5) NOT NULL NOT DROPPABLE
, col2 int NOT NULL NOT DROPPABLE
, col3 smallint
, owner_count int
, CONSTRAINT table_b_PRIMARY_KEY PRIMARY KEY (col1 ASC, col2
ASC) NOT DROPPABLE
);

ALTER TABLE table_a
ADD CONSTRAINT table_a_KEY FOREIGN KEY
(col1, col2) REFERENCES

Token Followed by ... Data Type

fragment_id A sequential number assigned to the
fragment. 0 is always the master executor and
1 is reserved for the EXPLAIN plan. Numbers
2 to n will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

sort_order Sort order of the result of the union. text

merge_expression Expression used to determine which child
operator to read from next—if true, read from
left; if false, read from right.

expr(text)

union_type Merge, physical, or unspecified. text

condExpr Expression used for conditional union. Occurs
with the IF statement in compound
statements.

expr(text)

trigExceptExpr Expression used for trigger exceptions. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-5

SQL/MX Operators CALL Operator

TP663851.fm Page 6 Monday, October 17, 2011 11:48 AM
table_b(col1, col2) on update restrict on delete restrict
DROPPABLE;

CREATE TRIGGER table_a_Owner_Count
AFTER INSERT ON table_a
REFERENCING NEW AS newrow
FOR EACH ROW
UPDATE table_b SET owner_count = (
SELECT count(*) FROM table_a
 WHERE (table_b.col1,table_b.col2)=
 (table_a.col1,table_a.col2)
 AND table_a.col3 = 1
)
 WHERE (table_b.col1,table_b.col2)=
 (newrow.col1,newrow.col2);

insert into table_b values('A', 1, 1, 0);

Prepare TestQuery11 from
insert into table_a values('A', 1, 1);

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 union_type merge

CALL Operator

User-Defined Routine (UDR)

The CALL operator indicates that a UDR was used.

The CALL operator has no child nodes. The description field for this operator contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the
fragment. 0 is always the master executor and
1 is reserved for the EXPLAIN plan. Numbers
2 to n will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

input_values Input values to the CALL statement. One
SQL/MX expression is returned for each IN or
INOUT parameter. Nothing is returned for
OUT parameters.

expr(text)

The max_results_sets token is supported only on systems running J06.05 and later J-series RVUs and H06.16
and later H-series RVUs.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-6

SQL/MX Operators CALL Operator

TP663851.fm Page 7 Monday, October 17, 2011 11:48 AM
The following is an example of the CALL operator:

create procedure u300populateA (
 in table_name char(20)
)
external name 'TEST300.populateA' language java parameter style
java
external path 'W:/regress/udr' modifies sql data;

prepare TestQuery36 from
call u300populateA('customer');

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 parameter_modes I

parameter_modes A sequence of characters that specifies SQL
parameter modes for the procedure. I is used
for an IN parameter, O for an OUT parameter,
and N for an INOUT parameter. Characters
are separated by a single space. The value
none is returned if the procedure has no SQL
parameters.

text

routine_name ANSI name of the procedure text

routine_label Guardian name of the stored procedure label text

sql_access_mode SQL access mode of the procedure text

external_name Java method name text

external_path OSS directory or JAR file path that contains
the Java class file

text

external_file Java class name, possibly prefixed by a
package name, that contains the SPJ method

text

signature Java signature of the SPJ method in internal
Java Virtual Machine (JVM) format

text

language Language of the SPJ method, which is always
Java

text

runtime_options UDR_JAVA_OPTIONS setting under which
the CALL statement was compiled

text

runtime_option_delimiters A single-quoted string representing the option
delimiter character in the
UDR_JAVA_OPTIONS string, which is always
a single space character.

text

max_results_sets The maximum number of result sets the
stored procedure can return.

Integer

Token Followed by ... Data Type

The max_results_sets token is supported only on systems running J06.05 and later J-series RVUs and H06.16
and later H-series RVUs.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-7

SQL/MX Operators CURSOR_DELETE Operator

TP663851.fm Page 8 Monday, October 17, 2011 11:48 AM
 routine_name CAT.SCH.U300POPULATEA
 routine_label \DMR11.$DATA04.ZSDJG12X.WF32X300
 sql_access_mode MODIFIES SQL DATA
 external_name populateA
 external_path/
 external_file TEST300
 signature (Ljava/lang/String;)V
 language Java
 runtime_options OFF
 runtime_option_delimite ' '
 max_result_sets 0
 input_values cast('customer' AS CHAR(20) CHARACTER
 SET ISO88591)

CURSOR_DELETE Operator

DAM Unique Group

The CURSOR_DELETE operator describes a portion of an execution plan that works
on one row only. The CURSOR_DELETE operation is performed by first retrieving
rows from the table and then deleting each row that is required. This operation differs
from SUBSET_DELETE, in which the read and delete are performed in a combined
operation.

The CURSOR_DELETE operator has no child nodes. The description field for this
operator contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

olt_optimization Indicates whether an optimization for short and
simple operations is used. Its value is used or
not used.

text

olt_opt_lean Indicates for short, simple operations whether a
further optimization that reduces the physical
size of the plan is used. Its value is used or not
used.

text

iud_type Type of delete followed by table or index name. expr(text)

begin_key Expression of the begin key predicates. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-8

SQL/MX Operators CURSOR_UPDATE Operator

TP663851.fm Page 9 Monday, October 17, 2011 11:48 AM
The following is an example of the CURSOR_DELETE operator:

PREPARE TestQuery1 FROM
DELETE FROM customer
WHERE c_nationkey<300;

DESCRIPTION
 olt_optimization used
 fragment_id 3
 parent_frag 0
 fragment_type dp2
 Scan_Direction forward
 olt_optimization used
 olt_opt_lean not used
 iud_type index_ cursor_delete
 DETCAT.DETSCH.CX1
 lock_mode not specified, defaulted to lock
 cursor
 access_mode not specified, defaulted to read
 committed
 columns_retrieved 3
 begin_key (C_NATIONKEY =
 DETCAT.DETSCH.CUSTOMER.C_NATIONKEY)
 and (C_CUSTKEY =
 DETCAT.DETSCH.CUSTOMER.C_CUSTKEY)

CURSOR_UPDATE Operator

DAM Unique Group

The CURSOR_UPDATE operator describes a portion of an execution plan that works
on one row only. The CURSOR_UPDATE operation is performed by first retrieving
rows from the table and then updating each row that is required. This operation differs
from SUBSET_UPDATE, in which the read and update are performed in a combined
operation.

index_begin_key Expression of the begin key predicates on
index.

expr(text)

part_key_predicate Predicate expression specified on partitioning
key. Displayed only if partitioning key differs
from clustering key.

expr(text)

check_constraint Check constraints in the delete table. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-9

SQL/MX Operators CURSOR_UPDATE Operator

TP663851.fm Page 10 Monday, October 17, 2011 11:48 AM
The CURSOR_UPDATE operator has no child nodes. The description field for this
operator contains:

The following is an example of the CURSOR_UPDATE operator:

UPDATE table_b SET owner_count = (
 SELECT count(*) FROM table_a
 WHERE (table_b.col1,table_b.col2)=
 (table_a.col1,table_a.col2)
 AND table_a.col3 = 1
);

DESCRIPTION
 fragment_id 4
 parent_frag 0
 fragment_type dp2
 Scan_Direction forward
 olt_optimization not used
 olt_opt_lean not used
 iud_type cursor_update DETCAT.DETSCH.TABLE_B

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

olt_optimization Indicates whether an optimization for short and
simple operations is used. Its value is used or
not used.

text

olt_opt_lean Indicates for short, simple operations whether a
further optimization that reduces the physical
size of the plan is used. Its value is used or
not used.

text

iud_type Type of update followed by table or index
name.

expr(text)

new_rec_expr Computation of the row to be updated. expr(text)

begin_key Expression of the begin key predicate. expr(text)

index_begin_key Expression of the begin key predicates on
index.

expr(text)

part_key_predicate Predicate expression specified on partitioning
key. It is displayed only if partitioning key differs
from clustering key.

expr(text)

check_constraint Check constraints in the update table. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-10

SQL/MX Operators ESP_ACCESS Operator

TP663851.fm Page 11 Monday, October 17, 2011 11:48 AM
 lock_mode not specified, defaulted to lock
 cursor
 access_mode not specified, defaulted to read
 committed
 columns_retrieved 4
 new_rec_expr (OWNER_COUNT assign count(1))
 begin_key (COL1 = COL1) and (COL2 = COL2)

ESP_ACCESS Operator

The ESP_ACCESS operator is a form of ESP_EXCHANGE operator. An
ESP_ACCESS operator isolates the SEQUENCEGENERATOR operator into its own
ESP process. The SEQUENCEGENERATOR operator is isolated because it updates
the sequence generator table by using a new transaction, and does not use the user
transaction.

The ESP_ACCESS operator appears above the SEQUENCEGENERATOR operator in
the query plan. The parent for this operator is the NEXTVALUEFOR operator, which
can reside in either the master executor or an ESP.

When the NEXTVALUEFOR operator is in the master executor, the ESP_ACCESS
operator defines the process boundary between the master executor and a single ESP
that contains the SEQUENCEGENERATOR operator.

When the NEXTVALUEFOR operator is in an ESP, the ESP_ACCESS operator
defines the boundary between the ESP layers of NEXTVALUEFOR operator and the
SEQUENCEGENERATOR operator.

The description for this operator contains the following:
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-11

SQL/MX Operators ESP_EXCHANGE Operator

TP663851.fm Page 12 Monday, October 17, 2011 11:48 AM
ESP_EXCHANGE Operator

Exchange Group

An ESP_EXCHANGE operator describes a portion of an execution plan that
redistributes the input data stream. This operator represents an interface between
ESPs, between the master executor and one or more ESPs, or between an ESP
process and a DAM process. For more information about exchange operators, see
Section 8, Parallelism.

The ESP_EXCHANGE operator has one child node. The description field for this
operator contains:

Token Followed by ... Data Type

max_card_set Cardinality estimate for the operator. integer

fragment_id A sequential number assigned to the
fragment. 0 is always the master
executor and 1 is reserved for the
EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the
current fragment. The value is (none)
for the master executor.

integer

fragment_type ESP. text

buffer_size Size of message buffer. integer

record_length Number of bytes in the record sent. integer

parent_processes Indicates the number of processes that
the ESPs in the ESP_ACCESS
operator communicate with either
additional ESPs (as indicated by
another ESP_ACCESS operator) or
the master process.

integer

child_processes Indicates the number of processes that
supply the ESPs of an operator with
rows. The number of ROWS_OUT
(also called CARDINALITY) from the
operator that supplies the
ESP_ACCESS operator with data
indicates how many rows the
ESP_ACCESS operator is expected to
receive.

integer

bottom_node_map Associates each process at the bottom
to a processor.

text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-12

SQL/MX Operators ESP_EXCHANGE Operator

TP663851.fm Page 13 Monday, October 17, 2011 11:48 AM
The following is an example of the ESP_EXCHANGE operator:

create table tabl3 (a int, b int, c int, d int, e int);

create table tabl4 like tabl3;

Token Followed by ... Data Type

fragment_id A sequential number assigned to the
fragment. 0 is always the master
executor and 1 is reserved for the
EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the
current fragment. The value is (none)
for the master executor.

integer

fragment_type Master, ESP, or DP2. text

buffer_size Size of message buffer. integer

record_length Number of bytes in the record sent. integer

parent_processes Indicates the number of processes that
the ESPs in the ESP_EXCHANGE
operator communicates with either
additional ESPs (as indicated by
another ESP_EXCHANGE operator) or
the master process.

integer

child_processes Indicates the number of processes that
supply the ESPs of an operator with
rows. The number of ROWS_OUT
(also called CARDINALITY) from the
operator that supplies the
ESP_EXCHANGE operator with data
indicates how many rows the
ESP_EXCHANGE operator is
expected to receive.

integer

parent_partitioning_function Type of top partitioning and contains
summary information about the parallel
plan.

text

child_partitioning_function Indicates how the input data received
by the ESP_EXCHANGE operator is
organized.

text

merged_order Expression describing sort keys used
to control the interaction between the
parent process (usually the master)
and ESPs when the result is ordered.

expr(text)

bottom_partition_input_values Internal values that identify the part of
the data the ESP will work on.

text

partitioning_expression Expression used to partition data. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-13

SQL/MX Operators ESP_EXCHANGE Operator

TP663851.fm Page 14 Monday, October 17, 2011 11:48 AM
create view view30 as
select * from tabl3 union all
select * from tabl3 union all
select * from tabl3 union all
select * from tabl3 union all
select * from tabl3;

create view view40 as
select * from tabl4 union all
select * from tabl4 union all
select * from tabl4 union all
select * from tabl4 union all
select * from tabl4;

insert into tabl3 values
(1,2,3,1,1),(4,5,6,1,1),(7,8,9,1,1),(1,2,3,1,1),(4,5,6,1,1),
(7,8,9,1,1),
(9,2,3,1,1),(4,5,6,1,1),(7,7,9,1,1),(1,9,3,1,1),(4,5,6,1,1),
(7,8,9,1,1),
(9,2,3,1,1),(4,4,6,1,1),(7,7,9,1,1),(1,9,3,1,1),(4,5,6,1,1),
(7,8,9,1,1),
(9,2,3,1,1),(4,4,6,1,1),(7,7,9,1,1),(1,9,3,1,1),(4,5,6,1,1),
(7,8,9,1,1),
(9,2,3,1,1),(4,4,6,1,1),(7,7,9,1,1),(1,9,3,1,1),(4,5,6,1,1),
(7,8,9,1,1),
(9,2,3,1,1),(4,4,6,1,1),(7,7,9,1,1),(1,9,3,1,1),(4,5,6,1,1),
(7,8,9,1,1),
(1,2,3,1,1),(4,4,6,1,1),(7,7,9,1,1),(1,9,3,1,1),(4,5,6,1,1),
(7,8,9,1,1),
(1,2,3,1,1),(4,4,6,1,1),(7,7,9,1,1),(1,9,3,1,1),(4,5,6,1,1),
(7,8,9,1,1),
(9,2,3,1,1),(4,4,6,1,1),(7,7,9,1,1),(1,9,3,1,1),(4,5,6,1,1),
(7,8,9,1,1),
(9,2,3,1,1),(4,4,6,1,1),(7,7,9,1,1),(1,9,3,1,1),(4,5,6,1,1),
(7,8,9,1,1),
(1,2,3,1,1),(4,4,6,1,1),(7,7,9,1,1),(1,9,3,1,1),(4,5,6,1,1),
(7,8,9,1,1),
(1,2,3,1,1),(4,4,6,1,1),(7,7,9,1,1),(1,9,3,1,1),(4,5,6,1,1),
(7,8,9,1,1),
(1,2,3,1,1),(4,4,6,1,1),(7,7,9,1,1),(1,9,3,1,1),(4,5,6,1,1),
(7,8,9,1,1),
(4,5,6,1,1),(7,8,9,1,1);

insert into tabl4 select * from tabl3;
insert into tabl3 select * from tabl4;

?section test
CONTROL QUERY DEFAULT CHECK_CONSTRAINT_PRUNING 'ON';
CONTROL QUERY DEFAULT INTERACTIVE_ACCESS 'ON';
CONTROL QUERY DEFAULT UNION_TRANSITIVE_PREDICATES 'ON';
CONTROL QUERY DEFAULT COMP_BOOL_25 'ON';
CONTROL QUERY DEFAULT MERGE_JOINS 'OFF';
CONTROL QUERY DEFAULT HASH_JOINS 'OFF';
CONTROL QUERY DEFAULT OPTIMIZER_PRUNING 'OFF';
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-14

SQL/MX Operators ESP_EXCHANGE Operator

TP663851.fm Page 15 Monday, October 17, 2011 11:48 AM
CONTROL QUERY DEFAULT DATA_FLOW_OPTIMIZATION 'OFF';
CONTROL QUERY DEFAULT METADATA_CACHE_SIZE '200';
CONTROL QUERY DEFAULT OPTIMIZATION_LEVEL_1_SAFETY_NET '100000';
CONTROL QUERY DEFAULT MULTIUNION 'ON';
CONTROL QUERY DEFAULT ATTEMPT_ESP_PARALLELISM 'ON';
CONTROL QUERY DEFAULT DEF_NUM_SMP_CPUS '1';
CONTROL QUERY DEFAULT PARALLEL_NUM_ESPS '2';
CONTROL QUERY DEFAULT DETAILED_STATISTICS 'ALL';

control query shape
nested_join(esp_exchange(cut),esp_exchange(cut));

prepare vv from
select * from view30, view40 where view30.a = view40.b;

DESCRIPTION
 fragment_id 13
 parent_frag 0
 fragment_type esp
 buffer_size 6,250
 record_length 40
 parent_processes 1
 child_processes 2
 child_partitioning_func hash partitioned 2 ways on
 (([0]ValueIdUnion(\DMR11.$DATA04.ZSDWC1HX.ZVB7V200
 .A, \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.A,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.A,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.A,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.A),
 [0]ValueIdUnion(\DMR11.$DATA04.ZSDWC1HX.ZVB7V200.B
 , \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.B,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.B,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.B,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.B),
 [0]ValueIdUnion(\DMR11.$DATA04.ZSDWC1HX.ZVB7V200.C
 , \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.C,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.C,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.C,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.C),
 [0]ValueIdUnion(\DMR11.$DATA04.ZSDWC1HX.ZVB7V200.D
 , \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.D,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.D,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.D,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.D),
 [0]ValueIdUnion(\DMR11.$DATA04.ZSDWC1HX.ZVB7V200.E
 , \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.E,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.E,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.E,
 \DMR11.$DATA04.ZSDWC1HX.ZVB7V200.E)))
 bottom_partition_input_ \:_sys_HostVarLoHashPart,
 \:_sys_HostVarHiHashPart
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-15

SQL/MX Operators EXPLAIN Operator

TP663851.fm Page 16 Monday, October 17, 2011 11:48 AM
EXPLAIN Operator

Stored Function Group

The EXPLAIN operator executes a stored function. The operator for an EXPLAIN
operator is always EXPLAIN.

EXPLAIN has no child nodes. The description field for this operator contains:

The following is an example for EXPLAIN operator:

prepare TestQuery28 from
SELECT * FROM TABLE (EXPLAIN (NULL,'%'));

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 function_parameters NULL, '%'

EXPR Operator

Tuple Group

The EXPR operator calculates an expression for each row it receives from its child
node and returns that expression to its parent node.

The EXPR operator has one child node. The description field for this operator contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the
fragment. 0 is always the master executor
and 1 is reserved for the EXPLAIN plan.
Numbers 2 to n will be ESP or DAM
fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the
master executor.

integer

fragment_type Master, ESP, or DP2. text

function_parameters Parameters from the call to the EXPLAIN
function.

expr(text)

Token Followed by ... Data Type

tuple_expr The tuple produced by this node expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-16

SQL/MX Operators EXPLAIN_CMD Operator

TP663851.fm Page 17 Monday, October 17, 2011 11:48 AM
EXPLAIN_CMD Operator

The EXPLAIN_CMD operator is generated when the EXPLAIN statement is used and it
has no children. The description field for this operator contains:

The following is an example for EXPLAIN_CMD Operator:

prepare TestQuery29 from
EXPLAIN options 'e' TestQuery28;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master

FILE_SCAN Operator

DAM Subset Group

The FILE_SCAN operator contains details about how a certain access path is scanned,
such as lock_mode and scan_direction.

The FILE_SCAN operator has no child nodes. The description field for this operator
contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent fragment of the
current fragment. The value is (none) for the
master executor.

integer

fragment_type Master, ESP, or DP2. text

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

olt_optimization Indicates whether an optimization for short,
simple operations is used. Its value is used or
not used.

text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-17

SQL/MX Operators FILE_SCAN Operator

TP663851.fm Page 18 Monday, October 17, 2011 11:48 AM
The following is an example of the FILE_SCAN operator:

PREPARE TestQuery2 FROM
SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address,
s_phone, s_comment
FROM part,supplier,partsupp, nation, region
WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND p_size = 15
AND p_type like '%BRASS'
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = 'EUROPE'

olt_opt_lean Indicates for short, simple operations whether a
further optimization that reduces the physical
size of the plan is used. Its value is used or not
used.

text

scan_type FILE_SCAN followed by table name. text

scan_direction Direction in which table is scanned: forward or
reverse

text

lock_mode The lock mode specified: shared, exclusive, not
specified (defaulted to lock cursor), or unknown.

text

access_mode The access specified: read uncommitted, skip
conflict, read committed, stable, serializable,
mx serializable, not specified (defaulted to read
committed), or unknown.

text

executor_predicate Any predicate expression that is not a key
predicate evaluated by the executor in DAM.

expr(text)

columns_retrieved Estimate of the number of columns to be
returned.

integer

fast_scan Indicates whether an optimization for a simple
scan operation is used. The value used is
returned if this optimization is used.

text

fast_replydata_move Indicates whether an optimization for returning
data from DAM is used. The value used is
returned if this optimization is used.

text

key_columns Columns used as the primary key. expr(text)

mdam_disjunct Disjunct key predicates used by MDAM. expr(text)

begin_key Expression of the begin key predicate. expr(text)

end_key Expression of the end key predicate. expr(text)

key_type Simple or MDAM. text

part_key_predicate Predicate expression specified on partitioning
key. Displayed only if partitioning key differs
from clustering key.

expr(text)

Token Followed by ... Data Type
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-18

SQL/MX Operators FILE_SCAN_UNIQUE Operator

TP663851.fm Page 19 Monday, October 17, 2011 11:48 AM
AND ps_supplycost = (SELECT MIN(ps_supplycost)
FROM partsupp ps1,supplier s1, nation n1,region r1
WHERE p_partkey = ps1.ps_partkey
AND s1.s_suppkey = ps1.ps_suppkey
AND s1.s_nationkey = n1.n_nationkey
AND n1.n_regionkey = r1.r_regionkey
AND r1.r_name = 'EUROPE')
ORDER BY s_acctbal desc, n_name, s_name, p_partkey;

DESCRIPTION
 fragment_id 10
 parent_frag 0
 fragment_type dp2
 olt_optimization not used
 olt_opt_lean not used
 scan_type subset scan of table
 DETCAT.DETSCH.PARTSUPP PS1
 scan_direction forward
 key_type simple
 lock_mode not specified, defaulted to lock
 cursor
 access_mode not specified, defaulted to read
 committed
 columns_retrieved 5
 fast_scan used
 fast_replydata_move used
 key_columns PS_PARTKEY, PS_SUPPKEY
 begin_key (PS_PARTKEY =
 DETCAT.DETSCH.PSX1.PS_PARTKEY),
 PS_SUPPKEY = <min>)
 end_key (PS_PARTKEY =
 DETCAT.DETSCH.PSX1.PS_PARTKEY),
 (PS_SUPPKEY = <max>)

FILE_SCAN_UNIQUE Operator

DAM Unique Group

The FILE_SCAN_UNIQUE operator describes a portion of an execution plan where
you are scanning for a unique key value. It selects zero or one row.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-19

SQL/MX Operators FILE_SCAN_UNIQUE Operator

TP663851.fm Page 20 Monday, October 17, 2011 11:48 AM
The FILE_SCAN_UNIQUE operator has no child nodes. The description field for this
operator contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to
n will be ESP or DAM fragments.

Integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

Integer

fragment_type Master, ESP, or DP2. text

olt_optimization Indicates whether an optimization for short,
simple operations is used. Value is used if this
optimization is used. Its value is used or not
used.

text

olt_opt_lean Indicates for short, simple operations whether a
further optimization that reduces the physical
size of the plan is used. Its value is used or
not used.

text

key_columns Columns used as the primary key. expr(text)

key Expression of the key predicate. expr(text)

scan_type Unique access of table, followed by table
name.

text

key_type Simple or MDAM. text

lock_mode The lock specified: read uncommitted, skip
conflict, read committed, stable, serializable,
mx serializable, not specified (defaulted to read
committed), or unknown.

text

access_mode The access specified: read uncommitted, skip
conflict, read committed, stable, serializable,
mx serializable, not specified (defaulted to read
committed), or unknown.

text

columns_retrieved Estimate of the number of columns to be
returned.

integer

executor_predicates Any predicate that is not a key predicate
evaluated by the executor in DAM.

expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-20

SQL/MX Operators FILE_SCAN_UNIQUE Operator

TP663851.fm Page 21 Monday, October 17, 2011 11:48 AM
The following is an example of the FILE_SCAN_UNIQUE operator:

PREPARE TestQuery2 FROM
SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address,
s_phone, s_comment
FROM part,supplier,partsupp, nation, region
WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND p_size = 15
AND p_type like '%BRASS'
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = 'EUROPE'
AND ps_supplycost = (SELECT MIN(ps_supplycost)
FROM partsupp ps1,supplier s1, nation n1,region r1
WHERE p_partkey = ps1.ps_partkey
AND s1.s_suppkey = ps1.ps_suppkey
AND s1.s_nationkey = n1.n_nationkey
AND n1.n_regionkey = r1.r_regionkey
AND r1.r_name = 'EUROPE')
ORDER BY s_acctbal desc, n_name, s_name, p_partkey;

DESCRIPTION
 fragment_id 3
 parent_frag 0
 fragment_type dp2
 olt_optimization not used
 olt_opt_lean not used
 scan_type unique access of table
 DETCAT.DETSCH.PART
 key_type simple
 lock_mode not specified, defaulted to lock
 cursor
 access_mode not specified, defaulted to read
 committed
 columns_retrieved 9
 fast_replydata_move used
 key_columns P_PARTKEY
 executor_predicates (P_TYPE like '%BRASS') and (P_SIZE =
 15)
 key (P_PARTKEY =
 DETCAT.DETSCH.PSX1.PS_PARTKEY)

part_key_predicate Predicate expression specified on partitioning
key. It is displayed only if partitioning key differs
from clustering key.

expr(text)

fast_replydata_move Indicates whether an optimization for returning
data from DAM is used. The value used is
returned if this optimization is used.

text

fast_scan Indicates whether an optimization for a simple
scan operation is used. The value used is
returned if this optimization is used.

text

Token Followed by ... Data Type
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-21

SQL/MX Operators FirstN Operator

TP663851.fm Page 22 Monday, October 17, 2011 11:48 AM
FirstN Operator

The FirstN operator describes a portion of execution plan that selects only first few
rows of output. This operator has only one child node. The description field for this
operator contains:

The following is an example for FirstN operator:

PREPARE TestQuery6 FROM
SELECT [FIRST 100] s_acctbal, s_name, n_name, p_partkey, p_mfgr,
s_address, s_phone, s_comment
FROM part,supplier,partsupp, nation, region
WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND p_size = 15
AND p_type like '%BRASS'
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = 'EUROPE'
AND ps_supplycost = (SELECT MIN(ps_supplycost)
FROM partsupp, supplier, nation, region
WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = 'EUROPE')
ORDER BY s_acctbal desc, n_name, s_name, p_partkey;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master

HASH_GROUPBY Operator

Groupby Group

The HASH_GROUPBY operator describes a portion of an execution plan that affects a
group. The group values are computed by hashing individual rows into a hash table.
When a new row is received, the executor hashes to the hash table and performs the
aggregate in the hash table.

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to
n will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

Integer

fragment_type Master, ESP, or DP2. text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-22

SQL/MX Operators HASH_GROUPBY Operator

TP663851.fm Page 23 Monday, October 17, 2011 11:48 AM
The HASH_GROUPBY operator has one child node. The description field for this
operator contains:

The following is an example of the HASH_GROUPBY operator:

PREPARE TestQuery4 FROM
SELECT l_orderkey,
CAST(SUM(l_extendedprice*(1-l_discount))AS
NUMERIC(18,2)), o_orderdate, o_shippriority
FROM customer,orders,lineitem
WHERE c_mktsegment = 'BUILDING'
AND c_custkey = o_custkey
AND l_orderkey = o_orderkey
AND o_orderdate < DATE '1995-03-15'
AND l_shipdate > DATE '1995-03-15'
GROUP BY l_orderkey, o_orderdate, o_shippriority
HAVING sum(l_extendedprice)> 100
ORDER BY 2 DESC,3 ASC;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 grouping_columns DETCAT.DETSCH.OX2.O_ORDERDATE,
 DETCAT.DETSCH.OX2.O_SHIPPRIORITY,
 DETCAT.DETSCH.OX2.O_ORDERKEY
 aggregates
 sum(DETCAT.DETSCH.LX3.L_EXTENDEDPRICE),
 sum((cast(DETCAT.DETSCH.LX3.L_EXTENDEDPRICE
 AS BIG NUM(12,2) SIGNED) * cast((cast((1 *
 100) AS NUMERIC(13,2) SIGNED) -
 DETCAT.DETSCH.LX3.L_DISCOUNT) AS BIG NUM(13,
 2) SIGNED)))
 selection_predicates ...

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment. 0
is always the master executor and 1 is reserved
for the EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

aggregates Expression of the aggregate function. expr(text)

selection_predicates Expression of the HAVING clause. expr(text)

grouping_columns Expression of the grouping columns. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-23

SQL/MX Operators HASH_PARTIAL_GROUPBY_LEAF Operator

TP663851.fm Page 24 Monday, October 17, 2011 11:48 AM
 (sum(DETCAT.DETSCH.LX3.L_EXTENDEDPRICE) >
 cast((100 * 100) AS NUMERIC(18,2) SIGNED))

HASH_PARTIAL_GROUPBY_LEAF Operator

Groupby Group

The HASH_PARTIAL_GROUPBY_LEAF operator executes a partial group by
operation as close to where the data is read as is cost effective. This strategy reduces
the amount of data that must be relocated for a query. When executed in DAM, the
HASH_PARTIAL_GROUPBY_LEAF is limited to a small amount of memory. Any group
that does not fit in memory is passed on ungrouped, with the full grouping occurring at
the HASH_PARTIAL_GROUPBY_ROOT. If the HASH_PARTIAL_GROUPBY_LEAF is
not executed in DAM, more memory is available, and all rows are grouped. The groups
from multiple processes are then rolled up in the HASH_PARTIAL_GROUPBY_ROOT.

The operator must always be accompanied by a HASH_PARTIAL_GROUPBY_ROOT
operator above it in the tree, which finalizes the query.

The HASH_PARTIAL_GROUPBY_LEAF operator has one child node. The description
field for this operator contains:

The following is an example of the HASH_PARTIAL_GROUPBY_LEAF operator:

control query shape
hash_groupby(partition_access(hash_groupby(scan)));

prepare TestQuery32 from
select d from t016pt1 group by d;

DESCRIPTION
 fragment_id 2
 parent_frag 0

Note. The query mentioned in the example provides the HASH_GROUPBY operator in
Windows NT. To get this operator in the NonStop operating system, use some more CQS.

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment. 0
is always the master executor and 1 is reserved
for the EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

aggregates Expression of the aggregate function. expr(text)

selection_predicates Expression of the HAVING clause. expr(text)

grouping_columns Expression of the grouping columns. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-24

SQL/MX Operators HASH_PARTIAL_GROUPBY_ROOT Operator

TP663851.fm Page 25 Monday, October 17, 2011 11:48 AM
 fragment_type dp2
 grouping_columns DETCAT.DETSCH.T016PT1.D

HASH_PARTIAL_GROUPBY_ROOT Operator

Groupby Group

The HASH_PARTIAL_GROUPBY_ROOT operator works together as a pair with the
HASH_PARTIAL_GROUPBY_LEAF operator. The
HASH_PARTIAL_GROUPBY_ROOT operator finalizes the group by at the ESP level.
See HASH_PARTIAL_GROUPBY_LEAF Operator on page 7-24.

The HASH_PARTIAL_GROUPBY_ROOT operator has one child node. The description
field for this operator contains:

The following is an example of the HASH_PARTIAL_GROUPBY_ROOT operator:

control query shape
hash_groupby(partition_access(hash_groupby(scan)));

prepare TestQuery32 from
select d from t016pt1 group by d;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 grouping_columns DETCAT.DETSCH.T016PT1.D

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

aggregates Expression of the aggregate function. expr(text)

selection_predicates Expression of the HAVING clause. expr(text)

grouping_columns Expression of the grouping columns. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-25

SQL/MX Operators HYBRID_HASH_ANTI_SEMI_JOIN Operator

TP663851.fm Page 26 Monday, October 17, 2011 11:48 AM
HYBRID_HASH_ANTI_SEMI_JOIN Operator

Join Group

The HYBRID_HASH_ANTI_SEMI_JOIN operator returns rows from the outer table
where no match occurs. Also see HYBRID_HASH_JOIN Operator on page 7-27 and
HYBRID_HASH_SEMI_JOIN Operator on page 7-28.

The HYBRID_HASH_ANTI_SEMI_JOIN has two child nodes. The description field for
this operator contains:

The difference between the join_predicate and hash_join_predicate tokens is that the
former are the nonequijoin predicates, while the latter are equijoin predicates that you
use to help build and probe the hash table.

The following is an example of the HYBRID_HASH_ANTI_SEMI_JOIN operator:

PREPARE TestQuery5 FROM
SELECT * FROM partsupp, part
WHERE p_brand <>'Brand#45'
AND ps_suppkey
NOT IN (SELECT s_suppkey FROM supplier
WHERE
s_comment LIKE '%Better BusinessBureauComplaints%');

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment. 0
is always the master executor and 1 is reserved
for the EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

join_type Inner, natural, left, inner semi, or inner anti-semi-
join

text

join_method Name of join method: hash text

join_predicate Expression of the join predicate, specified in the
ON clause. Used for semi and outer joins.

expr(text)

hash_join_predicate Expression of the join predicate. expr(text)

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

selection_predicates Expression of the WHERE clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-26

SQL/MX Operators HYBRID_HASH_JOIN Operator

TP663851.fm Page 27 Monday, October 17, 2011 11:48 AM
 join_type inner anti-semi
 join_method hash
 hash_join_predicate (DETCAT.DETSCH.PARTSUPP.PS_SUPPKEY =
 DETCAT.DETSCH.SUPPLIER.S_SUPPKEY)

HYBRID_HASH_JOIN Operator

Join Group

The HYBRID_HASH_JOIN operator joins the data from two child tables. It creates a
hash table for the inner table and joins the outer table by hashing each outer row and
looking for matches in the hash table. This operator can overflow to disk when the
inner table is too large to fit in memory. Equijoins and cross-products are supported by
this operator.

The HYBRID_HASH_JOIN has two child nodes. The description field for this operator
contains:

The following is an example of the HYBRID_HASH_JOIN operator:

PREPARE TestQuery6 FROM
SELECT [FIRST 100] s_acctbal, s_name, n_name, p_partkey, p_mfgr,
s_address, s_phone, s_comment
FROM part,supplier,partsupp, nation, region
WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND p_size = 15
AND p_type like '%BRASS'
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = 'EUROPE'

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

join_type Inner, natural, left, inner semi, or inner anti-
semi-join.

text

join_method Name of join method: hash text

hash_join_predicate Expression of the join predicate. expr(text)

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

selection_predicates Expression of the WHERE clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-27

SQL/MX Operators HYBRID_HASH_SEMI_JOIN Operator

TP663851.fm Page 28 Monday, October 17, 2011 11:48 AM
AND ps_supplycost = (SELECT MIN(ps_supplycost)
FROM partsupp, supplier, nation, region
WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = 'EUROPE')
ORDER BY s_acctbal desc, n_name, s_name, p_partkey;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner
 join_method hash
 hash_join_predicate (DETCAT.DETSCH.NATION.N_REGIONKEY =
 DETCAT.DETSCH.REGION.R_REGIONKEY)

HYBRID_HASH_SEMI_JOIN Operator

Join Group

The HYBRID_HASH_SEMI_JOIN returns only one row for every outer row, regardless
of the number of matches. The HYBRID_HASH_SEMI_JOIN operator differs from the
HYBRID_HASH_JOIN operator only when it finds multiple matches in the inner table.
In the HYBRID_HASH_JOIN case, a result row is returned for every match in the inner
table. See HYBRID_HASH_JOIN Operator on page 7-27.

The HYBRID_HASH_SEMI_JOIN operator has two child nodes. The description field
for this operator contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment. 0
is always the master executor and 1 is reserved
for the EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

join_type Inner, left, natural, inner semi, or inner anti-semi-
join.

text

join_method Name of join method: hash text

hash_join_predicate Expression of the join predicate. expr(text)

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

selection_predicates Expression of the WHERE clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-28

SQL/MX Operators INDEX_SCAN Operator

TP663851.fm Page 29 Monday, October 17, 2011 11:48 AM
The following is an example of the HYBRID_HASH_SEMI_JOIN operator:

prepare TestQuery31 from
select * from TAB1
where TAB1.col1 in (select col2 from TAB2 where TAB2.col1 < 10);

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner semi
 join_method hash
 hash_join_predicate (DETCAT.DETSCH.TAB1.COL1 =
 DETCAT.DETSCH.TAB2.COL2)

INDEX_SCAN Operator

DAM Subset Group

The INDEX_SCAN operator scans the index built on the key columns. The node
description contains details about how a certain access path is scanned, such as
lock_mode and scan_direction.

The INDEX_SCAN operator has no child nodes. The description field for this operator
contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment. 0
is always the master executor and 1 is reserved
for the EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

olt_optimization Indicates whether an optimization for short,
simple operations is used. Value is used if this
optimization is used. Its value is used or not
used.

text

olt_opt_lean Indicates for short, simple operations whether a
further optimization that reduces the physical
size of the plan is used. Its value is used or not
used.

text

key_columns Columns used as the primary key. expr(text)

begin_key Expression of the begin key predicates. expr(text)

end_key Expression of the end key predicates. expr(text)

scan_type INDEX_SCAN followed by table or index name. text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-29

SQL/MX Operators INDEX_SCAN Operator

TP663851.fm Page 30 Monday, October 17, 2011 11:48 AM
The following is an example of the INDEX_SCAN operator:

control query default nested_joins 'off';
control query default hash_joins 'off';
prepare TestQuery37b from
SELECT *
FROM customer LEFT JOIN nation ON c_nationkey = n_nationkey
WHERE c_custkey > 1000 AND c_custkey < 1010
ORDER BY c_custkey;

DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 olt_optimization not used
 olt_opt_lean not used
 scan_type subset scan of index
 DETCAT.DETSCH.CX1(DETCAT.DETSCH.CUSTOMER)
 scan_direction forward
 key_type simple
 lock_mode not specified, defaulted to lock
 cursor
 access_mode not specified, defaulted to read
 committed
 columns_retrieved 3

scan_direction Direction in which table is scanned: forward or
reverse.

text

lock_mode The lock mode specified: shared, exclusive, not
specified (defaulted to lock cursor), or unknown.

text

access_mode The access specified: read uncommitted, skip
conflict, read committed, stable, serializable, mx
serializable, not specified (defaulted to read
committed), or unknown.

text

key_type Simple or MDAM. text

executor_predicates Any predicate expression that is not a key
predicate evaluated by the executor in DAM.

expr(text)

columns_retrieved Estimated number of columns to be returned. integer

fast_replydata_move Indicates whether an optimization for returning
data from DAM is used. The value used is
returned if this optimization is used.

text

fast_scan Indicates whether an optimization for a simple
scan operation is used. The value used is
returned if this optimization is used.

text

part_key_predicate Predicate expression specified on the
partitioning key. Displayed only if partitioning key
differs from clustering key.

expr(text)

mdam_disjunct Disjunct key predicates used by MDAM. expr(text)

Token Followed by ... Data Type
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-30

SQL/MX Operators INDEX_SCAN_UNIQUE Operator

TP663851.fm Page 31 Monday, October 17, 2011 11:48 AM
 fast_scan used
 fast_replydata_move used
 key_columns DETCAT.DETSCH.CX1.C_NATIONKEY,
 DETCAT.DETSCH.CX1.C_CUSTKEY
 executor_predicates (DETCAT.DETSCH.CX1.C_CUSTKEY > 1000)
 and(DETCAT.DETSCH.CX1.C_CUSTKEY <
 1010) and
 (DETCAT.DETSCH.CX1.C_CUSTKEY =
 DETCAT.DETSCH.CX1.C_CUSTKEY)
 begin_key (DETCAT.DETSCH.CX1.C_NATIONKEY =
 <min>),
 (DETCAT.DETSCH.CX1.C_CUSTKEY = 1000)
 end_key (DETCAT.DETSCH.CX1.C_NATIONKEY =
 <max>),
 DETCAT.DETSCH.CX1.C_CUSTKEY = 1010)

INDEX_SCAN_UNIQUE Operator

DAM Unique Group

The INDEX_SCAN_UNIQUE operator describes a scan on the primary key column
with an index on that column.

The INDEX_SCAN_UNIQUE operator has no child nodes. The description field for this
operator contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to
n will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

olt_opt_lean Indicates for short, simple operations whether
a further optimization that reduces the physical
size of the plan is used. Its value is used or
not used.

text

key_columns Columns used as the primary key. expr(text)

key Expression of the key predicate. expr(text)

scan_type INDEX_SCAN_UNIQUE followed by table or
index name.

text

lock_mode The lock mode specified: shared, exclusive,
not specified (defaulted to lock cursor), or
unknown.

text

key_type Simple or MDAM. text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-31

SQL/MX Operators INDEX_SCAN_UNIQUE Operator

TP663851.fm Page 32 Monday, October 17, 2011 11:48 AM
The following is an example of the INDEX_SCAN_UNIQUE operator:

prepare TestQuery14 from
select * from supplier
where s_nationkey = 12 and
s_suppkey = 14;

DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 olt_optimization not used
 olt_opt_lean not used
 scan_type
 unique access of index
 CAT.SCH.SX1(CAT.SCH.SUPPLIER)
 key_type simple
 lock_mode not specified, defaulted to lock
 cursor
 access_mode not specified, defaulted to read
 committed
 columns_retrieved 3
 fast_replydata_move used
 key_columns CAT.SCH.SX1.S_NATIONKEY,
 CAT.SCH.SX1.S_SUPPKEY
 executor_predicates (CAT.SCH.SX1.S_SUPPKEY = %(14)) and
 (CAT.SCH.SX1.S_SUPPKEY = %(14))
 key (CAT.SCH.SX1.S_NATIONKEY = %(12)),
 (CAT.SCH.SX1.S_SUPPKEY = %(14))

access_mode The access specified: read uncommitted, skip
conflict, read committed, stable, serializable,
mx serializable, not specified (defaulted to
read committed), or unknown.

text

executor_predicates Any predicate expression that is not a key
predicate evaluated by the executor in DAM.

expr(text)

part_key_predicate Predicate expression specified on partitioning
key. It is displayed only if partitioning key
differs from clustering key.

expr(text)

columns_retrieved Estimated number of columns to be returned. integer

fast_replydata_move Indicates whether an optimization for returning
data from DAM is used. The value used is
returned if this optimization is used.

text

fast_scan Indicates whether an optimization for a simple
scan operation is used. The value used is
returned if this optimization is used.

text

olt_optimization Indicates whether an optimization for short,
simple operations is used. The value used is
returned if this optimization is used.

text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-32

SQL/MX Operators INSERT Operator

TP663851.fm Page 33 Monday, October 17, 2011 11:48 AM
INSERT Operator

INSERT Group

The INSERT operator describes that part of an execution plan that inserts a new row
into a table. The operator for an INSERT operator is always INSERT.

The INSERT operator has no child nodes. The description field for this operator
contains:

The following is an example of the INSERT operator:

PREPARE TestQuery8 FROM
INSERT INTO custss SELECT *
FROM customer
WHERE c_nationkey IN (1,3,7,8,10,15,18,20,22,44);

DESCRIPTION
 fragment_id 3
 parent_frag 0
 fragment_type dp2
 olt_optimization not used
 olt_opt_lean not used
 iud_type insert DETCAT.DETSCH.CUSTSS
 lock_mode not specified, defaulted to lock

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

new_rec_expr Computation of the row to be inserted. expr(text)

olt_optimization Indicates whether an optimization for short,
simple operations is used. Its value is used or
not used.

text

olt_opt_lean Indicates for short, simple operations whether a
further optimization that reduces the physical
size of the plan is used. Its value is used or
not used.

text

part_key_predicate Predicate expression specified on the
partitioning key. Displayed only if partitioning
key differs from clustering key.

expr(text)

iud_type Type of insert followed by table or index name. expr(text)

check_constraint Check constraints in the insert table. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-33

SQL/MX Operators INSERT_VSBB Operator

TP663851.fm Page 34 Monday, October 17, 2011 11:48 AM
 cursor
 access_mode not specified, defaulted to read
 committed
 columns_retrieved 8
 new_rec_expr (C_CUSTKEY assign
 DETCAT.DETSCH.CUSTOMER.C_CUSTKEY),
 (C_NAME assign
 DETCAT.DETSCH.CUSTOMER.C_NAME),
 (C_ADDRESS assign
 DETCAT.DETSCH.CUSTOMER.C_ADDRESS),
 (C_NATIONKEY assign
 DETCAT.DETSCH.CUSTOMER.C_NATIONKEY),
 (C_PHONE assign
 DETCAT.DETSCH.CUSTOMER.C_PHONE),
 (C_ACCTBAL assign
 DETCAT.DETSCH.CUSTOMER.C_ACCTBAL),
 (C_MKTSEGMENT assign
 DETCAT.DETSCH.CUSTOMER.C_MKTSEGMENT),
 (C_COMMENT assign
 DETCAT.DETSCH.CUSTOMER.C_COMMENT)

INSERT_VSBB Operator

INSERT Group

The INSERT_VSBB operator describes that part of an execution plan that inserts
multiple rows into a table in DAM. The operator for an INSERT_VSBB operator is
always INSERT_VSBB.

For information about setting the CONTROL QUERY DEFAULT attribute for
INSERT_VSBB, see the SQL/MX Reference Manual.

The INSERT_VSBB operator has no child nodes. The description field for this operator
contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the
fragment. 0 is always the master executor and
1 is reserved for the EXPLAIN plan. Numbers
2 to n will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

iud_type Type of insert followed by table or index
name.

expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-34

SQL/MX Operators LEFT_HYBRID_HASH_JOIN Operator

TP663851.fm Page 35 Monday, October 17, 2011 11:48 AM
The following is an example of the INSERT_VSBB operator:

control query default insert_vsbb 'USER';

prepare TestQuery35 from
Insert NOLOG into Dup_B
Values
(1001,'www','I1'),(1004,'wwt','aa'),(1005,'rrr','B1'),(1007,'qqq
','ff'),(1010,'ppp','gg'),

(1011,'nlmlm','zz'),(1013,'naaa','ff'),(1015,'lll','nn'),(1016,'
iii','uu'),(1017,'hhh','PP'),(1026,'gggggg','y'),
(1035,'fff','ii'),(1037,'eeee','w'),(1040,'ddd','kk');

DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 olt_optimization not used
 olt_opt_lean not used
 iud_type insert_vsbb DETCAT.DETSCH.DUP_B
 lock_mode not specified, defaulted to lock
 cursor
 access_mode not specified, defaulted to read
 committed
 columns_retrieved 3
 new_rec_expr (PRIM assign cast(%(1040) AS INTEGER
 SIGNED)),(PRIM2 assign
 cast(%('ddd') AS VARCHAR(20)
 CHARACTER SET ISO88591)),
 (CH assign cast(cast(cast(%('kk')
 AS CHAR(2) CHARACTER SET ISO88591)
 AS VARCHAR(8) CHARACTER
 SET ISO88591) AS CHAR(2) CHARACTER
 SET ISO88591))

LEFT_HYBRID_HASH_JOIN Operator

Join Group

The LEFT_HYBRID_HASH_JOIN operator returns an unmatched outer row even when
it does not find a match in the inner table. Null values are supplied for the missing inner
rows. The LEFT_HYBRID_HASH_JOIN operator differs from the
HYBRID_HASH_JOIN only when it does not find a match in the inner table. See
HYBRID_HASH_JOIN Operator on page 7-27.

new_rec_expr Computation of the row to be inserted. expr(text)

part_key_predicate Predicate expression specified on partitioning
key. It is displayed only if partitioning key
differs from clustering key.

expr(text)

check_constraint Check constraints in the insert table. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-35

SQL/MX Operators LEFT_MERGE_JOIN Operator

TP663851.fm Page 36 Monday, October 17, 2011 11:48 AM
The LEFT_HYBRID_HASH_JOIN operator has two child nodes. The description field
for this operator contains:

The following is an example of the LEFT_HYBRID_HASH_JOIN operator:

control query default nested_joins 'off';

prepare TestQuery37a from
SELECT *
FROM customer LEFT JOIN nation ON c_nationkey = n_nationkey
WHERE c_custkey > 1000 AND c_custkey < 1010
ORDER BY c_custkey;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type left
 join_method hash
 hash_join_predicate (DETCAT.DETSCH.CUSTOMER.C_NATIONKEY =
 DETCAT.DETSCH.NATION.N_NATIONKEY)

LEFT_MERGE_JOIN Operator

Join Group

The LEFT_MERGE_JOIN operator describes a portion of an execution plan that
involves a merge join. The LEFT_MERGE_JOIN differs from MERGE_JOIN only when
it does not find a match in the inner table. When no match is found, the left row is still

Token Followed by ... Data Type

fragment_id A sequential number assigned to the
fragment. 0 is always the master executor
and 1 is reserved for the EXPLAIN plan.
Numbers 2 to n will be ESP or DAM
fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

join_type Inner, left, natural, inner semi, or inner anti-
semi-join.

text

join_method Name of join method: hash text

hash_join_predicate Expression of the join predicate. expr(text)

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

selection_predicates Expression of the WHERE clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-36

SQL/MX Operators LEFT_MERGE_JOIN Operator

TP663851.fm Page 37 Monday, October 17, 2011 11:48 AM
returned, and the data from the right table is set to null. See MERGE_JOIN Operator
on page 7-42.

The LEFT_MERGE_JOIN operator has two child nodes. The description field for this
operator contains:

The following is an example of the LEFT_MERGE_JOIN operator:

Control Query Default nested_joins 'off';
Control Query Default hash_joins 'off';

prepare TestQuery37b from
SELECT *
FROM customer LEFT JOIN nation ON c_nationkey = n_nationkey
WHERE c_custkey > 1000 AND c_custkey < 1010
ORDER BY c_custkey;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type left
 join_method merge
 merge_join_predicate ... (DETCAT.DETSCH.CX1.C_NATIONKEY =
 DETCAT.DETSCH.NATION.N_NATIONKEY)

Token Followed by ... Data Type

fragment_id A sequential number assigned to the
fragment. 0 is always the master executor and
1 is reserved for the EXPLAIN plan. Numbers
2 to n will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2 text

join_type Inner, left, natural, inner semi, or inner anti-
semi-join

text

join_method Name of join method: merge text

merge_join_predicate Expression of the join predicate. expr(text)

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

selection_predicates Expression of the WHERE clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-37

SQL/MX Operators LEFT_NESTED_JOIN Operator

TP663851.fm Page 38 Monday, October 17, 2011 11:48 AM
LEFT_NESTED_JOIN Operator

Join Group

The LEFT_NESTED_JOIN operator describes a portion of an execution plan that
involves a nested join. The LEFT_NESTED_JOIN sends each outer (left) row to the
inner (right) child. The right child finds all the matches for a row and returns all the
matches. If an outer row finds no matches in the inner table, the outer row is returned,
and nulls are supplied for inner table values. See NESTED_JOIN Operator on
page 7-47.

The LEFT_NESTED_JOIN has two child nodes. The description field for this operator
contains:

The following is an example of the LEFT_NESTED_JOIN operator:

prepare TestQuery37 from
SELECT *
FROM customer LEFT JOIN nation ON c_nationkey = n_nationkey
WHERE c_custkey > 1000 AND c_custkey < 1010
ORDER BY c_custkey;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type left
 join_method nested

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

join_type Inner, left, natural, inner semi, or inner anti-
semi-join.

text

join_method Name of join method: nested or in-order nested text

join_predicate Expression of the join predicate. expr(text)

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

selection_predicates Expression of the WHERE clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-38

SQL/MX Operators LEFT_ORDERED_HASH_JOIN Operator

TP663851.fm Page 39 Monday, October 17, 2011 11:48 AM
LEFT_ORDERED_HASH_JOIN Operator

Join Group

The LEFT_ORDERED_HASH_JOIN operator returns an unmatched outer row even
when it does not find a match in the inner table. Null values are supplied for the
missing inner rows. The LEFT_ORDERED_HASH_JOIN operator differs from the
LEFT_HYBRID_HASH_JOIN in that it preserves the order of the outer table and does
not overflow to disk. In addition, the reuse feature enables reuse of the hash table for
subsequent requests within the same query. Choose this operator when you need to
preserve the order of the outer table or if you can benefit from the reuse feature. It
should be chosen only if the inner table is small enough to fit in memory.

The LEFT_ORDERED_HASH_JOIN operator has two child nodes. The description
field for this operator contains:

The following is an example of the LEFT_ORDERED_HASH_JOIN operator:

Control Query Default nested_joins 'off';

prepare TestQuery37a from
SELECT *
FROM customer LEFT JOIN nation ON c_nationkey = n_nationkey
WHERE c_custkey > 1000 AND c_custkey < 1010
ORDER BY c_custkey;

Token Followed by ... Data Type

fragment_id A sequential number assigned to the
fragment. 0 is always the master executor and
1 is reserved for the EXPLAIN plan. Numbers
2 to n will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

hash_join_predicate Expression of the join predicate. expr(text)

join_type Inner, left, natural, inner semi, or inner anti-
semi-join.

text

join_method Name of join method: hash text

join_predicate Expression of the join predicate. expr(text)

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

reuse_comparison_values List of values that cause the hash table to be
rebuilt when they change.

expr(text)

selection_predicates Expression of the WHERE clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-39

SQL/MX Operators MATERIALIZE Operator

TP663851.fm Page 40 Monday, October 17, 2011 11:48 AM
DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type left
 join_method hash
 hash_join_predicate (DETCAT.DETSCH.CUSTOMER.C_NATIONKEY =
 DETCAT.DETSCH.NATION.N_NATIONKEY)

MATERIALIZE Operator

Materialize Group

When it first executes, the MATERIALIZE operator evaluates the query beneath it one
time and stores the result of that evaluation in a temporary table, in addition to
returning the result to the parent. In subsequent requests to the MATERIALIZE
operator, it might return the stored temporary table instead of evaluating its child again.
Use the MATERIALIZE operator when using correlated subqueries or in place of a
HYBRID_HASH_JOIN when the outer order needs to be retained.

The MATERIALIZE node is not used by default starting from SQL/MX Release 2.x. If
needed, enable it by setting the MATERIALIZE default to ON. Starting from SQL/MX
Release 2.x, SQL/MX uses the ORDERED_HASH_JOIN Operator to replace the
functionality of the MATERIALIZE node.

The MATERIALIZE operator has one child node. The description field for this operator
contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment. 0
is always the master executor and 1 is reserved
for the EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

operation_type Hash table. text

values_given_to_child Values whose change causes materialization of
the table.

expr(text)

temp_table_key Key for the temporary table. expr(text)

begin_key Begin key predicate. expr(text)

end_key End key predicate. expr(text)

scan_direction Direction in which table is scanned: forward or
reverse.

text

check_input_values Expression used to check if input values have
changed.

expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-40

SQL/MX Operators MERGE_ANTI_SEMI_JOIN Operator

TP663851.fm Page 41 Monday, October 17, 2011 11:48 AM
The following is an example of the MATERIALIZE operator:

control query default materialize 'on';

control query shape
sort_groupby(nested_join(sort(partition_access(
scan(path 'TAB1', forward, mdam off))),materialize(

partition_access(scan(path 'TAB2', forward, mdam off)))));

prepare TestQuery30 from
select TAB1.col1, TAB1.col2, sum(TAB2.col2), count(*)
from TAB1 , TAB2
where TAB1.col1 = TAB2.col1
and TAB2.col2 < 30
group by TAB1.col1, TAB1.col2
order by TAB1.col2;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 operation_type hash
 scan_direction forward
 values_given_to_child execution_count
 temp_table_key DETCAT.DETSCH.TAB2.COL1
 begin_key (DETCAT.DETSCH.TAB2.COL1 =
 DETCAT.DETSCH.TAB1.COL1)
 check_input_values (execution_count =
 convert(execution_count))

MERGE_ANTI_SEMI_JOIN Operator

Join Group

The MERGE_ANTI_SEMI_JOIN operator returns rows only when no match occurs in
the inner table. The operator discards all rows that have a match. Also see
MERGE_JOIN Operator on page 7-42 and MERGE_SEMI_JOIN Operator on
page 7-44.

The MERGE_ANTI_SEMI_JOIN operator has two child nodes. The description field for
this operator contains:

Token Followed by... Data Type

fragment_id A sequential number assigned to the fragment. 0
is always the master executor and 1 is reserved
for the EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-41

SQL/MX Operators MERGE_JOIN Operator

TP663851.fm Page 42 Monday, October 17, 2011 11:48 AM
The following is an example of MERGE_ANTI_SEMI_JOIN:

Control Query Default nested_joins 'off';
Control Query Default hash_joins 'off';

PREPARE TestQuery3a FROM
SELECT s_nationkey, s_suppkey
FROM supplier
WHERE s_suppkey NOT IN
(SELECT ps_suppkey from partsupp)
GROUP BY s_nationkey, s_suppkey
ORDER BY s_nationkey, s_suppkey;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner anti-semi
 join_method merge
 merge_join_predicate ... (DETCAT.DETSCH.SUPPLIER.S_SUPPKEY =
 DETCAT.DETSCH.PSX1.PS_SUPPKEY)

MERGE_JOIN Operator

Join Group

The MERGE_JOIN operator describes a portion of an execution plan that involves a
merge join. This operator joins the data from its two child nodes. The data streams
from both children must be in the same order. The operator joins all matching rows
from each data stream. The MERGE_JOIN operator works only with equijoins.

fragment_type Master, ESP, or DP2. text

merge_join_predicate Expression of the join predicate. expr(text)

join_type Inner, left, natural, inner semi, or inner anti-semi-
join.

text

join_method Name of join method: merge text

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

selection_predicate Expression of the HAVING clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-42

SQL/MX Operators MERGE_JOIN Operator

TP663851.fm Page 43 Monday, October 17, 2011 11:48 AM
The MERGE_JOIN operator has two child nodes. The description field for this operator
contains:

The following is an example of the MERGE_JOIN operator:

PREPARE TestQuery10 FROM
SELECT l_orderkey,
CAST(SUM(l_extendedprice*(1-l_discount))AS
NUMERIC(18,2)), o_orderdate, o_shippriority
FROM customer,orders,lineitem
WHERE c_mktsegment = 'BUILDING'
AND c_custkey = o_custkey
AND l_orderkey = o_orderkey
AND o_orderdate < DATE '1995-03-15'
AND l_shipdate > DATE '1995-03-15'
GROUP BY l_orderkey, o_orderdate, o_shippriority
ORDER BY 2 DESC,3 ASC;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner
 join_method merge
 merge_join_predicate ... (DETCAT.DETSCH.SUPPLIER.S_SUPPKEY =
 DETCAT.DETSCH.PSX1.PS_SUPPKEY)
 selection_predicates ... (DETCAT.DETSCH.PSX1.PS_SUPPLYCOST <
 DETCAT.DETSCH.SUPPLIER.S_ACCTBAL)

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment. 0
is always the master executor and 1 is reserved
for the EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

join_type Inner, left, natural, inner semi, or inner anti-semi-
join.

text

join_method Name of join method: merge text

merge_join_predicate Expression of the join predicate. expr(text)

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

selection_predicates Expression of the HAVING clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-43

SQL/MX Operators MERGE_SEMI_JOIN Operator

TP663851.fm Page 44 Monday, October 17, 2011 11:48 AM
MERGE_SEMI_JOIN Operator

Join Group

The MERGE_SEMI_JOIN operator returns one row for the first match it finds in the
inner table. Conversely, MERGE_JOIN returns a row for all matches in the inner table.
See MERGE_JOIN Operator on page 7-42.

The MERGE_SEMI_JOIN operator has two child nodes. The description field for this
operator contains:

The following is an example of the MERGE_SEMI_JOIN operator:

control query default hash_joins 'off';
control query default nested_joins 'off';

PREPARE TestQuery7 FROM
SELECT o_orderpriority, COUNT(*)
FROM orders
WHERE o_orderdate >= DATE '1993-07-01'
AND o_orderdate < DATE '1993-10-01'
AND EXISTS (SELECT *
FROM lineitem
WHERE l_orderkey = o_orderkey

AND l_commitdate < l_receiptdate)
GROUP BY o_orderpriority
ORDER BY o_orderpriority;

DESCRIPTION

Token Followed by... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

merge_join_predicate Expression of the join predicate. expr(text)

join_type Inner, left, natural, inner semi, or inner anti-semi-
join.

text

join_method Name of join method: merge text

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

selection_predicates Expression of the WHERE clause that is not
included in the merge_join_predicate or in a
selection_predicate of any children.

expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-44

SQL/MX Operators MERGE_UNION Operator

TP663851.fm Page 45 Monday, October 17, 2011 11:48 AM
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner semi
 join_method merge
 merge_join_predicate ... (DETCAT.DETSCH.ORDERS.O_ORDERKEY =
 DETCAT.DETSCH.LINEITEM.L_ORDERKEY)

MERGE_UNION Operator

MERGE_UNION Group

The MERGE_UNION operator describes that part of an execution plan that merges
rows from two child nodes. The operator for a MERGE_UNION operator is always
MERGE_UNION.

The MERGE_UNION operator has two child nodes. The description field for this
operator contains:

The following is an example of the MERGE_UNION operator:

create table table_a
(col1 char(5) NOT NULL NOT DROPPABLE
, col2 int NOT NULL NOT DROPPABLE
, col3 smallint
, CONSTRAINT table_a_PRIMARY_KEY PRIMARY KEY (col1 ASC, col2
ASC) NOT DROPPABLE
);

create table table_c like table_a;

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

condExpr Expression used for conditional union. Occurs
with IF statement in compound statements.

expr(text)

merge_expression Expression used to determine which child
operator to read from next—read from left if true
and read from right if false.

expr(text)

union_type Merge, physical or unspecified. text

sort_order Sort order of the result of the union. text

trigExceptExpr Expression used for trigger exceptions. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-45

SQL/MX Operators MultiUnion Operator

TP663851.fm Page 46 Monday, October 17, 2011 11:48 AM
prepare xx from
select * from table_a
union
select * from table_c;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 union_type merge

MultiUnion Operator

N-ary Group

The MultiUnion operator provides performance enhancement for queries that have a
large number of table unions. It denotes a single relational union operator with multiple
children. Its children can be any relational operators that are attached to the union
backbone.

The description field for this operator contains:

The following is an example of the MultiUnion operator:

create table tabl3 (a int, b int, c int,d int, e int);

prepare xx from select * from tabl3 union all
select * from tabl3 union all
select * from tabl3 union all
select * from tabl3 union all
select * from tabl3;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 union_type PhyMultiUnion

NESTED_ANTI_SEMI_JOIN Operator

Join Group

The NESTED_ANTI_SEMI_JOIN operator describes a portion of an execution plan
that involves a nested join. This operator returns all rows from the inner table that do
not satisfy the predicates. See NESTED_JOIN Operator on page 7-47.

Note. The MultiUnion operator is supported only on systems running J06.08 and later J-series
RVUs and H06.19 and later H-series RVUs.

Token Followed by ... Data Type

union_type PhyMultiUnion text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-46

SQL/MX Operators NESTED_JOIN Operator

TP663851.fm Page 47 Monday, October 17, 2011 11:48 AM
The NESTED_ANTI_SEMI_JOIN operator has two child nodes. The description field
for this operator contains:.

The following is an example of the NESTED_ANTI_SEMI_JOIN operator:

PREPARE TestQuery12 FROM
SELECT *
FROM customer, nation
WHERE c_custkey > 10000 AND c_custkey < 10010
AND c_nationkey NOT IN
(select n_nationkey from nation where n_regionkey = 10)
ORDER BY c_custkey;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner anti-semi
 join_method nested

NESTED_JOIN Operator

Join Group

The NESTED_JOIN operator describes a portion of an execution plan that involves a
nested join. This operator sends each outer row to the inner child, where it eventually

Token Followed by... Data Type

fragment_id A sequential number assigned to the
fragment. 0 is always the master executor and
1 is reserved for the EXPLAIN plan. Numbers
2 to n will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

join_type Inner, left, natural, inner semi, or inner anti-
semi-join.

text

join_method Name of join method: nested or in-order
nested

text

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

join_predicate Expression of the ON clause that has not
been pushed down to the inner scan, typically
empty.

expr(text)

selection_predicate Expression of the WHERE clause that is not
included in the merge_join_predicate or in a
selection_predicate of any children.

expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-47

SQL/MX Operators NESTED_JOIN Operator

TP663851.fm Page 48 Monday, October 17, 2011 11:48 AM
goes to a scan operation. Normally, the inner scan access is keyed, and the number of
outer probes is small, resulting in an efficient join. The actual join is done in the inner
scan instead of the NESTED_JOIN operator. Nested joins support range operations
(>=, >, <, <=) in addition to equijoins.

The NESTED_JOIN has two child nodes. The description field for this operator
contains:

The following is an example of the NESTED_JOIN operator:

PREPARE TestQuery4 FROM
SELECT l_orderkey,
CAST(SUM(l_extendedprice*(1-l_discount))AS
NUMERIC(18,2)), o_orderdate, o_shippriority
FROM customer,orders,lineitem
WHERE c_mktsegment = 'BUILDING'
AND c_custkey = o_custkey
AND l_orderkey = o_orderkey
AND o_orderdate < DATE '1995-03-15'
AND l_shipdate > DATE '1995-03-15'
GROUP BY l_orderkey, o_orderdate, o_shippriority
HAVING sum(l_extendedprice)> 100
ORDER BY 2 DESC,3 ASC;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner
 join_method nested

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

join_type Inner, left, natural, inner semi, or inner anti-
semi-join.

text

join_method Name of join method: nested or in-order nested. text

join_predicate Expression of the join predicate. expr(text)

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

selection_predicate Expression of the WHERE clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-48

SQL/MX Operators NESTED_SEMI_JOIN Operator

TP663851.fm Page 49 Monday, October 17, 2011 11:48 AM
NESTED_SEMI_JOIN Operator

Join Group

The NESTED_SEMI_JOIN operator returns only one matched row from the inner table
and ignores duplicate matches. See NESTED_JOIN Operator on page 7-47.

The NESTED_SEMI_JOIN operator has two child nodes. The description field for this
operator contains:

The following is an example of the NESTED_SEMI_JOIN operator:

Control Query Default merge_joins 'off';
Control Query Default hash_joins 'off';

PREPARE TestQuery7a FROM
SELECT o_orderpriority, COUNT(*)
FROM orders
WHERE o_orderdate >= DATE '1993-07-01'
AND o_orderdate < DATE '1993-10-01'
AND EXISTS (SELECT *
FROM lineitem
WHERE l_orderkey = o_orderkey
AND l_commitdate < l_receiptdate)
GROUP BY o_orderpriority
ORDER BY o_orderpriority;

DESCRIPTION

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

join_type Inner, left, natural, inner semi, or inner anti-
semi-join.

text

join_method Name of join method: nested or in-order nested text

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

join_predicate Expression of the ON clause that has not been
pushed down to the inner scan, typically empty.

expr(text)

selection_predicate Expression of the WHERE clause that is not
included in the merge_join_predicate or in a
selection_predicate of any children.

expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-49

SQL/MX Operators NEXTVALUEFOR Operator

TP663851.fm Page 50 Monday, October 17, 2011 11:48 AM
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner semi
 join_method nested

NEXTVALUEFOR Operator

The NEXTVALUEFOR operator obtains the next values from the
SEQUENCEGENERATOR operator, and then assigns the value to the IDENTITY
column in the row.

The description field for the operator contains the following:

NESTED_SEMI_JOIN Operator

ORDERED_HASH_ANTI_SEMI_JOIN

Join Group

The ORDERED_HASH_ANTI_SEMI_JOIN operator returns only one row for every
outer row when no match occurs. This operator preserves the order of the outer table

Token Followed by ... Data Type

max_card_est Cardinality estimate for the operator. integer

fragment_id A sequential number assigned to the fragment.
0 is the master executor and 1 is reserved for
the EXPLAIN plan. Numbers 2 to n will be ESP
or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP. text

generated_next_value The expression calculates the next value for the
IDENTITY column. The expression calculates
the next value using
current_value_from_sg,
sg_cache_size_hv, and sg_increment_hv
sent by SEQUENCEGENERATOR operator.

expr(text)

expected_outputs_from
_s

The expression specifies the outputs expected
from the child SEQUENCEGENERATOR
operator.

expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-50

SQL/MX Operators

TP663851.fm Page 51 Monday, October 17, 2011 11:48 AM
and does not overflow to disk. The reuse feature allows reuse of the hash table for
subsequent requests within the same query. Choose this operator when you need to
preserve the order of the outer table or if you can benefit from the reuse feature. It
should be chosen only if the inner table is small enough to fit in memory.

The ORDERED_HASH_ANTI_SEMI_JOIN operator has two child nodes. The
description field for this operator contains:

The following is an example of the ORDERED_HASH_ANTI_SEMI_JOIN operator:

PREPARE TestQuery3 FROM
SELECT s_nationkey, s_suppkey
FROM supplier
WHERE s_suppkey NOT IN
(SELECT ps_suppkey from partsupp)
GROUP BY s_nationkey, s_suppkey
ORDER BY s_nationkey, s_suppkey;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner anti-semi
 join_method hash
 hash_join_predicate (DETCAT.DETSCH.SX1.S_SUPPKEY =
 DETCAT.DETSCH.PSX1.PS_SUPPKEY)

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to
n will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

hash_join_predicate Expression of the join predicate. expr(text)

join_type Inner, left, natural, inner semi, or inner anti-
semi-join.

text

join_method Name of join method: hash text

join_predicate Expression of the join predicate. expr(text)

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

reuse_comparison_values List of values that cause the hash table to be
rebuilt when values change.

expr(text)

selection_predicates Expression of the WHERE clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-51

SQL/MX Operators ORDERED_HASH_JOIN Operator

TP663851.fm Page 52 Monday, October 17, 2011 11:48 AM
ORDERED_HASH_JOIN Operator

Join Group

The ORDERED_HASH_JOIN operator joins the data from two child tables. This
operator preserves the order of the outer table and does not overflow to disk. It creates
a hash table from the inner table, joins the outer table by hashing each outer row, and
looks for matches in the hash table. The reuse feature enables reuse of the hash table
for subsequent requests within the same query. Choose this operator when you need
to preserve the order of the outer table or if you can benefit from the reuse feature. It
should be chosen only if the inner table is small enough to fit in memory.

Equijoins and cross-products are supported by this operator.

The ORDERED_HASH_JOIN operator has two child nodes. The description field for
this operator contains:

The difference between join_predicate and hash_join_predicate tokens is that the
former are the non-equijoin predicates, while the latter are equijoin predicates that are
used to help build and probe the hash table.

The following is an example of the ORDERED_HASH_JOIN operator:

PREPARE TestQuery9 FROM
SELECT s_nationkey, s_suppkey
FROM supplier, partsupp

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment. 0
is always the master executor and 1 is reserved
for the EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

hash_join_predicate Expression of the join predicate. expr(text)

join_type Inner, left, natural, inner semi, or inner anti-semi-
join.

text

join_method Name of join method: hash text

join_predicate Expression of the join predicate. expr(text)

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

reuse_comparison_values List of values that cause the hash table to be
rebuilt when values change.

expr(text)

selection_predicates Expression of the WHERE clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-52

SQL/MX Operators ORDERED_HASH_SEMI_JOIN Operator

TP663851.fm Page 53 Monday, October 17, 2011 11:48 AM
WHERE s_suppkey = ps_suppkey
GROUP BY s_nationkey, s_suppkey
ORDER BY s_nationkey, s_suppkey;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner
 join_method hash
 hash_join_predicate (DETCAT.DETSCH.SX1.S_SUPPKEY =
 DETCAT.DETSCH.PSX1.PS_SUPPKEY)

ORDERED_HASH_SEMI_JOIN Operator

Join Group

The ORDERED_HASH_SEMI_JOIN operator returns the outer rows for all matches.
This operator differs from the HYBRID_HASH_SEMI_JOIN operator in that it preserves
the order of the outer table and does not overflow to disk. The reuse feature enables
reuse of the hash table for subsequent requests within the same query. Choose this
operator when you need to preserve the order of the outer table or if you can benefit
from the reuse feature. It should be chosen only if the inner table is small enough to fit
in memory.

Also see HYBRID_HASH_JOIN Operator on page 7-27.

The ORDERED_HASH_SEMI_JOIN operator has two child nodes. The description
field for this operator contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

hash_join_predicate Expression of the join predicate. expr(text)

join_type Inner, left, natural, inner semi, or inner anti-
semi-join.

text

join_method Name of join method: hash text

join_predicate Expression of the join predicate. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-53

SQL/MX Operators ORDERED_UNION Operator

TP663851.fm Page 54 Monday, October 17, 2011 11:48 AM
The difference between join_predicate and hash_join_predicate tokens is that the
former are the non-equijoin predicates, while the latter are equijoin predicates that you
use to help build and probe the hash table.

The following is an example of the ORDERED_HASH_SEMI_JOIN operator:

PREPARE TestQuery7 FROM
SELECT o_orderpriority, COUNT(*)
FROM orders
WHERE o_orderdate >= DATE '1993-07-01'
AND o_orderdate < DATE '1993-10-01'
AND EXISTS (SELECT *
FROM lineitem
WHERE l_orderkey = o_orderkey
AND l_commitdate < l_receiptdate)
GROUP BY o_orderpriority
ORDER BY o_orderpriority;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner semi
 join_method hash
 hash_join_predicate (DETCAT.DETSCH.ORDERS.O_ORDERKEY =
 DETCAT.DETSCH.LX5.L_ORDERKEY)

ORDERED_UNION Operator

The ORDERED_UNION operator ensures that its left and right children work one at a
time. It first receives rows from its left child. It then enables the right child to work. In
effect, for the same request, ORDERED_UNION operator produces rows from left child
followed by rows from right child.

The description field for this operator contains:

parallel_join_type Type1 or Type2, depending on parallel join
algorithm.

text

reuse_comparison_values List of values that cause the hash table to be
rebuilt when they change.

expr(text)

selection_predicates Expression of the WHERE clause. expr(text)

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-54

SQL/MX Operators ORDERED_UNION Operator

TP663851.fm Page 55 Monday, October 17, 2011 11:48 AM
The following is an example of the ORDERED_UNION operator:

create table table_a
(col1 char(5) NOT NULL NOT DROPPABLE
, col2 int NOT NULL NOT DROPPABLE
, col3 smallint
, CONSTRAINT table_a_PRIMARY_KEY PRIMARY KEY (col1 ASC, col2
ASC) NOT DROPPABLE
);

create table table_b
(col1 char(5) NOT NULL NOT DROPPABLE
, col2 int NOT NULL NOT DROPPABLE
, col3 smallint
, owner_count int
, CONSTRAINT table_b_PRIMARY_KEY PRIMARY KEY (col1 ASC, col2
ASC) NOT DROPPABLE
);

ALTER TABLE table_a
ADD CONSTRAINT table_a_KEY FOREIGN KEY
(col1, col2) REFERENCES
table_b(col1, col2) on update restrict on delete restrict
DROPPABLE ;

CREATE TRIGGER table_a_Owner_Count
 AFTER INSERT ON table_a
 REFERENCING NEW AS newrow
 FOR EACH ROW
 UPDATE table_b SET owner_count = (
 SELECT count(*) FROM table_a
 WHERE (table_b.col1,table_b.col2)=
 (table_a.col1,table_a.col2)
 AND table_a.col3 = 1
)
 WHERE (table_b.col1,table_b.col2)=
 (newrow.col1,newrow.col2);

insert into table_b values('A', 1, 1, 0);

fragment_type Master, ESP, or DP2. text

sort_order Sort order of the result of the union. text

merge_expression Expression used to determine which child
operator to read from next—read from left if true
and read from right if false.

expr(text)

union_type Merge, physical or unspecified. text

condExpr Expression used for conditional union. Occurs
with IF statement in compound statements.

expr(text)

trigExceptExpr Expression used for trigger exceptions. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-55

SQL/MX Operators PACK Operator

TP663851.fm Page 56 Monday, October 17, 2011 11:48 AM
Prepare TestQuery11 from
insert into table_a values('A', 1, 1);

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 union_type merge

PACK Operator

Rowset Group

Use the PACK operator in a query plan when selecting rows into rowset arrays:

SELECT <list> INTO <list of arrays> <body of query>

The PACK operator collects all the rows coming from the body of the query and puts
them into the arrays in the <list of arrays>. For more information about rowsets
and arrays, see the SQL/MX Programming Manual for C and COBOL.

The PACK operator has one child. The description field for this operator contains:

Create a module file. For details on creating module file, see the SQL/MX
Programming Manual for C and COBOL.

Now execute the following command:

explain <name of a statement in module file> from <name of
module file>

The following is an example of the PACK operator:

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 pack_expr (cast(JAVCAT.JAVSCH.T.T1 AS INTEGER
 SIGNED)RowsetArrayInto 200),
 (cast(JAVCAT.JAVSCH.T.T2 AS
 INTEGER SIGNED) RowsetArrayInto 200),

Token Followed by... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

pack_expr Expression used to pack values of a row into a
packed row.

expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-56

SQL/MX Operators PARTITION_ACCESS Operator

TP663851.fm Page 57 Monday, October 17, 2011 11:48 AM
 (cast(JAVCAT.JAVSCH.T.T3 AS INTEGER
 SIGNED)RowsetArrayInto 200)

PARTITION_ACCESS Operator

Exchange Group

Use the PARTITION_ACCESS operator to describe a portion of an execution plan for a
file system interface in which requests are made to DAM. The DAM process runs in
parallel to the PARTITION_ACCESS (no waited interface). For more information about
exchange operators, see Section 8, Parallelism.

The PARTITION_ACCESS operator has one child node. The description field for this
operator contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the
fragment. 0 is always the master
executor and 1 is reserved for the
EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the
current fragment. The value is (none)
for the master executor.

integer

fragment_type Master, ESP, or DP2. text

buffer_size Buffer size for messages between
PARTITION_ACCESS operator and
DAM.

integer

record_length Length of the record that is returned by
DAM.

integer

begin_key_preds
(incl | excl)

Predicates to determine the begin key,
which might include or exclude the
specified key.

expr(text)

end_key_preds
(incl | excl)

Predicates to determine the end key,
which might include or exclude the
specified key.

expr(text)

begin_key_exclusion_expr Boolean expression indicating whether
the begin key is excluded from the key
range (in cases where this is
determined dynamically).

expr(text)

end_key_exclusion_expr Boolean expression indicating whether
the end key is excluded from the key
range (in cases where this is
determined dynamically).

expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-57

SQL/MX Operators PARTITION_ACCESS Operator

TP663851.fm Page 58 Monday, October 17, 2011 11:48 AM
The following is an example of the PARTITION_ACCESS operator:

prepare TestQuery17 from
select T03.char_100
 from PTAB03 T03
 where T03.char_100 =
 (Select min(T00.char_10)
 from PTAB00 T00
);

DESCRIPTION
 fragment_id 2
 parent_frag 0

begin_part_no_expr Expression to calculate the start
partition number (appears instead of
begin_key_preds and
begin_key_exclusion_expr).

expr(text)

end_part_no_expr Expression to calculate the end partition
number (appears instead of
end_key_preds and
end_key_exclusion_expr).

expr(text)

olt_optimization Indicates whether an optimization for
short, simple operations is used. Its
value is used or not used.

text

space_usage One of the following:

 Size of packed plan fragment in 1
KB units.

 Size of unpacked plan fragment in
1 KB units. Heap (used for
dynamically allocating entities such
as queue entries and diagnostic
areas) size in 1 KB units.

 Total size in 1 KB units.

integer

parent_partitioning_function Type of top partitioning and contains
summary information about the parallel
plan.

text

child_partitioning_function Type of bottom partitioning and contains
summary information about the parallel
plan.

text

begin_part_selection_expr Expression used by SPLIT_TOP or
PARTITION_ACCESS to compute the
begin_part_no_expr.

expr(text)

end_part_selection_expr Expression used by SPLIT_TOP or
PARTITION_ACCESS to text compute
the end_part_no_expr.

expr(text)

Token Followed by ... Data Type
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-58

SQL/MX Operators PROBE_CACHE Operator

TP663851.fm Page 59 Monday, October 17, 2011 11:48 AM
 fragment_type dp2
 buffer_size 31,000
 record_length 11
 space_usage 19:8:8:40
 eid_space_computation on
 begin_key_preds_(incl)
 (DETCAT.DETSCH.PTAB00.SINT32_UNIQ =
 <min>)
 end_key_preds_(incl) ... (DETCAT.DETSCH.PTAB00.SINT32_UNIQ =
 <max>)
 begin_part_no_expr \:_sys_hostVarPAPartNo_1606919584
 end_part_no_expr \:_sys_hostVarPAPartNo_1606919584

PROBE_CACHE Operator

This operator appears above the right child of a nested join and is an optimization to
reduce the work done by the right child. The operator has a mechanism to cache
results of a probe (request) into the inner child from the outer child. If the probe
repeats, the cached result is used to improve the performance.

The DESCRIPTION column of the explain function will contain token-value pairs to
name the probe columns sent to the inner table, the sizes of the cache and inner table
buffer (called num_inner_tuples).

ROOT Operator

Root Group

The ROOT operator is the root, or the top node, of an execution plan and describes the
SQL query. The operator for a ROOT is always ROOT.

The ROOT operator has one child. The description field for this operator contains:

Token Followed by ... Data Type

statement Original SQL statement text

select_list Expression of the SELECT list columns expr(text)

input_variables Expression containing list of input variables
(params)

expr(text)

order_by Expression containing list of sort keys expr(text)

must_match When CONTROL QUERY SHAPE is used,
textual description of forced query tree ()

expr(text)

update_col The update column specification of an
updatable cursor declaration

expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-59

SQL/MX Operators ROOT Operator

TP663851.fm Page 60 Monday, October 17, 2011 11:48 AM
The following is an example of the ROOT operator:

PREPARE TestQuery15 FROM
 SELECT CAST(SUM(l_extendedprice*l_discount) AS
 NUMERIC(18,2))
 AS revenue FROM lineitem WHERE l_shipdate >= DATE '1994-0101'
 AND l_shipdate < DATE '1994-01-01' + INTERVAL '1' YEAR AND
 l_discount BETWEEN .06 - 0.01 AND .06 + 0.01
 AND l_quantity < 24;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 statement_index 0
 xn_access_mode read_only
 plan_version 2,200
 SCHEMA DETCAT.DETSCH
 HASH_JOINS ON
 NESTED_JOINS ON
 select_list
 cast(cast((sum((cast(DETCAT.DETSCH.LX3.L_EXTENDEDPRI
 CE AS BIG NUM(12,2) SIGNED) *
 cast(DETCAT.DETSCH.LX3.L_DISCOUNT
 AS BIG NUM(12,2) SIGNED))) /
 cast(100 AS BIG NUM(3) SIGNED)) AS
 NUMERIC(18,2) SIGNED) AS
 NUMERIC(18,2) SIGNED)

olt_optimization Indicates whether an optimization for short,
simple operations is used. The value used is
returned if this optimization is used.

text

statement_index Statement index of this statement as reported
by the Measure product.

integer

upd_action_on_error Determines the type of statement atomicity
chosen for a query:

XN_ROLLBACK: Transaction is rolled back if
an error occurs.

RETURN: Query stops executing and error is
returned without need for statement rollback.

SAVEPOINT: DAM savepoints are used to roll
back the statement if an error occurs.

PARTIAL_UPD: [NonStop SQL/MP style]
Partial results are updated and an error is
returned.

text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-60

SQL/MX Operators SAMPLE Operator

TP663851.fm Page 61 Monday, October 17, 2011 11:48 AM
SAMPLE Operator

Data Mining Group

The SAMPLE operator occurs as a result of a sample clause in a query.

The SAMPLE operator has one child node. The description field for this operator
contains:

For more information about data mining, see the SQL/MX Data Mining Guide.

The following is an example of the SAMPLE operator:

prepare TestQuery34 from
 select [first 180] * from t064t5
 sample periodic 1 rows every 100 rows
 for read uncommitted access;

DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 sample_type PERIODIC
 sampled_columns NotCovered(DETCAT.DETSCH.T064T5.A),
 NotCovered(DETCAT.DETSCH.T064T5.B)
 balance_expression ((0 block (0 assign (cast(0 AS
 NUMERIC(11) SIGNED) + cast(1 AS
 NUMERIC(11) SIGNED)))) block

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to
n will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

sampled_columns List of column references representing the
outputs of the sample operator. Indicates that
the column has been sampled.

expr(text)

balance_expression Expression representing the sampling
expression. A simple random selection, but
could be more complex if the sample clause
contains a balance clause.

expr(text)

sample_type Indicates the type of sampling being
performed. Possible values are RANDOM,
PERIODIC, FIRST, and CLUSTER.

text

required_order Specified order keys for a sample operation. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-61

SQL/MX Operators SAMPLE_FILE_SCAN Operator

TP663851.fm Page 62 Monday, October 17, 2011 11:48 AM
 case(if_then_else((0 <= 0), 0,
 if_then_else((0 < 1), 1,
 if_then_else((1 > 0), ((0 assign
 (1 - 100)) block 1), 0)))))

SAMPLE_FILE_SCAN Operator

The SAMPLE_FILE_SCAN operator occurs as a result of a sample clause in a query,
where it is possible to read randomly after satisfying the conditions mentioned in the
query. This operator has no child node. The description field for this operator contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to
n will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

olt_optimization Indicates whether an optimization for short,
simple operations is used. Its value is used or
not used.

text

olt_opt_lean Indicates for short, simple operations whether
a further optimization that reduces the physical
size of the plan is used. Its value is used or
not used.

text

scan_type FILE_SCAN followed by table name. text

scan_direction Direction in which table is scanned: forward or
reverse.

 text

lock_mode The lock mode specified: shared, exclusive,
not specified (defaulted to lock cursor), or
unknown.

 text

access_mode The access specified: read uncommitted, skip
conflict, read committed, stable, serializable,
mx serializable, not specified (defaulted to
read committed), or unknown.

text

columns_retrieved Estimation of the number of columns to be
returned.

integer

fast_scan Indication of whether an optimization for a
simple scan operation is used. The value
used is returned if this optimization is used.

text

fast_replydata_move Indication of whether an optimization for
returning data from DAM is used. The value
used is returned if this optimization is used.

text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-62

SQL/MX Operators SEQUENCE Operator

TP663851.fm Page 63 Monday, October 17, 2011 11:48 AM
The following is an example of the SAMPLE_FILE_SCAN operator:

PREPARE TestQuery22 FROM
select * from tt22 sample random 10 percent;

DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 olt_optimization not used
 olt_opt_lean not used
 scan_type sample full scan of table
 DETCAT.DETSCH.TT22
 scan_direction forward
 key_type simple
 lock_mode not specified, defaulted to lock
 cursor
 access_mode not specified, defaulted to read
 committed
 columns_retrieved 2
 fast_replydata_move used
 key_columns F1
 begin_key (F1 = <min>)
 end_key (F1 = <max>)

SEQUENCE Operator

Data Mining Group

The SEQUENCE operator occurs as a result of a SEQUENCE BY clause in the query.

key_columns Columns used as the primary key. expr(text)

executor_predicates Any predicate expression that is not a key
predicate evaluated by the executor in DAM.

expr(text)

mdam_disjunct Disjunct key predicates used by MDAM expr(text)

part_key_predicate Predicate expression specified on partitioning
key. It is displayed only if partitioning key
differs from clustering key.

expr(text)

begin_key Expression of the begin key predicate. expr(text)

end_key Expression of the end key predicate. expr(text)

key_type Simple or MDAM. text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-63

SQL/MX Operators SEQUENCE Operator

TP663851.fm Page 64 Monday, October 17, 2011 11:48 AM
The SEQUENCE operator has one child node. The description field for this operator
contains:

For more information about data mining, see the SQL/MX Data Mining Guide.

The following is an example of the SEQUENCE operator:

prepare TestQuery24 from
SELECT RUNNINGCOUNT(*) FROM customer
SEQUENCE BY c_custkey, c_nationkey;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 num_history_rows 1,024
 history_row_size 16
 required_order DETCAT.DETSCH.CX1.C_CUSTKEY,
 DETCAT.DETSCH.CX1.C_NATIONKEY
 sequence_functions (replace null(offset(\:_sys_Result),
 cast(offset(\:_sys_Result) AS
 LARGEINT), cast(0 AS LARGEINT)) +
 replace null(1 , cast(1 AS INTEGER
 SIGNED), cast(0 AS INTEGER
 SIGNED)))

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to
n will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

required_order List of column references specifying the
ordering required by the SEQUENCE operator.
Obtained from a list of columns specified in the
SEQUENCE BY clause.

expr(text)

sequence_functions Represents the list of sequence functions that
must be evaluated by this SEQUENCE
operator.

ItemExpr
tree

num_history_rows Size of the history buffer (in rows). This
number of rows is kept in an integer buffer and
is available for access by the sequence
functions. Any access to a row outside this
buffer results in a NULL value. The default
value for this parameter is 1024 rows.

integer

history_row_size Size of each history row in the history buffer. integer
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-64

SQL/MX Operators SEQUENCEGENERATOR Operator

TP663851.fm Page 65 Monday, October 17, 2011 11:48 AM
SEQUENCEGENERATOR Operator

The SEQUENCEGENERATOR operator provides access to the sequence generator
table to get the next value or the next block of values. It temporarily suspends the
current user transaction, and starts and commits a new transaction to access the
sequence generator table.

The SEQUENCEGENERATOR operator is isolated into its own ESP by the
ESP_ACCESS operator.

The description field for the operator contains:

Token Followed by ... Data Type

max_card_est Cardinality estimate for this operator. integer

fragment_id A sequential number assigned to the fragment.
0 is the master executor and 1 is reserved for
the EXPLAIN plan. Numbers 2 to n will be ESP
or DAM fragments.

integer

parent_flag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type ESP. text

sg_start_with_option The sequence generator option that specifies
the start value of the cycle.

int64

sg_increment_option The INCREMENT-BY option of the sequence
generator. The next value is obtained by
adding this value to current value.

int64

sg_maximum_option The sequence generator option that specifies
the highest value in the cycle.

int64

sg_minimum_option The sequence generator option that specifies
the lowest value in the cycle.

int64

sg_datatype The sequence generator data type. int64

sg_cycle_option The sequence generator option that specifies
whether the sequence generator values can
be cycled. The option values are CYCLE or
NO CYCLE.

text

sg_cache The user defined sequence generator cache
value. The default is 0. If the value is greater
than 0, each request gets the user specified
number of values for the cache.

int64
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-65

SQL/MX Operators SHORTCUT_SCALAR_AGGR Operator

TP663851.fm Page 66 Monday, October 17, 2011 11:48 AM
SHORTCUT_SCALAR_AGGR Operator

Groupby Group

The SHORTCUT_SCALAR_AGGR operator occurs for aggregates without a GROUP
BY clause and returns one row. The description field for this operator contains:

sg_cache_initial The initial cache value that influences the
default adaptive cache. The cache value
dynamically changes at runtime based on the
following CQD settings:
SEQUENCE_GENERATOR_CACHE_INITIAL
value is multiplied by the
SEQUENCE_GENERATOR_CACHE_INCRE
MENT value, and is compared with
SEQUENCE_GENERATOR_CACHE_MAXIM
UM.

int64

sg_cache_increment The multiplier that influences the default
adaptive cache. For details, see the
explanation for sg_cache_initial token.

int64

sg_cache_maximum The maximum value that influences the default
adaptive cache. For details, see the
explanation for sg_cache_initial token.

int 64

sg_increment_hv The expression contains the
sg_increment_option value. It is sent to
the NEXTVALUEFOR operator along with
sg_cache_size_hv and
current_value_from_sg to calculate the
next value.

expr(text)

sg_cache_size_hv The expression is used to calculate the
sequence generator cache size.

expr(text)

current_value_from_sg The expression holds the current value of the
sequence generator. Current value is the next
value available from the sequence generator.

expr(text)

Token Followed by... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-66

SQL/MX Operators SORT Operator

TP663851.fm Page 67 Monday, October 17, 2011 11:48 AM
The following is an example of the SHORTCUT_SCALAR_AGGR operator:

prepare TestQuery25 from
select min(f2) from tt22;

DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 aggregates min(DETCAT.DETSCH.II22.F2)

SORT Operator

Sort Group

A SORT operator describes a portion of an execution plan that performs a sort. The
operator for a SORT operator is always SORT.

The SORT operator has one child node. The description field for this operator contains:

The following is an example of the SORT operator:

PREPARE TestQuery16 FROM
SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address,
s_phone, s_comment
FROM part,supplier,partsupp, nation, region
WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND p_size = 15
AND p_type like '%BRASS'
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = 'EUROPE'
AND ps_supplycost = (SELECT MIN(ps_supplycost)
FROM partsupp ps1,supplier s1, nation n1,region r1

fragment_type Master, ESP, or DP2. text

aggregates Expression of the aggregate function. expr(text)

selection_predicate Expression of the WHERE clause. expr(text)

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to
n will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

sort_key Expression describing sort keys. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-67

SQL/MX Operators SORT_GROUPBY Operator

TP663851.fm Page 68 Monday, October 17, 2011 11:48 AM
WHERE p_partkey = ps1.ps_partkey
AND s1.s_suppkey = ps1.ps_suppkey
AND s1.s_nationkey = n1.n_nationkey
AND n1.n_regionkey = r1.r_regionkey
AND r1.r_name = 'EUROPE')
ORDER BY s_acctbal desc, n_name, s_name, p_partkey;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master self_referencing_update
 forced_sort
 sort_key
 inverse(DETCAT.DETSCH.SUPPLIER.S_ACCTBAL),
 DETCAT.DETSCH.NATION.N_NAME,
 DETCAT.DETSCH.SUPPLIER.S_NAME,
 DETCAT.DETSCH.PSX1.PS_PARTKEY

SORT_GROUPBY Operator

Groupby Group

The SORT_GROUPBY operator describes a portion of an execution plan that affects a
group.

The SORT_GROUPBY operator has one child node. The description field for this
operator contains:

The following is an example of the SORT_GROUPBY operator:

prepare TestQuery33a from
select int64_6,count(*)
 from PTAB09
 where int64_6 IN (0,2,4,5)
 group by int64_6;

DESCRIPTION

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

aggregates Expression of the aggregate function. expr(text)

selection_predicate Expression of the HAVING clause. expr(text)

grouping_columns Expression of the grouping columns. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-68

SQL/MX Operators SORT_PARTIAL_AGGR_LEAF Operator

TP663851.fm Page 69 Monday, October 17, 2011 11:48 AM
 fragment_id 0
 parent_frag (none)
 fragment_type master
 grouping_columns DETCAT.DETSCH.PTAB09.INT64_6
 aggregates count(1)

SORT_PARTIAL_AGGR_LEAF Operator

Groupby Group

The SORT_PARTIAL_AGGR_LEAF operator executes a partial group by operation as
close to where the data is read as is cost effective. This strategy reduces the amount
of data that must be redistributed for a query. The operator must always be
accompanied by a SORT_PARTIAL_AGGR_ROOT operator above it in the tree, which
finalizes the query.

The description field for this operator contains:

The following is an example of the SORT_PARTIAL_AGGR_LEAF operator:

prepare TestQuery17 from
select T03.char_100
 from PTAB03 T03
 where T03.char_100 =
 (Select min(T00.char_10)
 from PTAB00 T00);

DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 aggregates min(DETCAT.DETSCH.PTAB00.CHAR_10)

SORT_PARTIAL_AGGR_ROOT Operator

Groupby Group

The SORT_PARTIAL_AGGR_ROOT operator works together as a pair with the
SORT_PARTIAL_AGGR_LEAF operator. The SORT_PARTIAL_AGGR_ROOT

Token Followed by... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

aggregates Expression of the aggregate function. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-69

SQL/MX Operators SORT_PARTIAL_GROUPBY_LEAF Operator

TP663851.fm Page 70 Monday, October 17, 2011 11:48 AM
operator finalizes the group by at the ESP level. This operator consists of a one-row
aggregate without standard aggregate functions (SUM, MIN, MAX, and so on). The
root portion occurs in the root. The description field for this operator contains:

The following is an example of the SORT_PARTIAL_AGGR_ROOT operator:

prepare TestQuery17 from
select T03.char_100
 from PTAB03 T03
 where T03.char_100 =
 (Select min(T00.char_10)
 from PTAB00 T00);

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 aggregates
 min(min(DETCAT.DETSCH.PTAB00.CHAR_10))

SORT_PARTIAL_GROUPBY_LEAF Operator

Groupby Group

The SORT_PARTIAL_GROUPBY_LEAF operator executes a partial group by as close
to where the data is read as is cost effective. This strategy reduces the amount of data
that must be redistributed for a query. The operator must always be accompanied by a
SORT_PARTIAL_GROUPBY_ROOT operator above it in the tree, which finalizes the
query.

Token Followed by... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

aggregates Expression of the aggregate function. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-70

SQL/MX Operators SORT_PARTIAL_GROUPBY_ROOT Operator

TP663851.fm Page 71 Monday, October 17, 2011 11:48 AM
The SORT_PARTIAL_GROUPBY_LEAF operator has one child node. The description
field for this operator contains:

The following is an example of the SORT_PARTIAL_GROUPBY_LEAF operator:

control query shape
sort_groupby(partition_access(sort_groupby(scan)));

prepare TestQuery33 from
select int64_6,count(*)
 from PTAB09
 where int64_6 IN (0,2,4,5)
 group by int64_6;

DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 grouping_columns DETCAT.DETSCH.PTAB09.INT64_6
 aggregates count(1)

SORT_PARTIAL_GROUPBY_ROOT Operator

Groupby Group

The SORT_PARTIAL_GROUPBY_ROOT operator works together as a pair with the
SORT_PARTIAL_GROUPBY_LEAF operator. The
SORT_PARTIAL_GROUPBY_ROOT operator finalizes the group by at the ESP level.

Token Followed by... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

grouping_columns Expression of the grouping columns. expr(text)

aggregates Expression of the aggregate function. expr(text)

selection_predicates Expression of the HAVING clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-71

SQL/MX Operators SORT_PARTIAL_GROUPBY_ROOT Operator

TP663851.fm Page 72 Monday, October 17, 2011 11:48 AM
The SORT_PARTIAL_GROUPBY_ROOT operator has one child node. The description
field for this operator contains:

The following is an example of the SORT_PARTIAL_GROUPBY_ROOT operator:

control query shape
sort_groupby(partition_access(sort_groupby(scan)));

prepare TestQuery33 from
select int64_6,count(*)
 from PTAB09
 where int64_6 IN (0,2,4,5)
 group by int64_6;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 grouping_columns DETCAT.DETSCH.PTAB09.INT64_6
 aggregates sum(count(1))

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment. 0
is always the master executor and 1 is reserved
for the EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

aggregates Expression of the aggregate function. expr(text)

selection_predicate Expression of the HAVING clause. expr(text)

grouping_columns Expression of the grouping columns. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-72

SQL/MX Operators SORT_SCALAR_AGGR Operator

TP663851.fm Page 73 Monday, October 17, 2011 11:48 AM
SORT_SCALAR_AGGR Operator

Groupby Group

The SORT_SCALAR_AGGR operator occurs for aggregates without a GROUP BY
clause. It returns one row. The description field for this operator contains:

The following is an example of the SORT_SCALAR_AGGR operator:

PREPARE TestQuery18 FROM
SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address,
s_phone, s_comment
FROM part,supplier,partsupp, nation, region
WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND p_size = 15
AND p_type like '%BRASS'
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = 'EUROPE'
AND ps_supplycost = (SELECT MIN(ps_supplycost)
FROM partsupp ps1,supplier s1, nation n1,region r1
WHERE p_partkey = ps1.ps_partkey
AND s1.s_suppkey = ps1.ps_suppkey
AND s1.s_nationkey = n1.n_nationkey
AND n1.n_regionkey = r1.r_regionkey
AND r1.r_name = 'EUROPE')
ORDER BY s_acctbal desc, n_name, s_name, p_partkey;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 aggregates
 min(DETCAT.DETSCH.PARTSUPP.PS_SUPPLYCOST)
 selection_predicates ... (DETCAT.DETSCH.PSX1.PS_SUPPLYCOST =
 min(DETCAT.DETSCH.PARTSUPP.PS_SUPPLYCOST))

Token Followed by... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

aggregates Expression of the aggregate function. expr(text)

selection_predicates Expression of the HAVING clause. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-73

SQL/MX Operators SPLIT_TOP Operator

TP663851.fm Page 74 Monday, October 17, 2011 11:48 AM
SPLIT_TOP Operator

Exchange Group

The SPLIT_TOP operator describes a portion of an execution plan for a file system
interface in which requests to DAM occur with some level of parallel processing. The
operator for a SPLIT_TOP operator is always SPLIT_TOP. For more information about
exchange operators, see Section 8, Parallelism.

The SPLIT_TOP operator has one child node. The description field for this operator
contains:

The following is an example of the SPLIT_TOP operator:

PREPARE TestQuery19 FROM
select cust_id, count(*) as order_count from orders
where order_date > (date '2001-01-12') group by cust_id order by
cust_id;

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 olt_optimization not used

Token Followed by ... Data Type

fragment_id A sequential number assigned to the
fragment. 0 is always the master executor
and 1 is reserved for the EXPLAIN plan.
Numbers 2 to n will be ESP or DAM
fragments.

integer

parent_frag The fragment_id for the parent of the
current fragment. The value is (none) for
the master executor.

integer

fragment_type Master, ESP, or DP2. text

olt_optimization Indicates whether an optimization for short
and simple operations is used. Value is
used if this optimization is used. Its value is
used or not used.

text

parent_processes Number of ESPs containing this operator.
The value will be one if the parent is Master
Executor.

integer

child_processes Number of bottom partitions. integer

parent_partitioning_function Type of top partitioning and contains
summary information about the parallel
plan.

text

child_partitioning_function Indicates how the input data received by the
SPLT_TOP is organized.

text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-74

SQL/MX Operators SUBSET_DELETE Operator

TP663851.fm Page 75 Monday, October 17, 2011 11:48 AM
 parent_processes 1
 child_processes 3 parent_partitioning_fun grouped
 1 to 3,PAPA with 3 PA(s),
 exactly 1 partition
 child_partitioning_func range
 partitioned 3 ways on
 (T03.SINT32_UNIQ)

SUBSET_DELETE Operator

DAM Subset Group

The SUBSET_DELETE operator describes a portion of an execution plan that details
how a certain access path is scanned: it deletes more than one row. A subset
operation performs the read and delete in a combined operation. This operation differs
from CURSOR_DELETE, which performs the read and delete in separate operations.
The CURSOR_DELETE operation also involves more messages.

This operator has no child nodes. The description field for this operator contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

iud_type Type of delete followed by table or index name. expr(text)

predicate Expression specified in WHERE clause. expr(text)

part_key_predicate Predicate expression specified on partitioning
key. It is displayed only if partitioning key differs
from clustering key.

expr(text)

begin_key Expression of the begin key predicate. expr(text)

index_begin_key Expression of the begin key predicates on
index.

expr(text)

end_key Expression of the end key predicate. expr(text)

index_end_key Expression of the end key predicates on index. expr(text)

check_constraint Check constraints in the table. expr(text)

scan_type Information on indexes. text

scan_direction Direction in which table is scanned: forward or
reverse.

text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-75

SQL/MX Operators SUBSET_UPDATE Operator

TP663851.fm Page 76 Monday, October 17, 2011 11:48 AM
The following is an example of the SUBSET_DELETE operator:

PREPARE TestQuery1 FROM
DELETE FROM customer
WHERE c_nationkey<300;

DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 Scan_Direction forward
 olt_optimization not used
 olt_opt_lean not used
 iud_type subset_delete DETCAT.DETSCH.CUSTOMER
 lock_mode not specified, defaulted to lock
 cursor
 access_mode not specified, defaulted to read
 committed
 columns_retrieved 8
 predicate (C_NATIONKEY < 300)
 begin_key (C_CUSTKEY = <min>)
 end_key (C_CUSTKEY = <max>)

SUBSET_UPDATE Operator

DAM Subset Group

The SUBSET_UPDATE operator describes a portion of an execution plan that details
how a certain access path is scanned: it updates more than one row. A subset
operation performs the read and update in a combined operation. This operation differs
from CURSOR_UPDATE, which performs the read and update in separate operations.
The CURSOR_UPDATE operation also involves more messages.

lock_mode The lock mode specified: shared, exclusive, not
specified (defaulted to lock cursor), or unknown.

text

access_mode The access specified: read uncommitted, skip
conflict, read committed, stable, serializable,
mx serializable, not specified (defaulted to read
committed), or unknown.

text

columns_retrieved Estimate of the number of columns to be
returned.

integer
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-76

SQL/MX Operators SUBSET_UPDATE Operator

TP663851.fm Page 77 Monday, October 17, 2011 11:48 AM
This operator has no child nodes. The description field for this operator contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

begin_key Expression of the begin key predicates on the
clustering key columns of the table or index.

expr(text)

index_begin_key Expression of the begin key predicates on
index.

expr(text)

end_key Expression of the end key predicates on the
clustering key columns of the table or index.

expr(text)

index_end_key Expression of the end key predicates on index. expr(text)

check_constraint Check constraints in the update table. expr(text)

scan_type Physical scan associated with the scan logical
operator.

text

scan_direction Direction in which table is scanned: forward or
reverse.

text

lock_mode The lock mode specified: shared, exclusive, not
specified (defaulted to lock cursor), or unknown.

text

access_mode The access specified: read uncommitted, skip
conflict, read committed, stable, serializable,
mx serializable, not specified (defaulted to read
committed), or unknown.

text

new_rec_expr Computation of the row to be updated. expr(text)

columns_retrieved Estimate of the number of columns to be
returned.

integer

predicate Predicate used in the UPDATE statement. expr(text)

part_key_predicate Predicate expression specified on partitioning
key. It is displayed only if partitioning key differs
from clustering key.

expr(text)

iud_type Specifies the type of update operator. Could be
subset_update, unique_update, or
cursor_update.

expr(text)

selection_predicate Predicate specified in the WHERE clause of a
query.

expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-77

SQL/MX Operators TRANSPOSE Operator

TP663851.fm Page 78 Monday, October 17, 2011 11:48 AM
The following is an example of the SUBSET_UPDATE operator:

PREPARE TestQuery20 FROM
UPDATE customer SET c_nationkey = c_nationkey + 1
WHERE c_custkey > 300;

DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 Scan_Direction forward
 olt_optimization not used
 olt_opt_lean not used
 iud_type subset_update DETCAT.DETSCH.CUSTOMER
 lock_mode not specified, defaulted to lock
 cursor
 access_mode not specified, defaulted to read
 committed
 columns_retrieved 8
 new_rec_expr (C_NATIONKEY assign (cast(C_NATIONKEY
 AS NUMERIC(11) SIGNED) + cast(1 AS
 NUMERIC(11) SIGNED)))
 begin_key (C_CUSTKEY = 300)
 end_key (C_CUSTKEY = <max>)

TRANSPOSE Operator

Data Mining Group

The TRANSPOSE operator occurs as a result of a TRANSPOSE clause.

The TRANSPOSE operator has one child. The description field for this operator
contains:

For more information about data mining, see the SQL/MX Data Mining Guide.

Token Followed by... Data Type

fragment_id A sequential number assigned to the fragment. 0
is always the master executor and 1 is reserved
for the EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

transpose_union_vector Represents a transpose set of the transpose
clause. If multiple transpose sets, then multiple
instances of the token.

ItemExpr
tree
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-78

SQL/MX Operators TUPLE_FLOW Operator

TP663851.fm Page 79 Monday, October 17, 2011 11:48 AM
The following is an example of the TRANSPOSE operator:

prepare TestQuery23 from
insert into T061_T232OR1
(
 select
 cast(c1 || c2 || c3 || c4 || c5 as int),
 cast(c1 || c2 || c3 || c4 || c5 as int),
 cast(c1 || c2 || c3 || c4 || c5 as int),
 cast(c1 || c2 || c3 || c4 || c5 as int)
 from
 (values(1)) t
 transpose '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
 as c1
 transpose '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
 as c2
 transpose '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
 as c3
 transpose '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
 as c4
 transpose '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
 as c5
);

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 transpose_union_vector
 ValueIdUnion('0', '1', '2', '3',
 '4', '5', '6', '7', '8', '9')

TUPLE_FLOW Operator

Join Group

The TUPLE_FLOW operator describes a portion of an execution plan that involves a
nested join. This operator enables data to flow from one child to the other.

The TUPLE_FLOW operator has two child nodes. The description field for this operator
contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-79

SQL/MX Operators TUPLELIST Operator

TP663851.fm Page 80 Monday, October 17, 2011 11:48 AM
The following is an example of the TUPLE_FLOW operator:

prepare TestQuery38 from
UPDATE table_b SET owner_count = (
 SELECT count(*) FROM table_a
 WHERE (table_b.col1,table_b.col2)=
 (table_a.col1,table_a.col2)
 AND table_a.col3 = 1
);

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 transpose_union_vector
 ValueIdUnion('0', '1', '2', '3',
 '4', '5', '6', '7', '8', '9')

TUPLELIST Operator

Tuple Group

The TUPLELIST operator shows the values that you place in the query when the
VALUES clause is used. The description field for this operator contains:

join_type Inner, left, natural, inner semi, or inner anti-
semi-join.

text

join_method Name of join method:nested or in-order nested
join.

text

join_predicate Expression of the join predicate expr(text)

parallel_join_type Type1 or Type2, depending on parallel join
algorithm

text

selection_predicate Expression of the WHERE clause expr(text)

Token Followed by... Data type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

tuple_expr The tuple produced by this node. expr(text)

Token Followed by ... Data Type
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-80

SQL/MX Operators UNARY_UNION Operator

TP663851.fm Page 81 Monday, October 17, 2011 11:48 AM
The following is an example of the TUPLELIST operator:

PREPARE TestQuery21 FROM
INSERT INTO nation
VALUES (43, 'botswana', 16, 'african country'),
(44, 'france', 23, 'european country'),
(45, 'nepal', 88, 'asian country');

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 tuple_expr cast(%(45) AS INTEGER SIGNED),
 cast(%('nepal') AS VARCHAR(25)
 CHARACTER SET ISO88591), cast(%(88)
 AS INTEGER SIGNED),
 cast(%('asian country') AS
 VARCHAR(152) CHARACTER
 SET ISO88591)

UNARY_UNION Operator

The UNARY_UNION operator first evaluates the request using the condition
expression (condExpr) associated to the operator. If the result is true, it passes the
request to its child. In this case the UNARY_UNION operator always has one child.

The description field for this operator contains:

Token Followed by... Data type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

sort_order Sort order of the result of the union. text

merge_expression Expression used to determine which child
operator to read from next—read from left if true
and read from right if false.

expr(text)

union_type Merge, physical or unspecified. text

condExpr Expression used for conditional union. Occurs
with the IF statement in compound statements.

expr(text)

trigExceptExpr Expression used for trigger exceptions. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-81

SQL/MX Operators UNARY_UNION Operator

TP663851.fm Page 82 Monday, October 17, 2011 11:48 AM
The following is an example of the UNARY_UNION operator:

create table table_a
(col1 char(5) NOT NULL NOT DROPPABLE
, col2 int NOT NULL NOT DROPPABLE
, col3 smallint
, CONSTRAINT table_a_PRIMARY_KEY PRIMARY KEY (col1 ASC, col2
 ASC) NOT DROPPABLE
);

create table table_b
(col1 char(5) NOT NULL NOT DROPPABLE
, col2 int NOT NULL NOT DROPPABLE
, col3 smallint
, owner_count int
, CONSTRAINT table_b_PRIMARY_KEY PRIMARY KEY (col1 ASC, col2
ASC) NOT DROPPABLE
);

ALTER TABLE table_a
 ADD CONSTRAINT table_a_KEY FOREIGN KEY
 (col1, col2) REFERENCES
 table_b(col1, col2) on update restrict on delete restrict
DROPPABLE ;

CREATE TRIGGER table_a_Owner_Count
 AFTER INSERT ON table_a
 REFERENCING NEW AS newrow
 FOR EACH ROW
 UPDATE table_b SET owner_count = (
 SELECT count(*) FROM table_a
 WHERE (table_b.col1,table_b.col2)=
 (table_a.col1,table_a.col2)
 AND table_a.col3 = 1
)
 WHERE (table_b.col1,table_b.col2)=
 (newrow.col1,newrow.col2);

insert into table_b values('A', 1, 1, 0);

Prepare TestQuery11 from
insert into table_a values('A', 1, 1);

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 union_type merge
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-82

SQL/MX Operators UNIQUE_DELETE Operator

TP663851.fm Page 83 Monday, October 17, 2011 11:48 AM
UNIQUE_DELETE Operator

DAM Unique Group

The UNIQUE_DELETE operator describes a portion of an execution plan that works on
one row only. It deletes zero or one row.

The UNIQUE_DELETE operator has no child nodes. The description field for this
operator contains:

The following is an example of the UNIQUE_DELETE operator:

prepare TestQuery26 from
delete from tt22 where f1=46;

DESCRIPTION
 olt_optimization used
 olt_opt_lean used
 fragment_id 2

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

index_key Expression of the begin key predicates on
index.

expr(text)

key Expression of the key predicate. expr(text)

part_key_predicate Predicate expression specified on partitioning
key. It is displayed only if partitioning key differs
from clustering key.

expr(text)

check_constraint Check constraints in the delete table. expr(text)

olt_optimization Indicates whether an optimization for short,
simple operations is used. Its value is used or
not used.

text

olt_opt_lean Indicates for short, simple operations whether a
further optimization that reduces the physical
size of the plan is used. Its value is used or not
used.

text

iud_type Type of delete followed by table or index name. expr(text)

predicate Expression specified on WHERE clause that is
not reflected in the begin and end predicates.

expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-83

SQL/MX Operators UNIQUE_UPDATE Operator

TP663851.fm Page 84 Monday, October 17, 2011 11:48 AM
 parent_frag 0
 fragment_type dp2
 Scan_Direction forward
 olt_optimization used
 olt_opt_lean used
 iud_type unique_delete DETCAT.DETSCH.TT22
 lock_mode not specified, defaulted to lock
 cursor
 access_mode not specified, defaulted to read
 committed
 columns_retrieved 2
 key (F1 = %(46))

UNIQUE_UPDATE Operator

DAM Unique Group

The UNIQUE_UPDATE operator describes a portion of an execution plan that works
on one row only; it updates zero or one row.

The UNIQUE_UPDATE operator has no child nodes. The description field for this
operator contains:

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment. 0
is always the master executor and 1 is reserved
for the EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

new_rec_expr Computation of the row to be updated expr(text)

predicate Expression specified on WHERE clause that is
not reflected in the begin and end predicates.

expr(text)

key Expression of the key predicate. expr(text)

index_key Expression of the key predicates on index. expr(text)

olt_optimization Indicates whether an optimization for short,
simple operations is used. The value used or
not used.

text

olt_opt_lean Indicates for short, simple operations whether a
further optimization that reduces the physical
size of the plan is used. Its value is used or not
used.

text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-84

SQL/MX Operators UNPACK Operator

TP663851.fm Page 85 Monday, October 17, 2011 11:48 AM
The following is an example of the UNIQUE_UPDATE operator:

prepare TestQuery27 from
UPDATE tt22
SET f2 = 1
WHERE f1 = 2009;

DESCRIPTION
 olt_optimization used
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 Scan_Direction forward
 olt_optimization used
 olt_opt_lean not used
 iud_type unique_update DETCAT.DETSCH.TT22
 lock_mode not specified, defaulted to lock
 cursor
 access_mode not specified, defaulted to read
 committed
 columns_retrieved 2
 new_rec_expr (F2 assign 1)
 key (F1 = 2009)

UNPACK Operator

Rowset Group

Use the UNPACK operator in a query plan when an array is used as input in a query
(for example, inserting rows from rowset arrays). The UNPACK operator extracts the
elements from the array to use in the query. For more information about rowsets and
arrays, see the SQL/MX Programming Manual for C and COBOL.

The UNPACK operator has one child. The description field for this operator contains:

part_key_predicate Predicate specified on the partitioning key.
Displayed only if partitioning key differs from
clustering key.

expr(text)

check_constraint Check constraints in the update table. expr(text)

iud_type Type of update followed by table or index name. expr(text)

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment.
0 is always the master executor and 1 is
reserved for the EXPLAIN plan. Numbers 2 to n
will be ESP or DAM fragments.

integer

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2 text
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-85

SQL/MX Operators VALUES Operator

TP663851.fm Page 86 Monday, October 17, 2011 11:48 AM
Create a module file. For details on creating module file, see the SQL/MX
Programming Manual for C and COBOL.

Now execute the following command:

explain <name of a statement in module file> from <name of
module file>

The following is an example of the UNPACK operator:

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 unpack_expression (:a RowsetArrayScan
 \:_sys_rowset_index1),
 (:b
 RowsetArrayScan\:_sys_rowset_index1),
 (:c
 RowsetArrayScan\:_sys_rowset_index1)
 packing_factor 200
 index_value \:_sys_rowset_index1

VALUES Operator

Tuple Group

The VALUES operator calculates an expression for each row it receives from its child
node and returns that expression to its parent node.

The VALUES operator has one child node. The description field for this operator
contains:

unpack_expression Expression used to extract values from a
packed row

expr(text)

index_value System-generated index used when accessing
a packed row

expr(text)

packing_factor Used to extract the packing factor from the
packed row. The packing factor is the number
of logical rows in the packed row.

integer

Token Followed by ... Data Type

fragment_id A sequential number assigned to the fragment. 0
is always the master executor and 1 is reserved
for the EXPLAIN plan. Numbers 2 to n will be
ESP or DAM fragments.

integer
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-86

SQL/MX Operators VALUES Operator

TP663851.fm Page 87 Monday, October 17, 2011 11:48 AM
The following is an example of the VALUES operator:

create table table_a
(col1 char(5) NOT NULL NOT DROPPABLE
, col2 int NOT NULL NOT DROPPABLE
, col3 smallint
, CONSTRAINT table_a_PRIMARY_KEY PRIMARY KEY (col1 ASC, col2
ASC) NOT DROPPABLE
);

create table table_b
(col1 char(5) NOT NULL NOT DROPPABLE
, col2 int NOT NULL NOT DROPPABLE
, col3 smallint
, owner_count int
, CONSTRAINT table_b_PRIMARY_KEY PRIMARY KEY (col1 ASC, col2
ASC) NOT DROPPABLE
);

ALTER TABLE table_a
 ADD CONSTRAINT table_a_KEY FOREIGN KEY
 (col1, col2) REFERENCES
 table_b(col1, col2) DROPPABLE ;

CREATE TRIGGER table_a_Owner_Count
AFTER INSERT ON table_a
REFERENCING NEW AS newrow
FOR EACH ROW
UPDATE table_b SET owner_count = (
SELECT count(*) FROM table_a
 WHERE (table_b.col1,table_b.col2)=
 (table_a.col1,table_a.col2)
 AND table_a.col3 = 1
)
 WHERE (table_b.col1,table_b.col2)=
 (newrow.col1,newrow.col2);

insert into table_b values('A', 1, 1, 0);

Prepare TestQuery11 from
insert into table_a values('A', 1, 1);

DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master

parent_frag The fragment_id for the parent of the current
fragment. The value is (none) for the master
executor.

integer

fragment_type Master, ESP, or DP2. text

tuple_expr The tuple produced by this node. expr(text)
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-87

SQL/MX Operators VALUES Operator

TP663851.fm Page 88 Monday, October 17, 2011 11:48 AM
 tuple_expr NULL
 selection_predicates 0.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
7-88

TP663851.fm Page 1 Monday, October 17, 2011 11:48 AM
8 Parallelism

Using SQL/MX parallel processing within a large query maximizes the efficiency and
performance of such queries. Parallel execution can assume multiple forms. You can
partition the data or the query execution (or both) and then process the obtained
partitions in parallel. This section describes the types of parallelism supported by
NonStop SQL/MX.

 Types of Parallelism in NonStop SQL/MX on page 8-1

 Parallel Execution Principles on page 8-2

 Parallel Plan Generation on page 8-6

 Explaining Parallel Plans on page 8-12

 Influencing Parallel Plans on page 8-24

The SQL/MX optimizer examines both parallel and nonparallel execution plans and
chooses the plan that has the lowest total cost, even if it is a nonparallel plan.

Good candidates for parallelism are operators that return few rows, after processing
large amounts of data, against tables that are partitioned. A good candidate for a
parallel plan is a query such as SELECT COUNT(*) FROM T1,T2 WHERE
T1.A=T2.B. In this example, large amounts of data must be retrieved, and an
aggregate must be computed. However, only one row is returned at the end of the
query.

Types of Parallelism in NonStop SQL/MX
 Partitioned Parallelism
 Pipelined Parallelism
 Independent Parallelism

The SQL/MX architecture provides pipelined and independent parallelism without
special processing. An individual query plan produced by NonStop SQL/MX can
contain any combination of pipelined, independent, or partitioned parallelism.

Partitioned Parallelism

Partitioned parallelism, the main type of parallelism in NonStop SQL/MX, is the ability
to divide the data to be processed into partitions (fractions) and to work on each one in
parallel. In a partitioned parallel plan, multiple operators all work on the same plan.
Results are merged by using multiple pipelines, enabling NonStop SQL/MX to preserve
the sort order of the input partitions. Partitioning is also called data parallelism because
the data is the unit that gets partitioned into independently executable fractions.
Partitioned parallelism can occur in DAM processes (called DAM parallelism) and ESP
processes (called ESP parallelism). See DAM and ESP Parallelism on page 8-5.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-1

Parallelism Pipelined Parallelism

TP663851.fm Page 2 Monday, October 17, 2011 11:48 AM
Pipelined Parallelism

Pipelined parallelism is an inherent feature of NonStop SQL/MX because of its data
flow architecture. This architecture interconnects all operators by pipes, with the output
of one operator being piped as input to the next operator, and so on. The result is that
each operator works independently of any other operator, producing its output as soon
as its input is available. Pipelining is seen in almost all query plans. You cannot force
pipelined parallelism. It occurs as a natural by-product of the SQL/MX search engine.

Independent Parallelism

Independent execution is also an inherent feature of NonStop SQL/MX because of the
architecture. Independent parallelism means that two or more operators can execute
simultaneously. Except for certain synchronization conditions, the operators execute
independently; for example, the parts of a UNION query. Usually each of the
independent operators is connected by a pipeline to a common ancestor. Independent
parallelism could also be called operator parallelism, because it is the operators on the
data that execute in parallel. Independent parallelism occurs in many plans. Like
pipelining, you cannot force independent parallelism.

Parallel Execution Principles

Query Plan as a Data Flow Tree

The query plan is represented by a data flow tree with three types of nodes:

The next figure shows a basic query plan with the data flow elements identified.

Leaf nodes Each leaf node is a data source. Typically, the leaf node is either
a base table scan or an index scan.

Internal nodes Each internal node corresponds to an operator within the current
query. Like the operator itself, an internal node can be unary,
binary, or N-ary. The Exchange node is a special internal node
that represents a process boundary.

Root node Each plan has exactly one root node. The result of the query is
the output of the root node.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-2

Parallelism Exchange Nodes and Plan Fragments

TP663851.fm Page 3 Monday, October 17, 2011 11:48 AM
Exchange Nodes and Plan Fragments

A plan fragment is a portion of a query plan that executes within a single process. The
plan fragment boundaries are identified by the Exchange nodes. These operators are
identified as Exchange nodes:

 PARTITION_ACCESS (also identified as PA in EXPLAIN output). This unary node
that provides access to a single partition at a time. All disk access within a
PARTITION_ACCESS node is serial: that is, one request at a time. This node
identifies the DAM process boundary.

 SPLIT_TOP (also identified as PAPA in EXPLAIN output). This node is an N-ary
operator that provides concurrent access to more than one PARTITION_ACCESS
node. As a result, the SPLIT_TOP node facilitates DAM parallelism. Unlike the
other two Exchange nodes, the SPLIT_TOP node does not identify a process
boundary.

 ESP_EXCHANGE. This node represents the transfer of data between two sets of
processes: bottom processes that produce output rows and top processes that
receive the rows produced by the bottom processes.

 With hash repartitioning, a row produced by a bottom process gets randomly
assigned to a top process by applying a hash function to the row’s partitioning
key.

 With range repartitioning, the top processes each have an associated
contiguous range of partitioning key values, and a row produced by a bottom
process gets assigned to a top process by determining into which range the
row’s partitioning key falls.

 With replication, a copy of each row produced by any bottom process gets sent
to all top processes. The ESP_EXCHANGE node also redistributes the input
data stream by collecting parallel data streams into one process.

root [7]

esp exchange [6]

merge_join [5]

partition access [2] partition access [4]

file_scan ORDERS [1] file_scan LINEITEM [3]
VST820.vsd

Root node

Internal nodes

Process boundary

Leaf Nodes
Process boundary
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-3

Parallelism Exchange Nodes and Plan Fragments

TP663851.fm Page 4 Monday, October 17, 2011 11:48 AM
For more information about these types of partitioning functions, see the
discussion regarding Join With Matching Partitions on page 8-6.

A plan fragment executes in one of these processes:

 DAM. A plan fragment executes within the DAM process if and only if its root node
is a PARTITION_ACCESS node.

 ESP. A plan fragment executes within an ESP process if and only if its root node is
an ESP_EXCHANGE node.

 Master executor or root. A plan fragment executes in the master executor process
if and only if it contains the ROOT operator.

Multiple instances of a plan fragment can execute in parallel, often on different
processors. Each instance differs from the other instances of the same plan fragment
only in minor details; for example, the partition boundaries. Each instance usually
processes only a part (or partition) of the data.

The next figure shows three plan fragments, DAM (index_scan to partition_access),
ESP (split_top to esp_exchange), and the master executor (sort to root). At run time,
the plan executes as a collection of processes consisting of 12 DAMs (executing the
12 instances of the DAM plan fragment), 4 ESPs (executing the 4 instances of the ESP
fragment), and one master executor process (executing the single instance of the
master executor plan fragment).
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-4

Parallelism DAM and ESP Parallelism

TP663851.fm Page 5 Monday, October 17, 2011 11:48 AM
For more details about understanding plan fragments, plan fragment boundaries, and
reading the EXPLAIN output, see Explaining Parallel Plans on page 8-12.

DAM and ESP Parallelism

Partitioned parallelism uses different processes, depending on the type of operators
being processed: DAM processes and ESPs.

 DAM parallelism indicates parallel execution in multiple DAM fragment instances.
The instances might be accessing different tables, such as in a join or union query,
or they might be accessing different partitions of one table under coordination of a
SPLIT_TOP node. DAM parallelism is characterized by no-wait communication
(asynchronous access). This form of parallelism is inexpensive because it uses
existing disk processes; however, it is limited in use. For example, DAM processes
cannot repartition, and they might need to service other requests.

 ESP parallelism refers to any parallel plan with at least one ESP plan fragment.
ESP parallelism occurs when a plan fragment executes within a special process
called the executor server process (ESP). ESP parallelism is enabled by the
default ATTEMPT_ESP_PARALLELISM.

root [9]

sort [6]

1

Master Executor sort_partial_groupby_root [7]

esp exchange [5]

4 (range)

split_top [4]

12 (logphys)

ESP Fragment

partition access [3]

hash_partial_groupby_leaf [2]

index_scan [1] - LX3 (m)

DAM Fragment

Root

ESP ESPESP ESP

Process Structure of the Plan

VST081.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-5

Parallelism Parallel Plan Generation

TP663851.fm Page 6 Monday, October 17, 2011 11:48 AM
A cost is associated with starting an ESP process. The optimizer balances this cost
against the performance gain resulting from the increased parallelism and chooses
ESP parallelism only if the gain exceeds the ESP start-up cost.

Parallel Plan Generation
The SQL/MX optimizer uses different methods to process operators, depending on the
general category of operator type, as described next.

Scan, Update, and Delete

DAM parallelism enables multiple PARTITION_ACCESS operators to access data
simultaneously by using asynchronous access. Data is consolidated through a
SPLIT_TOP node.

Join With Matching Partitions

If the optimizer finds that matching partitions exist in tables that are involved in a join, it
tries to join the tables by using the matching partitions algorithm. This type of plan is
also known as a Type1 join. Type1 joins can be forced by using the CONTROL
QUERY SHAPE statement. For more information, see Influencing Parallel Plans on
page 8-24.

In a matching partitions parallel join, the corresponding partitioning key columns of
both tables involved in the join must be linked through the join predicate. In addition,
for range partitioning, the first key values (that is, the partition boundaries) must match.
For hash partitioning, the number of partitions in each table must be identical, and the
data types of the corresponding partitioning key columns of both tables must be
identical.

Decoupled Keys

A decoupled table or index is one where the partitioning key is different from the
clustering key and it is not a prefix of the clustering key. Decoupled keys follow the
same rules as partitioning. If the clustering keys are compatible, the join is more
efficient

Range and Hash Partitioning

If the number of partitions match, but not the first key values, the optimizer can still use
the matching partitions algorithm while some form of repartitioning or logical
subpartitioning occurs to rectify the differing boundary values.

The optimizer has the ability to repartition one input, both inputs, or no inputs (where
input means outer and inner tables) before joining if the corresponding partitioning key
columns of both tables involved in the join are not linked through the join predicate or if
more partitions are needed to produce an optimal degree of parallelism.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-6

Parallelism Join With Matching Partitions

2.vsd

l B
t 3

TP663851.fm Page 7 Monday, October 17, 2011 11:48 AM
In the simple case shown in the next figure, the first partition of Table A is joined with
the first partition of Table B, the second partition of Table A is joined with the second
partition of Table B, and so on. This method of performing joins works only if, for a
given row in Table A, partition 1, all its matching rows are stored in Table B, partition 1.
In the case where both Table A and Table B are partitioned on the join attributes with
matching key ranges or compatible hashing functions, the optimizer might choose to
use this algorithm.

As mentioned previously, the join with matching partitions is called a Type1 join; the
case shown in the figure is a generalized Type1 join. Variations of the Type1 join
include those discussed next.

 Join With Range Repartitioning

Range repartitioning allows matching partition joins between two tables where only
one table is partitioned on the join column. This type of plan can also be generated
if the partition first key boundary values do not match or if the number of partitions
of the two tables do not match or if one table is not clustered on the join columns.
In this type of plan, only one table is repartitioned.

SERIAL PLAN

VST08

Join

Tbl A
Prt 1

Tbl A
Prt 1

Tbl B
Prt 1

Tbl B
Prt 1

Tbl A
Prt 2

Tbl A
Prt 2

Tbl B
Prt 2

Tbl B
Prt 2

Join Join

Tbl A
Prt 3

Tbl A
Prt 3

Tbl B
Prt 3

Tb
Pr

Join

Combine

PARTITIONED PARALLEL PLAN
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-7

Parallelism Join With Matching Partitions

TP663851.fm Page 8 Monday, October 17, 2011 11:48 AM
 Join With Hash Repartitioning

If both tables are partitioned in a way that does not facilitate parallel execution for
the query, the optimizer can request the executor to repartition (reorganize) both
tables at run time. The matching partitions join algorithm is used on the
reorganized tables.

How the Optimizer Avoids Repartitioning for a Join

Repartitioning involves a lot of extra data movement, so the optimizer tries to avoid it
by using a more efficient alternative strategy known as logical partitioning. The
optimizer might choose one of these forms:

 Logical partition grouping

Logical partition grouping provides the ability to have fewer ESPs than partitions
without repartitioning. The number of ESPs in NonStop SQL/MX is determined
more by the number of available CPUs than it is by the number of partitions in the
tables. If a table has more partitions than available CPUs, the optimizer can group
the partitions so that each ESP processes multiple partitions as if they were a
single partition. Each ESP will group adjacent partitions.

For logical partition grouping in hash partitioned tables, a hash partitioned table
can be grouped to have fewer logical partitions, but it can be matched only with
another table that has the same number of original partitions. For example, a table
with 15 partitions can be grouped to have 4 logical partitions. Three of the logical
partitions would have 4 partitions, and one logical partition would have 3 partitions.
However, this table can be matched only with another table with 15 partitions and 4
logical partitions. It cannot be matched with a hash partitioned table with 16
partitions and 4 logical partitions.

The next figure illustrates logical partition grouping (range partition). The left child
of the join contains two partitions; the right child contains four partitions. Notice,
however, that the partitioning key boundary values of the left child match a subset
of the partitioning key boundary values of the right child. (The left child has a
partitioning key boundary value of 100, and the right child has partitioning key
boundary values of 50, 100, and 150.) The left child is a grouping of the right child,
and the right child is a refinement of the left child. In such circumstances, an ESP
can combine contiguous physical partitions into a single logical partition.

This figure shows how physical partitions 1 and 2 of the right child combine to form
logical partition 1, and how physical partitions 3 and 4 of the right child combine to
form logical partition 2. The logical partitions of the right child match the left child’s
partitioning scheme.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-8

Parallelism Join With Matching Partitions

TP663851.fm Page 9 Monday, October 17, 2011 11:48 AM
 Join with logical subpartition alignment

Logical subpartitioning is typically used when the only difference between the join
tables is the partition boundaries or the number of partitions. Hash partitioned
tables cannot use logical subpartitioning.

The optimizer can choose this feature if both tables are partitioned on the join
columns but the first key values or the number of partitions of the second table do
not match the first table and the second table is clustered on the join columns. The
partitioning key and the clustering key columns of the second table must be the
same.

For logical subpartitioning, the optimizer behaves as if the other table is partitioned
the same way as the first table (“logically” partitions). Consequently, each instance
of the join operator (ESP) could be accessing more than one partition or some
fraction of a partition (subpartition) of the second table.

The next figure shows an example of logical subpartitioning. The first table has
three partitions. The second table has four partitions. However, because the
partitioning key and clustering key columns match the first table, the optimizer can
adjust the partitioning key boundary values of the second table into three logical
partitions that match the first table.

Tbl A
Prt 1

0 - 100

Tbl A
Prt 2

101 -

Left Child

Tbl B
Prt 1

Tbl B
Prt 2

Tbl B
Prt 3

Tbl B
Prt 4

0 - 50 51 - 100 101 - 150

Right Child

0 - 100 101 -

VST083.vsd

TB L1 TB L2

151 -

Tbl A
Prt 1

0 - 100

Tbl A
Prt 2

101 - 200

Tbl A
Prt 3

Left Child

Tbl B
Prt 1

Tbl B
Prt 2

Tbl B
Prt 3

Tbl B
Prt 4

0 - 75 76 - 150 151 - 225 226 -

TB L1 TB L2 TB L3

Right Child

0 - 100 101 - 200 201 -

VST084.vsd

201 -
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-9

Parallelism Join With Parallel Access to the Inner Table

TP663851.fm Page 10 Monday, October 17, 2011 11:48 AM
Join With Parallel Access to the Inner Table

In joins where the inner and outer tables do not match and repartitioning is undesirable
or not possible, the optimizer can still achieve parallelism by using parallel access to
the inner table. This type of plan is also known as a Type2 join. Type2 joins can be
forced by using the CONTROL QUERY SHAPE statement. For more information, see
Influencing Parallel Plans on page 8-24.

In a parallel access join, each partition of the outer table is joined with the entire inner
table, which might or might not be partitioned. This strategy guarantees the correct
result regardless of how tables are partitioned and what the join predicates specify,
because any given row in an outer table partition will always be able to find its
matching rows in the inner table.

A nested join algorithm might be chosen by the optimizer based on the selectivity of
the predicate. If the selectivity is low and the number of probes required to the inner
table is small, the nested join algorithm might yield the optimal plan. However, if many
probes of the inner table are required (with a lot of concurrent access from the join
ESPs to the inner table), the nested join algorithm can cause a performance
degradation. This type of join is also called replicate no broadcast.

You can avoid performance degradation when the parallel access is combined with a
hash join, because the inner table is materialized in the memory of the join process.
Instead of randomly probing the inner table, each of the join processes receives a
complete copy of the inner table from a set of ESPs that broadcast the inner table
contents. When the join process receives a complete copy of the inner table, the join is
called replicate by broadcast.

The next figure shows a nested join with parallel access to the inner table.

Note. Replicate no broadcast means that no source ESPs exist. The target ESPs
independently read the data they need.

Note. Replicate by broadcast means that ESPs actually send multiple messages to each
recipient.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-10

Parallelism Unions

TP663851.fm Page 11 Monday, October 17, 2011 11:48 AM
Unions

The optimizer can choose to execute the union in parallel when another operator, such
as a group by, exists above the MERGE_UNION, which can benefit from receiving
parallel streams of data. For parallelism of the MERGE_UNION operator, the optimizer
supports a matching partitions union (based on the matching partitions join algorithm).
Inputs of the union must be partitioned the same; otherwise, the optimizer must
repartition the tables.

A union can be executed in parallel in three ways:

 If you do not need to order the data, the optimizer reads both tables in parallel.

 If you require ordering, the optimizer might use sort or index operations on the
individual tables and then merge the streams in parallel.

 In certain cases, the union is run in parallel by using ESPs that read different
partitions of each of the tables.

Group Bys

NonStop SQL/MX supports hash and sort group by operations in addition to scalar
aggregate operations (group by operation without a group by operator). The grouping
can be performed in DAM processes, ESPs, or the master executor.

A full group by can be executed in parallel if the data is partitioned on the group by
columns. A full scalar aggregate cannot be executed in parallel.

The partial group by operator can be executed in parallel without regard to the
partitioning scheme and might result in duplicate groups. Therefore, the results of a

VST890.vsd

Join
Join

Join

Combine

Outer Inner

Tbl A
Prt 2

Tbl BTbl A
Prt 3

SELECT * FROM A,B
 WHERE A.COL1=B.COL2;

Tbl A
Prt 1

Join
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-11

Parallelism Sort

TP663851.fm Page 12 Monday, October 17, 2011 11:48 AM
partial group by must be combined in a serial finalization step before the query result is
used. A partial scalar aggregate can be executed in parallel without regard to the
partitioning scheme, but the partial aggregate must be combined in a serial finalization
step.

Sort

NonStop SQL/MX can sort in parallel by using multiple ESPs or serially in the master
executor. A parallel sort requires a merge of sorted streams by the master executor or
by other ESPs.

Insert and Select

For both parallel and serial inserts and selects, the optimizer tries to insert rows
sequentially (rather than randomly) as much as possible. For performance reasons, the
optimizer generates a plan so that rows selected are ordered and partitioned the same
way as the target table. This feature can involve a sort prior to the insert. You can
disable this feature (to ensure that the optimizer does not perform a sort prior to
inserting rows) by setting the default setting UPD_ORDERED to OFF. For more
information, see System Default Settings That Affect Parallelism on page 8-25 and the
SYSTEM_DEFAULTS table entry of the SQL/MX Reference Manual.

Combining Different Types of Parallelism

Multilevel parallelism describes the ability of each operator to have a different level of
partitioned parallelism, including none. An example of multilevel parallelism is that
some of the operators closest to the root are not running in parallel, so they are
executing in the master, while lower level operators are running in parallel. It is also
possible for different operators to run in parallel but use a different number of ESPs.

NonStop SQL/MX supports the concept of some operators using the natural level of
parallelism, while other operators maximize the number of partitions based on the
number of available CPUs. At the DAM level, partitioning is fixed.

Explaining Parallel Plans
To review the optimized parallel plan, use the EXPLAIN function. For details on the
EXPLAIN function and reading the output, see Section 4, Reviewing Query Execution
Plans.

How to Determine if You Have a Parallel Plan

Make sure that the default settings that enable parallelism are on. For more
information, see System Default Settings That Affect Parallelism on page 8-25.

Compile the query and use the EXPLAIN function to review the query plan.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-12

Parallelism How to Determine if You Have a Parallel Plan

TP663851.fm Page 13 Monday, October 17, 2011 11:48 AM
Partitioned parallelism in query plans is represented by the operators of the Exchange
group: ESP_EXCHANGE and SPLIT_TOP. If your query plan does not contain either
of these operators, parallel processing was not used in the plan.

An additional exchange operator, PARTITION_ACCESS, appears in parallel plans but
signifies neither ESP nor DAM parallelism. The PARTITION_ACCESS operator is used
to describe a portion of an execution plan in which there are requests to DAM without
partitioned parallelism. One DAM process is requested at a time.

For information about exchange operators, see Section 7, SQL/MX Operators.

How the Optimizer Chooses the Number of ESPs

The ESP_EXCHANGE operator represents ESP parallelism in a query plan. The
number of ESPs chosen for the parallel plan depends on several factors:

 Total number of CPUs in the cluster, which is computed from:

 The number of CPUs per node in the cluster
 The number of nodes in the cluster

 The maximum number of ESPs for an operator is the number of CPUs times the
default setting value MAX_ESPS_PER_CPU_PER_OP. The default value is 1.

You cannot have more ESPs than CPUs unless you set the default
MAX_ESPS_PER_CPU_PER_OP. You might want to increase the default
MAX_ESPS_PER_CPU_PER_OP if your query is I/O bound or if you detect that
CPUs are not being completely utilized. For example, a plan that runs on a node
(16 CPUs) and accesses 64 partitions would normally use 16 ESPs: one for each
CPU. Changing the default value of MAX_ESPS_PER_CPU_PER_OP to 2 might
result in 32 ESPs. For more information, see System Default Settings That Affect
Parallelism on page 8-25.

Example

This example shows ESP parallelism in the query tree for the query:

SELECT * FROM ORDERS O, LINEITEM L
 WHERE O.O_ORDERKEY=L.L_ORDERKEY
 AND O.O_TOTALPRICE < 25000 AND L.L_QUANTITY < 5;

This query looks for small order information where the total price is less than $25,000,
and the quantity ordered is less than 5 units. Figure 8-1 on page 8-14 shows the query
tree. The EXPLAIN output shows where ESP processes are used for parallelism (the
tokens related to parallelism are highlighted). The tables are partititioned on
O_ORDERKEY and L_ORDERKEY.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-13

Parallelism How to Determine if You Have a Parallel Plan

TP663851.fm Page 14 Monday, October 17, 2011 11:48 AM
The query plan shows a parallel matching partitions merge join. Two ESPs are started
to perform the merge join in parallel (as indicated by the bottom_degree_parallelism
token for the ESP_EXCHANGE). Also, the bottom_partitioning_function token
indicates that the matching partitions join is range partitioned two ways on the column
specified. The tokens relating to parallelism are discussed under Understanding the
Parallelism Tokens in the EXPLAIN Output on page 8-16.

A portion of the EXPLAIN output follows:

Seq_Num: 6
Operator: ESP_EXCHANGE
Left_Child_Seq_Num: 5
Right_Child_Seq_Num: ?
Cardinality: 1.7563164E+004
Operator Cost: 1.0772745E+000
Total Cost: 6.0278694E+001
Detail Cost: CPU_TIME: 43.9642 IO_TIME: 59.8779
MSG_TIME: 1.30885 IDLETIME: 0.400804 PROBES: 1
bottom_partition_input_values: \:_sys_HostVarLo0,
\:_sys_HostVarHi0, \:_sys_hostVarExclRange
buffer_size: 3951
record_length: 288
top_degree_parallelism: 1
bottom_degree_parallelism: 2
top_num_data_streams: 1
bottom_num_data_streams: 2
bottom_partitioning_function: range partitioned 2 ways on
(([150]equiv(O.O_ORDERKEY)))

Figure 8-2 on page 8-15 shows the same query executed by using DAM parallelism to
access the partitioned tables. This query plan shows a serial hybrid hash join with no
ESPs. However, DAM parallelism is demonstrated by the SPLIT_TOP operator in
accessing the underlying partitioned tables. The bottom_partitioning_function token

Figure 8-1. Matching Partitions Join Using ESP Parallelism

root [7]

esp exchange [6]

merge_join [5]

partition access [2] partition access [4]

file_scan ORDERS [1] file_scan LINEITEM [3]

VST085.vsd
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-14

Parallelism How to Determine if You Have a Parallel Plan

TP663851.fm Page 15 Monday, October 17, 2011 11:48 AM
indicates that two PARTITION_ACCESS nodes are started to access the data in
parallel for the two-way range partitioned table.

A portion of the EXPLAIN output appears next and shows the detail for the two
SPLIT_TOP operators:

Seq_Num: 3
Operator: SPLIT_TOP
Left_Child_Seq_Num: 2
Right_Child_Seq_Num: ?
Cardinality: 5.9717000E+004
Operator Cost: 3.2347381E+000
Total Cost: 2.1504770E+001
Detail Cost: CPU_TIME: 5.697804 IO_TIME: 9.2084682 MSG_TIME: 0
IDLETIME: 0.7 PROBES: 1
top_degree_parallelism: 1
bottom_degree_parallelism: 2
top_num_data_streams: 1
bottom_num_data_streams: 2
bottom_partitioning_function: logphys partitioned(grouping, PAPA
with 2 PA(s), log=exactly 1 partition, phys=range partitioned 2
ways on (([150]equiv(O.O_ORDERKEY))))

Seq_Num: 6
Operator: SPLIT_TOP
Left_Child_Seq_Num: 5
Right_Child_Seq_Num: ?
Cardinality: 9.3210889E+003
Operator Cost: 5.0158596E-001
Total Cost: 5.4755492E+000
Detail Cost: CPU_TIME: 1.2585902 IO_TIME: 2.1397587 MSG_TIME: 0
IDLETIME: 0.7 PROBES: 1
top_degree_parallelism: 1
bottom_degree_parallelism: 2
top_num_data_streams: 1
bottom_num_data_streams: 2
bottom_partitioning_function: logphys partitioned(grouping, PAPA

Figure 8-2. Serial Hybrid Hash Join Using DAM Parallelism

root [8]

hybrid_hash_join [7]

partition access [2] partition access [5]

file_scan ORDERS [1] file_scan LINEITEM [4]

VST086.vsd

split_top [3] split_top [6]
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-15

Parallelism Plan Fragments

TP663851.fm Page 16 Monday, October 17, 2011 11:48 AM
with 2 PA(s), log=exactly 1 partition, phys=range partitioned 2
ways on (([150]equiv(O.O_ORDERKEY))))

Plan Fragments

To understand the underlying parallelism in your plan, you can divide the query plan
into plan fragments. As discussed under Exchange Nodes and Plan Fragments on
page 8-3, a plan fragment is a part of the plan that executes in the same process and
has one of these nodes as its root:

 ROOT: This fragment is called the root fragment or the master executor and occurs
only once per query plan.

 ESP_EXCHANGE: These fragments are called ESP plan fragments and can occur
many times in a query plan.

 PARTITION_ACCESS: These fragments are called DAM plan fragments and
represent the boundary between the DAM process and the partitions.

A query plan consists of one or more plan fragments. You identify the plan fragments
by first compiling the query and reviewing the EXPLAIN output. Fragment boundaries
are represented by the exchange nodes ESP_EXCHANGE and
PARTITION_ACCESS. Figure 8-6 shows plan fragments identified for a query plan.
Each exchange node is part of two fragments.

Draft out the query tree based on the EXPLAIN output. You can identify the plan
fragments as shown in Figure 8-6.

At execution time, one or more parallel instances are created for each plan fragment.
The root fragment always has one instance and is executed in the master executor.

ESP fragments (ESP_EXCHANGE as the top node) are executed in executor server
processes. The EXPLAIN output for the ESP_EXCHANGE node indicates the number
of instances created, as described under Understanding the Parallelism Tokens in the
EXPLAIN Output next.

DAM fragments (PARTITION_ACCESS as the top node) are executed in the Data
Access Manager. Only one active instance of a DAM fragment exists, unless a
SPLIT_TOP node is above the PARTITION_ACCESS node. The EXPLAIN output for
the SPLIT_TOP node indicates the number of instances created for the DAM fragment,
as described next.

Understanding the Parallelism Tokens in the EXPLAIN
Output

The exchange operators, ESP_EXCHANGE and SPLIT_TOP, contain tokens in the
DESCRIPTION column of the EXPLAIN output that describe the top and bottom
degree of parallelism for each plan fragment.

For the ESP_EXCHANGE operator, the top_degree_parallelism token indicates how
many instances of the fragment above the node exist. For ESP_EXCHANGE nodes
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-16

Parallelism Plan Fragments

TP663851.fm Page 17 Monday, October 17, 2011 11:48 AM
that communicate with the master executor, this value is always one. The
bottom_degree_parallelism token indicates how many instances exist of the fragment
rooted in this node. The bottom_partitioning_function token provides information about
how the plan is parallelized.

For the SPLIT_TOP operator, the top_degree_parallelism token indicates how many
fragment instances of the fragment containing the SPLIT_TOP node exist. The
bottom_degree_parallelism token indicates how many partitions exist. The
bottom_partitioning_function token provides both logical and physical information about
the parallel plan. The physical information is the most relevant information and shows
you how the fragment is partitioned.

Recognizing the Plan Fragments in a Query Plan

The next series of figures (Figure 8-3 through Figure 8-8) introduces the output that is
obtained with EXPLAIN statement OPTIONS 'f' SQLQUERY command and the
query tree with plan fragments identified for this query:

PREPARE SQLQUERY FROM
SELECT l_orderkey, CAST(SUM(l_extendedprice*(1-l_discount))
 AS NUMERIC(18,2)), o_orderdate, o_shippriority
FROM customer,orders,lineitem
WHERE c_mktsegment = 'BUILDING'
 AND c_custkey = o_custkey
 AND l_orderkey = o_orderkey
 AND o_orderdate < DATE '1995-03-15'
 AND l_shipdate > DATE '1995-03-15'
GROUP BY l_orderkey, o_orderdate, o_shippriority
ORDER BY 2 DESC,3 ASC;

Note. This query is extracted from the TPCD decision support benchmark and the EXPLAIN
statement output is obtained by using the EXPLAIN statement with the OPTIONS 'f' clause.
The output portion shown does not include the OPT column. For more information on the
OPTIONS 'f' clause, see the EXPLAIN statement in the SQL/MX Reference Manual.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-17

Parallelism Plan Fragments

TP663851.fm Page 18 Monday, October 17, 2011 11:48 AM
This output shows the sequence numbers, the operators, parallel information, and the
cardinality for the operators. Using the sequence numbers, you can create a query tree
that visually shows the query plan.

Figure 8-3. EXPLAIN statement OPTIONS 'f' SQLQUERY Output for Sample
Query Using ESP Parallelism

LC RC OP OPERATOR DESCRIPTION CARDINALITY
-- -- -- ------------------------- -------------------- ----------
12 . 13 root 1.23E+4
11 . 12 esp_exchange 1:2(range) 1.23E+4
10 . 11 sort 1.23E+4
9 . 10 hash_groupby 1.23E+4
2 8 9 hybrid_hash_join 3.26E+4
7 . 8 esp_exchange 2(range):2(range) 1.51E+4
4 6 7 merge_join 1.51E+4
5 . 6 partition_access 7.27E+4
. . 5 index_scan ORDERX1 (s) 7.27E+4
3 . 4 partition_access 3.11E+3
. . 3 file_scan CUSTOMER (s) 3.11E+3
1 . 2 partition_access 3.24E+5
. . 1 file_scan LINEITEM (s) 3.24E+5

Note. The plans shown in Figure 8-4 through Figure 8-8 use a default setting to generate a
zig-zag tree shape rather than the default left-leaning tree. For more information on zig-zag
trees, see Section 4, Reviewing Query Execution Plans.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-18

Parallelism Plan Fragments

TP663851.fm Page 19 Monday, October 17, 2011 11:48 AM
Figure 8-5 shows the ESP_EXCHANGE node that forms the boundary between the
root fragment (master executor) and the first ESP fragment.

The EXPLAIN output for the ESP_EXCHANGE operator shows tokens in the
description that relate to the top degree parallelism (in this case, 1, indicating the
parallelism for the root fragment) and the bottom degree parallelism (in this case, 2,

Figure 8-4. Query Tree With ESP Parallelism

Figure 8-5. Plan Fragment Boundary

VST087.vsd

root [13]

hybrid_hash_join [9]

partition access [2] esp exchange [8]

file_scan [1] - LINEITEM merge_join [7]

esp exchange [12]

sort [11]

hash_groupby [10]

partition access [4] partition access [6]

file_scan [3] - CUSTOMER index_scan [5] - ORDERX1

VST088.vsd

root [13]

esp exchange [12]

sort [11]

Plan Fragment Boundary

Root Fragment

(Master Executor)

ESP Fragment
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-19

Parallelism Plan Fragments

TP663851.fm Page 20 Monday, October 17, 2011 11:48 AM
indicating the parallelism for the ESP fragment). The bottom_partitioning_function
token provides the information about the type of parallel plan.

Seq_Num: 12
Operator: ESP_EXCHANGE
Left_Child_Seq_Num: 11
Right_Child_Seq_Num: ?
Cardinality: 1.2347501E+004
Operator Cost: 5.5621022E-001
Total Cost: 2.7717787E+001
Detail Cost: CPU_TIME: 0.0821787 IO_TIME: 0 MSG_TIME: 0
IDLETIME: 0.262715 PROBES: 1
merged_order: inverse(cast(cast((cast(sum((cast(indexcol
(TPCD.XMPS.LINEITEM.L_EXTENDEDPRICE)) * cast((cast((1 * 100)) -
indexcol(TPCD.XMPS.LINEITEM.L_DISCOUNT)))))) / cast(100))))),
indexcol(TPCD.XMPS.ORDERX1.O_ORDERDATE)
bottom_partition_input_values: \:_sys_HostVarLo0,
\:_sys_HostVarHi0, \:_sys_hostVarExclRange
buffer_size: 6250
record_length: 24
top_degree_parallelism: 1
bottom_degree_parallelism: 2
top_num_data_streams: 1
bottom_num_data_streams: 2
bottom_partitioning_function: range partitioned 2 ways on
(([260]equiv(TPCD.XMPS.ORDERS.O_ORDERKEY)))

Figure 8-6 shows the entire query plan with plan fragments identified. Sequence
numbers for the operators are shown next to the operator name.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-20

Parallelism Degree of Parallelism

TP663851.fm Page 21 Monday, October 17, 2011 11:48 AM
Degree of Parallelism

Each plan fragment has its own degree of parallelism, as indicated by the tokens for
the exchange operators in the operator description field of the EXPLAIN output. Note
that the query plan shown in Figure 8-6 has one root fragment, two ESP fragments,
and three DAM fragments. For this query plan, the relevant information for the degree
of parallelism is contained in the descriptions of each ESP_EXCHANGE operator. The
PARTITION_ACCESS nodes provide information about the beginning and ending key
predicates, which instruct each DAM fragment where to start and stop for the partitions
it handles.

Figure 8-6. Sample Query Plan Showing Plan Fragments

VST089.vsd

root [13]

hybrid_hash_join [9]

esp exchange [8]

merge_join [7]

esp exchange [12]

sort [11]

hash_groupby [10]

partition access [4] partition access [6]

file_scan [3] - CUSTOMER index_scan [5] - ORDERX1

1

2(range)

2(range)

top_degree_parallelism

bottom_degree_parallelism

Root Fragment

(Master Executor)

ESP Plan Fragments

top_degree_parallelism

bottom_degree_parallelism

DAM Plan Fragments

2(range)

partition access [2]

file_scan [1] - LINEITEM
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-21

Parallelism Degree of Parallelism

TP663851.fm Page 22 Monday, October 17, 2011 11:48 AM
To further understand the degree of parallelism, this is the same query with no ESPs.
Figure 8-7 shows the use of DAM parallelism. The EXPLAIN statement OPTIONS 'f'
SQLQUERY shows the output.

PREPARE SQLQUERY FROM
SELECT l_orderkey, CAST(SUM(l_extendedprice*(1-l_discount))
 AS NUMERIC(18,2)), o_orderdate, o_shippriority
FROM customer,orders,lineitem
WHERE c_mktsegment = 'BUILDING'
 AND c_custkey = o_custkey
 AND l_orderkey = o_orderkey
 AND o_orderdate < DATE '1995-03-15'
 AND l_shipdate > DATE '1995-03-15'
GROUP BY l_orderkey, o_orderdate, o_shippriority
ORDER BY 2 DESC,3 ASC;

Figure 8-8 on page 8-23 shows the query tree for the plan with the plan fragments
identified.

Figure 8-7. EXPLAIN statement OPTIONS 'f' SQLQUERY Output for Sample
Query Using DAM Parallelism

LC RC OP OPERATOR DESCRIPTION CARDINALITY
-- -- -- ------------------------- ----------------- -----------
13 . 14 root 1.23E+4
12 . 13 sort 1.23E+4
11 . 12 hash_groupby 1.23E+4
3 10 11 hybrid_hash_join 3.26E+4
6 9 10 hybrid_hash_join 1.51E+4
8 . 9 split_top 1:2(logph) 3.11E+3
7 . 8 partition_access 3.11E+3
. . 7 file_scan CUSTOMER (s) 3.11E+3
5 . 6 split_top 1:2(logph) 7.27E+4
4 . 5 partition_access 7.27E+4
. . 4 file_scan ORDERS (s) 7.27E+4
2 . 3 split_top 1:2(logph) 3.24E+5
1 . 2 partition_access 3.24E+5
. . 1 file_scan LINEITEM (s) 3.24E+5

Note. You might wonder why the DAM plan fragment is represented by the
PARTITION_ACCESS operator instead of the SPLIT_TOP operator, because the SPLIT_TOP
operator represents DAM parallelism. The SPLIT_TOP operator is responsible for dividing the
work between the ESP or master executor and the Data Access Manager. The SPLIT_TOP
operator assigns the work to the Data Access Manager through the PARTITION_ACCESS
nodes, one for each partition.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-22

Parallelism Degree of Parallelism

TP663851.fm Page 23 Monday, October 17, 2011 11:48 AM
Each SPLIT_TOP operator shows the top and bottom degree of parallelism. The
EXPLAIN output shows the three SPLIT_TOP operators from the query plan.

Seq_Num: 3
Operator: SPLIT_TOP
Left_Child_Seq_Num: 2
Right_Child_Seq_Num: ?
Cardinality: 3.2441872E+005
Operator Cost: 3.4873798E+000
Total Cost: 1.7911737E+001
Detail Cost: CPU_TIME: 3.843434 IO_TIME: 7.6177573495
MSG_TIME: 0 IDLETIME: 0.7 PROBES: 1
top_degree_parallelism: 1
bottom_degree_parallelism: 2
top_num_data_streams: 1
bottom_num_data_streams: 2
bottom_partitioning_function: logphys partitioned(grouping, PAPA
with 2 PA(s), log=exactly 1 partition, phys=range partitioned 2
ways on (([260]equiv(TPCD.XMPS.ORDERS.O_ORDERKEY))))

Seq_Num: 6
Operator: SPLIT_TOP
Left_Child_Seq_Num: 5

Figure 8-8. Query Tree for Sample Plan Using DAM Parallelism

VST810.vsd

root [14]

hybrid_hash_join [11]

sort [13]

hash_groupby [12]

1

2(logphys)

Root Fragment

(Master Executor)

top_degree_parallelism

bottom_degree_parallelism

DAM Plan Fragments

split_top [3] hybrid_hash_join [10]

1 1

2(logphys)

split_top [6]

2(logphys)

split_top [9]

partition access [5]

file_scan [4] - CUSTOMER

partition access [8]

index_scan [7] - ORDERX1

partition access [2]

file_scan [1] - LINEITEM
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-23

Parallelism Influencing Parallel Plans

TP663851.fm Page 24 Monday, October 17, 2011 11:48 AM
Right_Child_Seq_Num: ?
Cardinality: 7.2738547E+004
Operator Cost: 5.6920946E-001
Total Cost: 4.6269255E+000
Detail Cost: CPU_TIME: 0.9101162 IO_TIME: 1.7542597
MSG_TIME: 0 IDLETIME: 0.7 PROBES: 1
top_degree_parallelism: 1
bottom_degree_parallelism: 2
top_num_data_streams: 1
bottom_num_data_streams: 2
bottom_partitioning_function: logphys partitioned(grouping, PAPA
with 2 PA(s), log=exactly 1 partition, phys=range partitioned 2
ways on (([260]equiv(TPCD.XMPS.ORDERS.O_ORDERKEY))))

Seq_Num: 9
Operator: SPLIT_TOP
Left_Child_Seq_Num: 8
Right_Child_Seq_Num: ?
Cardinality: 3.1110000E+003
Operator Cost: 4.4777110E-002
Total Cost: 1.9319278E+000
Detail Cost: CPU_TIME: 0.1957998 IO_TIME: 0.5657918
MSG_TIME: 0 IDLETIME: 0.7 PROBES: 1
top_degree_parallelism: 1
bottom_degree_parallelism: 2
top_num_data_streams: 1
bottom_num_data_streams: 2
bottom_partitioning_function: logphys partitioned(grouping, PAPA
with 2 PA(s), log=exactly 1 partition, phys=range partitioned 2
ways on (([209]equiv(TPCD.XMPS.CUSTOMER.C_CUSTKEY))))

Influencing Parallel Plans
Several items can affect the plan selected by the optimizer and can determine whether
you get parallelism in plans:

 Updated statistics for relevant columns. You should update statistics for any
columns appearing in the query. You should also update statistics for subqueries.
For more information about updating statistics, see Section 3, Keeping Statistics
Current.

 Number of partitions. The number of partitions heavily influences whether the
optimizer chooses a parallel plan. You must have more than one partition to obtain
a parallel plan. The optimizer uses the partitioning scheme to know how to perform
partitioned parallelism.

 Number of CPUs. For ESP parallelism, the number of ESPs possible depends on
the number of CPUs per cluster.

 Compiling and executing. You should compile and execute your queries in the
same cluster.

 Table partitions. Distribute table partitions evenly across physical disks so that your
query can execute in parallel.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-24

Parallelism System Default Settings That Affect Parallelism

TP663851.fm Page 25 Monday, October 17, 2011 11:48 AM
 Complexity and quantity of rows returned. The optimizer chooses parallel plans
when complex processing on large amounts of data must occur, resulting in a few
rows, such as computing an aggregate.

 Forcing parallelism. Use the CONTROL QUERY SHAPE statement to force
specific types of parallel plans. See Section 5, Forcing Execution Plans.

 Defaults. Certain defaults might affect the parallel plan, as noted next.

System Default Settings That Affect Parallelism

For more information about default settings and how to override the system-defined
default setting, see the SQL/MX Reference Manual.

 ATTEMPT_ESP_PARALLELISM

If ON, the optimizer tries to use the maximum degree of ESP parallelism whenever
possible. If the table is too small, the optimizer might not consider ESP parallelism
for some operators even with the ON setting. If OFF, the optimizer never generates
and costs plans that use ESP parallelism. If SYSTEM (the system-defined default
setting), the optimizer considers on an operator-by-operator basis whether it would
be worthwhile to generate and cost plans that use ESP parallelism. If the optimizer
chooses to do so, the SYSTEM setting also lets the optimizer choose the level of
parallelism to use. For each operator, the optimizer uses various heuristics based
on the logical and physical operator properties, such as the row selectivity, memory
usage, and so on, to determine if generating a parallel plan is worthwhile.

 ATTEMPT_ASYNCHRONOUS_ACCESS

Enables/disables nowaited access for accessing partitions at the same time (DAM
parallelism). The system-defined default setting is ON. This option can greatly
improve the performance of SQL/MX queries; it has a lower cost than parallel
execution using ESPs. It is recommended that you keep this setting enabled.

 MAX_ESPS_PER_CPU_PER_OP

Maximum number of ESPs the optimizer considers starting for each CPU for a
given operator. The system-defined default setting is one. If set to a value greater
than one, the optimizer considers plans where more than one ESP per CPU per
operator is considered. For example, if you have four CPUs available and
MAX_ESPS_PER_CPU_PER_OP is set to two, the optimizer considers plans
where an operator uses eight ESPs (if parallel execution is enabled). This strategy
might be advantageous if the CPU load for the query is light but the I/O load is
heavy. For example, if the query is I/O bound, and the CPU bandwidth is not
needed for other purposes.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-25

Parallelism System Default Settings That Affect Parallelism

TP663851.fm Page 26 Monday, October 17, 2011 11:48 AM
 PARALLEL_NUM_ESPS

Maximum number of ESPs an operator can use (for fewer CPUs per operator).
Limits the maximum number of ESPs per operator to a value less than the number
of CPUs in the cluster. Limits the number but does not choose which CPUs to use.
The system-defined default setting is the number of processors in the cluster.

If this attribute is not set by the user (SYSTEM setting), the optimizer calculates the
degree of parallelism. The optimizer chooses a degree of parallelism equal to the
number of CPUs in the cluster times the number of ESPs per CPU. By default, the
number of ESPs per CPU is one (1), so typically the optimizer chooses the degree
of parallelism equal to the number of CPUs in the cluster.

If a value is specified for the PARALLEL_NUM_ESPS attribute, the optimizer uses
that value for the degree of parallelism unless the value exceeds the number of
CPUs in the cluster, in which case it uses the number of CPUs in the cluster as the
degree of parallelism. Allowable settings are any unsigned positive integer or
SYSTEM.

The REMOTE_ESP_ALLOCATION attribute also affects parallelism. For more
information, see REMOTE_ESP_ALLOCATION on page 4-12.
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
8-26

TP663851.fm Page 1 Monday, October 17, 2011 11:48 AM
Index

A
Access cost

alternate-index access 2-5

index-only access 2-4

MDAM 2-15

single subset access 2-14

storage-key access 2-2

table scan 2-6

Access method
alternate index 2-4

alternative to key-sequenced
access 2-5

index only 2-2

storage-key 2-1

Access path
description of 2-1

forcing 2-11

MDAM 2-13

unexpected 2-9

Alternate-index access
approximate cost 2-5

description of 2-4

update issues 2-9

ATTEMPT_ASYNCHRONOUS_ACCESS
system default setting 8-25
ATTEMPT_ESP_PARALLELISM system
default setting 8-25

B
Binder 1-2
BLOCKED_UNION operator 7-5
Branch and bound programming 1-3

C
CALL operator 7-6
Codegen 1-2
Compiler

See SQL/MX compiler

Contradictory predicates, how MDAM
handles 2-17
CONTROL QUERY DEFAULT

INTERACTIVE_ACCESS system
default setting 2-6

CONTROL QUERY SHAPE statement
deferring exchange and sort
operators 5-16

dependencies 5-1

forcing access path 2-11

MDAM OFF 2-14

scope of 5-8

turning off 5-8

Cost, access
See Access cost 2-1

CURSOR_DELETE operator 7-8
CURSOR_UPDATE operator 7-9

D
DAM

parallelism 5-13

plan fragments 8-16

Data parallelism 8-1
Data-flow task model 1-19, 8-2
Decoupled keys, matching partitions
join 8-6
Default statistics 3-2
DENSE algorithm, MDAM 2-18
DETAIL_COST in EXPLAIN output

CPU_TIME 4-4

IDLETIME 4-5

IO_TIME 4-4

MSG_TIME 4-4

PROBES 4-5

DISPLAY STATISTICS command 4-21
DISPLAY_EXPLAIN command 4-6
Duplicate rows, how MDAM handles 2-17
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
Index-1

Index E

TP663851.fm Page 2 Monday, October 17, 2011 11:48 AM
E
ESP (executor server process)

cost associated with 8-6

how chosen 8-13

operators 8-13

parallelism 5-13

plan fragments 8-16

ESP_ACCESS operator 7-11
ESP_EXCHANGE operator 7-12, 8-16
Exchange nodes 8-3
Executor 1-19
EXPLAIN operator 7-16
EXPLAIN output

columns in 4-3

description of 4-1

generating 5-2

operator tree 4-3

tokens for parallelism 8-16

EXPLAIN output columns
CARDINALITY 4-4

DESCRIPTION 4-4

DETAIL_COST 4-4

LEFT_CHILD_SEQ_ NUM 4-4

MODULE_NAME 4-3

OPERATOR 4-4

OPERATOR_COST 4-4

PLAN_ID 4-4

RIGHT_CHILD_ SEQ_NUM 4-4

SEQ_NUM 4-4

STATEMENT_NAME 4-3

TNAME 4-4

TOTAL_COST 4-4

EXPLAIN_CMD operator 7-17
EXPR operator 7-16

F
FILE_SCAN operator 7-17
FILE_SCAN_UNIQUE operator 7-19
FisrtN operator 7-22

Forced parallel plans
DAM parallelism 5-13

description of 5-13

ESP parallelism 5-13

forcing Type 1 join 5-14

forcing Type 2 join 5-15

joins 5-14

Forced plans
MDAM DENSE or SPARSE 2-19

migrating from SQL/MP 5-10

partially shaping 5-9

summary of steps 5-2

troubleshooting 5-10

using SET SHOWSHAPE to display
plans in effect 5-6

using SHOWSHAPE to get format 5-5

using Visual Query Planner 5-6

views 5-10

writing the CONTROL QUERY SHAPE
statement 5-8

Full table scan
See Table scan

G
GEN_EIDR_BUFFER_SIZE system default
setting 4-9
GEN_PA_BUFFER_SIZE system default
setting 4-9
Group by, parallel plans 8-11

H
Halloween update problem 2-9
HASH_GROUPBY operator 7-22
HASH_PARTIAL_GROUPBY_LEAF
operator 7-24
HASH_PARTIAL_GROUPBY_ROOT
operator 7-25
Histograms

caching 3-4

statistics 3-2
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
Index-2

Index I

TP663851.fm Page 3 Monday, October 17, 2011 11:48 AM
HIST_SCRATCH_VOL default attribute 3-5
HYBRID_HASH_ANTI_SEMI_JOIN
operator 7-26
HYBRID_HASH_JOIN operator 7-27
HYBRID_HASH_SEMI_JOIN operator 7-28

I
Implementation rules 1-5
Independent parallelism 8-2
Index, performance improvement 1-10
Index-only access

approximate cost 2-4

description of 2-2

using 2-3

INDEX_SCAN operator 7-29
INDEX_SCAN_UNIQUE operator 7-31
INSERT operator 7-33
Insert, in parallel plans 8-12
INSERT_VSBB operator 7-34
INTERACTIVE_ACCESS system default
setting 2-6

J
Joins

alternate index access 2-4

logical partition grouping 8-8

logical subpartition alignment 8-9

matching partitions 8-6

parallel access to inner table 8-10

range repartitioned 8-7

replicate by broadcast 8-10

replicate no broadcast 8-10

Type 1 join 8-6

Type 2 join 8-10

when partition boundaries do not
match 8-9

JOIN_ORDER_BY_USER system default
setting 4-10

K
Key predicates, how MDAM handles 2-16

L
LEFT_HYBRID_HASH_JOIN operator 7-35
LEFT_MERGE_JOIN operator 7-36
LEFT_NESTED_JOIN operator 7-38
LEFT_ORDERED_HASH_JOIN
operator 7-39
Logical expressions 1-3, 1-4
Logical operators 5-9

M
Matching partitions join, decoupled
keys 8-6
MATERIALIZE operator 7-40
MAX_ESPS_PER_CPU_PER_OP system
default setting 8-25
MDAM (MultiDimensional Access
Method) 1-10

compared to single subset access 2-14

controlling the number of key
columns 2-18

cost 2-15

DENSE algorithm 2-18

description of 2-13

duplicate rows 2-17

forcing DENSE or SPARSE 2-19

forcing with CONTROL QUERY
SHAPE 2-14

IN lists 2-16

intervening range predicates 2-16

joins and 1-10

key predicates 2-16

multiple tables in a query and 1-10

OR predicates 2-16

redundant and contradictory
predicates 2-17

sort order 2-17

SPARSE algorithm 2-18
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
Index-3

Index N

TP663851.fm Page 4 Monday, October 17, 2011 11:48 AM
tips for using 2-17

Measure entity
SQLPROC 4-22

SQLSTMT 4-23

Measure product 4-22
MERGE_ANTI_SEMI_JOIN operator 7-41
MERGE_JOIN operator 7-42
MERGE_SEMI_JOIN operator 7-44
MERGE_UNION operator 7-45
Migrating from SQL/MP, forced plans 5-10
Multicolumn statistics 3-8
MultiUnion operator 7-46

N
Nested join, replicate, no broadcast 8-10
NESTED_ANTI_SEMI_JOIN operator 7-46
NESTED_JOIN operator 7-47
NESTED_SEMI_JOIN operator 7-49
NEXTVALUEFOR operator 7-50
NonStop Data Access Manager (DAM)

See DAM

Normalizer 1-2

O
ODBC data source 4-14
OLT optimization

displaying 1-9

enabling 1-8

valid queries and operators 1-9

Operator groups 7-3, 7-4
Operator parallelism 8-2
Operator tree

compiler 1-2

description of 4-3

lisp-like format 5-5

partially shaping 5-9

translate to text format 5-5

Operators 7-1
Optimality, principle of 1-4
Optimization rules 1-3

OPTIMIZATION_LEVEL system default
setting 4-10
Optimizer

branch and bound programming 1-3

description of 1-2

execution plans 5-1

implementation rules 1-5

multipass optimization 1-5

principle of optimality 1-3

search memory 1-4

search space 1-4

top-down approach 1-3

transformation rules 1-4

OPTS_PUSH_DOWN_DAM system default
setting 4-11
OR operator 1-10
OR optimization 1-10
OR predicates 1-10
OR predicates, how MDAM handles 2-16
ORDERED_HASH_ANTI_SEMI_JOIN
operator 7-50
ORDERED_HASH_JOIN operator 7-52
ORDERED_HASH_SEMI_JOIN
operator 7-53
ORDERED_UNION operator 7-54

P
PACK operator 7-56
Parallel plans

forcing 5-13

group by 8-11

influencing 8-24

inserting 8-12

parallelism, recognizing 8-13

plan fragments 8-16, 8-17

SCAN operator 8-6

selects 8-12

sort 8-12

understanding EXPLAIN output 8-12

union 8-11
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
Index-4

Index Q

TP663851.fm Page 5 Monday, October 17, 2011 11:48 AM
Parallelism
combining different types 8-12

degree of 8-21

EXPLAIN output 8-12

forcing plans with 5-13

group by 8-11

how optimizer avoids repartitioning 8-8

independent 8-2

influencing 8-24

insert 8-12

matching partitions algorithm 8-6

multilevel 8-12

operator 8-2

parallel access to inner table 8-10

parallel joins 8-8

partitioned 8-1

pipelined 8-2

plan fragments 8-16, 8-21

recognizing in plans 8-13

relationship of ESPS to CPUs 8-24

scans 8-6

select 8-12

sort 8-12

system default settings 8-25

tokens in EXPLAIN output 8-16

unions 8-11

PARALLEL_NUM_ESPS system default
setting 8-26
Parser 1-2
Partitioned parallelism 8-1
Partitions, influencing parallelism with 8-24
PARTITION_ACCESS operator 7-57
Performance

full table scan 2-5

hash join 8-10

index impact 2-2

MDAM 2-13

negative impact of CONTROL QUERY
SHAPE 5-1, 5-13

nested join algorithm 8-10

OLT optimization 1-8

OLTP tips 1-7

OR optimization 1-10

query plan caching 1-6, 6-1

reduced response time 3-4

row vs. cluster sampling 3-7

sampling techniques 3-5

sampling tradeoffs 3-7

UPDATE STATISTICS 3-5

use measure data 4-23

Physical operators 1-3, 1-5, 5-9
Pipelined parallelism 8-2
Plan fragment

degree of parallelism 8-21

description of 8-3

in EXPLAIN output 8-16

multiple instances of 8-4

process boundaries 8-3, 8-19

recognizing 8-17

Predicates
missing key 2-16

OR 2-16

OR operators in 1-10

range 2-16

redundant and contradictory 2-17

Principle of optimality 1-4

Q
Query compilation 1-1
Query execution plan

as data flow tree 8-2

displaying 5-2

examples of 4-5, 4-6, 4-14

forcing new shape 5-1

reviewing 5-3

troubleshooting 5-10

Query plan caching
cacheable queries 6-2

description 6-1
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
Index-5

Index R

TP663851.fm Page 6 Monday, October 17, 2011 11:48 AM
noncacheable queries 6-4

overview of 6-1

sizing 6-6

Query tree
compiler 1-2

Queues 1-19

R
Range predicates, intervening, how MDAM
handles 2-16
Redundant predicates, how MDAM
handles 2-17
REMOTE_ESP_ALLOCATION system
default setting 4-12
Repartition 8-7, 8-8
Replicate by broadcast, in hash join 8-10
Replicate, no broadcast, in nested join 8-10
ROOT operator 7-59
Rows, duplicate 2-17

S
SAMPLE operator 7-61
SAMPLE_FILE_SCAN operator 7-62
Sampling

accuracy 3-7

cluster 3-7

periodic 3-7

random row 3-7

updating statistics 3-5

SCAN operator, in parallel plans 8-6
Scheduler-driven task model 1-19
Search memory 1-4
Search space 1-4
Select, in parallel plans 8-12
SEQUENCE operator 7-63
SEQUENCEGENERATOR operator 7-65
SET SHOWSHAPE command 5-6
SHORTCUT_GROUPBY logical
operator 5-10
SHORTCUT_SCALAR_AGGR
operator 5-10, 7-66

SHOWSHAPE command 5-5
Single subset access 2-14
SORT operator 7-67
Sort, parallel plans 8-12
SORT_GROUPBY operator 7-68
SORT_PARTIAL_AGGR_LEAF
operator 7-69
SORT_PARTIAL_AGGR_ROOT
operator 7-69
SORT_PARTIAL_GROUPBY_LEAF
operator 7-70
SORT_PARTIAL_GROUPBY_ROOT
operator 7-71
SORT_SCALAR_AGGR operator 7-73
SPARSE algorithm, MDAM 2-18
SPLIT_TOP operator 7-74, 8-17
SQL/MP, migrating forced plans 5-10
SQL/MX compiler

binder 1-2

codegen 1-2

description of 1-1

metadata and statistics 1-2

normalizer 1-2

optimizer 1-2

parser 1-2

steps to compile a query 1-2

Statistics
analyzing impact of updating 3-5

default 3-2

DISPLAY STATISTICS 4-21

histogram updating 3-1, 3-2

importance for parallelism in 8-24

Measure product 4-22

multicolumn statistics 3-8

performance, effects on 3-5

run-time 4-21

sampling 3-5

testing before updating 3-8

Storage-key access
approximate cost 2-2

description of 2-1
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
Index-6

Index T

TP663851.fm Page 7 Monday, October 17, 2011 11:48 AM
SUBSET_DELETE operator 7-75
SUBSET_UPDATE operator 7-76
System default setting

GEN_EIDR_BUFFER_SIZE 4-9

GEN_PA_BUFFER_SIZE 4-9

JOIN_ORDER_BY_USER 4-10

OPTIMIZATION_LEVEL 4-10

OPTS_PUSH_DOWN_DAM 4-11

REMOTE_ESP_ALLOCATION 4-12

ZIG_ZAG_TREES 4-13

System default settings and
parallelism 8-25

T
Table scan

approximate cost of 2-6

avoiding 2-5, 2-6

description of 2-5

TRANSPOSE operator 7-78
Troubleshooting, forced plans 5-10
TUPLELIST operator 7-80
TUPLE_FLOW operator 7-79
Type 1 join

forcing 5-14

matching partition algorithm 8-6

Type 2 join
forcing 5-15

replicate by broadcast 8-10

replicate, no broadcast 8-10

U
UNARY_UNION operator 7-81
Union, parallel plans 8-11
UNIQUE_DELETE operator 7-83
UNIQUE_UPDATE operator 7-84
UNPACK operator 7-85
Update, Halloween problem 2-9

V
VALUES operator 7-86
Views, forced plans 5-10
Visual Query Planner

accessing 4-14

connecting to ODBC with 4-15

online help 4-14

purpose of 4-14

requirements 4-14

summary of 4-15

toolbar 4-16

Z
ZIG_ZAG_TREES system default
setting 4-13
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
Index-7

Index Z

TP663851.fm Page 8 Monday, October 17, 2011 11:48 AM
HP NonStop SQL/MX Release 3.1 Query Guide—663851-001
Index-8

	HP NonStop SQL/MX Release 3.1 Query Guide
	Legal Notices
	Contents
	What’s New in This Manual
	Manual Information

	About This Manual
	Audience
	Organization
	Related Documentation
	Notation Conventions

	1 Compiling and Executing a Query
	Overview
	How the Compiler Works
	Compilation Steps
	Parsing, Binding, and Normalizing
	Query Plan Caching
	Improving Query Performance
	Factors That Can Affect Compile Time

	How the Executor Processes the Plan

	2 Accessing SQL/MX Data
	Access Methods
	Storage-Key Access
	Index-Only Access
	Alternate Index Access
	Full Table Scan
	Understanding Unexpected Access Paths

	MultiDimensional Access Method (MDAM)
	Specifying MDAM
	Comparing MDAM With Single Subset Access
	How MDAM Processes Queries
	Influencing the Optimizer to Use MDAM
	Controlling the Number of Key Columns Used by MDAM
	MDAM’s Use of DENSE and SPARSE Algorithms

	3 Keeping Statistics Current
	Histogram Statistics
	Updating Histogram Statistics

	Sampling and UPDATE STATISTICS
	Performance Issues and Accuracy in Sampling
	Collecting Statistics for Multiple Columns

	Testing the Results of UPDATE STATISTICS
	Testing the Results for SQL/MP Tables
	Testing the Results for SQL/MX Tables

	4 Reviewing Query Execution Plans
	Displaying Execution Plans
	Using the EXPLAIN Function
	Using the EXPLAIN Statement Shortcut
	Using the Visual Query Planner
	The Optimizer and Executor
	Description of the EXPLAIN Function Results
	Displaying Selected Columns of the Execution Plan
	Extracting EXPLAIN Output From Embedded SQL Programs
	Using the EXPLAIN Statement to Review the Execution Plan

	Optimization Tips
	Verifying DAM Access

	Using the Visual Query Planner
	Visual Query Planner Requirements
	Getting Help for Visual Query Planner
	Graphically Displaying Execution Plans

	Reviewing Run-Time Statistics
	Simple Query Example
	Using Measure

	5 Forcing Execution Plans
	Why Force a Plan?
	Checklist for Forcing Plans
	Displaying the Optimized Plan
	Reviewing the Optimized Plan
	Translating the Operator Tree to Text Format
	Using SHOWSHAPE and SET SHOWSHAPE to View the Text Format
	Using Visual Query Planner to Get the Shape
	Manually Writing the Shape

	Writing the Forced Shape Statement
	Scope of CONTROL QUERY SHAPE
	Shaping Portions of an Operator Tree
	Using Logical and Physical Specifications
	Forcing Shapes on Views
	What Happens if No Plan Is Returned?
	Migrating Forced Shapes From NonStop SQL/MP
	Forcing Group By Operations to the Data Access Manager
	Forcing Parallel Plans

	6 Query Plan Caching
	Overview
	Types of Cacheable Queries
	Examples of Cacheable Expressions
	Examples of Queries That Are Not Cacheable

	Choosing an Appropriate Size for the Query Cache
	Query Plan Caching Statistics
	SYSTEM_DEFAULTS Table Settings for Query Plan Caching Attributes
	QUERYCACHE Function
	QUERYCACHEENTRIES Function
	Querying the Query Plan Caching Virtual Tables
	Reviewing the Query Plan Caching Statistics With the DISPLAY_QC and DISPLAY_QC_ENTRIES Commands

	7 SQL/MX Operators
	Operators
	BLOCKED_UNION Operator
	CALL Operator
	CURSOR_DELETE Operator
	CURSOR_UPDATE Operator
	ESP_ACCESS Operator
	ESP_EXCHANGE Operator
	EXPLAIN Operator
	EXPR Operator
	EXPLAIN_CMD Operator
	FILE_SCAN Operator
	FILE_SCAN_UNIQUE Operator
	FirstN Operator
	HASH_GROUPBY Operator
	HASH_PARTIAL_GROUPBY_LEAF Operator
	HASH_PARTIAL_GROUPBY_ROOT Operator
	HYBRID_HASH_ANTI_SEMI_JOIN Operator
	HYBRID_HASH_JOIN Operator
	HYBRID_HASH_SEMI_JOIN Operator
	INDEX_SCAN Operator
	INDEX_SCAN_UNIQUE Operator
	INSERT Operator
	INSERT_VSBB Operator
	LEFT_HYBRID_HASH_JOIN Operator
	LEFT_MERGE_JOIN Operator
	LEFT_NESTED_JOIN Operator
	LEFT_ORDERED_HASH_JOIN Operator
	MATERIALIZE Operator
	MERGE_ANTI_SEMI_JOIN Operator
	MERGE_JOIN Operator
	MERGE_SEMI_JOIN Operator
	MERGE_UNION Operator
	MultiUnion Operator
	NESTED_ANTI_SEMI_JOIN Operator
	NESTED_JOIN Operator
	NESTED_SEMI_JOIN Operator
	NEXTVALUEFOR Operator
	NESTED_SEMI_JOIN Operator
	ORDERED_HASH_JOIN Operator
	ORDERED_HASH_SEMI_JOIN Operator
	ORDERED_UNION Operator
	PACK Operator
	PARTITION_ACCESS Operator
	PROBE_CACHE Operator
	ROOT Operator
	SAMPLE Operator
	SAMPLE_FILE_SCAN Operator
	SEQUENCE Operator
	SEQUENCEGENERATOR Operator
	The description field for the operator contains:
	SHORTCUT_SCALAR_AGGR Operator
	SORT Operator
	SORT_GROUPBY Operator
	SORT_PARTIAL_AGGR_LEAF Operator
	SORT_PARTIAL_AGGR_ROOT Operator
	SORT_PARTIAL_GROUPBY_LEAF Operator
	SORT_PARTIAL_GROUPBY_ROOT Operator
	SORT_SCALAR_AGGR Operator
	SPLIT_TOP Operator
	SUBSET_DELETE Operator
	SUBSET_UPDATE Operator
	TRANSPOSE Operator
	TUPLE_FLOW Operator
	TUPLELIST Operator
	UNARY_UNION Operator
	UNIQUE_DELETE Operator
	UNIQUE_UPDATE Operator
	UNPACK Operator
	VALUES Operator

	8 Parallelism
	Types of Parallelism in NonStop SQL/MX
	Partitioned Parallelism
	Pipelined Parallelism
	Independent Parallelism

	Parallel Execution Principles
	Query Plan as a Data Flow Tree
	Exchange Nodes and Plan Fragments
	DAM and ESP Parallelism

	Parallel Plan Generation
	Scan, Update, and Delete
	Join With Matching Partitions
	Join With Parallel Access to the Inner Table
	Unions
	Group Bys
	Sort
	Insert and Select
	Combining Different Types of Parallelism

	Explaining Parallel Plans
	How to Determine if You Have a Parallel Plan
	Plan Fragments
	Degree of Parallelism

	Influencing Parallel Plans
	System Default Settings That Affect Parallelism

	Index

