System Software Library

TACL
Programming
Guide

Abstract This manual describes the Tandem Advanced Command Language (TACL) and provides information and
examples for creating TACL programs.

Part Number 107365
Edition Second
Published December 1994
Product Version TACL D30
Release ID D30.00

Supported Releases This manual supports D30.00 and all subsequent releases until otherwise indicated in a new edition.

Tandem Computers Incorporated

Document History

Edition Part Number Product Version Earliest Supported Release Published

First 085797 TACL C20 N/A November 1992
Update 086700 TACL D10 N/A February 1993
Second 107365 TACL D30 D30.00 December 1994

New editions incorporate any updates issued since the previous edition.

A plus sign (+) after a release ID indicates that this manual describes function added to the base release,
either by an interim product modification (IPM) or by a new product version on a .99 site update tape (SUT).

Ordering Information
Document Disclaimer

Export Statement
Examples

U.S. Government
Customers

For manual ordering information: domestic U.S. customers, call 1-800-243-6886; international customers, contact your
local sales representative.

Information contained in a manual is subject to change without notice. Please check with your authorized Tandem
representative to make sure you have the most recent information.

Export of the information contained in this manual may require authorization from the U.S. Department of Commerce.

Examples and sample programs are for illustration only and may not be suited for your particular purpose. Tandem does
not warrant, guarantee, or make any representations regarding the use or the results of the use of any examples or sample
programs in any documentation. You should verify the applicability of any example or sample program before placing the
software into productive use.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE:
These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer
software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19
of the FARS Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth
in paragraph (0)(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer
software is submitted with “restricted rights.” Use, duplication or disclosure is subject to the restrictions as set forth in
NASA FAR SUP 18-52 227-79 (April 1985) “Commercial Computer Software — Restricted Rights (April 1985).” If the
contract contains the Clause at 18-52 227-74 “Rights in Data General” then the “Alternate III” clause applies.

U.S. Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract.
Unpublished — All rights reserved under the Copyright Laws of the United States.

New and Changed Information

This is the second edition of the TACL Programming Guide . This edition documents
the following new TACL features:

O A new built-in function, #SETCONFIGURATION, sets the TACL flags that can
change the behavior of TACL for a specified TACL image or configure the
currently running TACL process.

O A new built-in function, #XLOGON, implements the LOGON command.

[0 The LOGON command, #CHANGEUSER built-in function, and #XLOGON built-
in function support the Safeguard authentication dialog.

0 The STATUS command and #XSTATUS built-in function display new process
type information.

[0 CLASS DEFAULT DEFINEs have eight new optional attributes for
internationalization support.

105919 Tandem Computers Incorporated iii

New and Changed Information

(This page left intentionally blank)

iv 105919 Tandem Computers Incorporated

Contents

About This Manual xi

Notation Conventions Xxv

Section1 An Overview of TACL
Running the Examples in This Manual 1-1

Style Conventions 1-2
Exceptions to the Style Conventions 1-3
Conventions Specific to This Manual 1-3

Section 2 Developing TACL Programs
Choosing a Type of Variable 2-1

Defining Program Structure 2-2
Using Flow Control Functions 2-2
Nesting TACL Code 2-7
Saving Levels of Variables 2-8
Exiting From Programs 2-9

Processing Character Data 2-9
Line and Character 2-10
Global Editing Commands 2-13
Additional Data Manipulation Capabilities 2-16
Data Types 2-17

Accessing Time Data 2-17
Timestamp Formats 2-17
Retrieving a Timestamp 2-18
Converting a Timestamp 2-19

Accessing Terminals 2-24
Defining Function Keys 2-24
Sending Escape Sequences to a Terminal 2-25
Changing the TACL Prompt 2-29
Implementing Menus 2-30
Debugging TACL Programs 2-32
Enabling the TACL Debugger 2-32
Debugger Commands 2-32
A Sample Debugging Session 2-33

107365 Tandem Computers Incorporated

Contents

Section 3

Developing TACL Routines

Processing Arguments 3-1
How #ARGUMENT Works 3-3
Using #ARGUMENT 3-4
Examining the Contents of Arguments 3-9
Parsing Arguments for a Caller 3-11

Returning Results 3-15
Calling a Routine Recursively 3-16
Exiting From a Routine 3-17

Writing an Exception Handler 3-18
Types of Exception Handlers 3-19
Constructing an Exception Handler 3-19
Creating a Release Exception Handler 3-20
Creating a Keep Exception Handler 3-24
Combining Keep and Release Handlers 3-30

Section 4

Accessing Files

#REQUESTER Operation 4-1
Requesting Waited Reads 4-2
Requesting Nowaited Reads 4-4
Requesting Waited Writes 4-6
Requesting Nowaited Writes 4-8
Copying Records Between Files 4-10
Comparing Files 4-12

ListingaFile 4-16

Vi

Section 5

Initiating and Communicating With Processes

Initiating a Process 5-2
Using RUN and #NEWPROCESS Options 5-2
Sending Information at Initiation Time 5-3

Communicating With a Process 5-4
Using the INLINE Facility 5-6
Using INV and OUTV 5-14
Using $RECEIVE 5-21
Using #SERVER 5-29
Using Define Process 5-31

107365 Tandem Computers Incorporated

Contents

Processing Completion Information 5-32
Processing NetBatch Jobs and Completion Codes 5-32
Monitoring Job Status
ENQUIRY 5-35

Section 6 Running TACL as a Server

Running a TACL Process as a Server 6-1
Starting TACL as a Server Process 6-1
Sending Requests to a TACL Server 6-2
Directing Output From TACL 6-4

Running TACL Code as a Server 6-5
Constructing a TACL Server 6-5

Using TACL as a Pathway Server 6-6

Section 7 Using Programmatic Interfaces

Overview of SPl and EMS 7-1

Using SPI 7-4
Defining an SPI Buffer 7-5
Using SPI Functions 7-9

Using EMS 7-12
Communicating With EMS 7-12
Generating an EMS Event 7-13

Section 8 Example of a System Management Program
Monitoring System Operation 8-1

Section9 Syntax Summary
TACL Commands and Functions 9-1
Built-In Functions and Variables 9-6
STRUCT Declarations 9-14
#SET Summary 9-15
#DELTA Command Summary 9-16

Appendix A Supplemental Information for D-Series Systems

Glossary Glossary-1

107365 Tandem Computers Incorporated Vii

Contents

Index Index-1

Figures Figure2-1. Performing Tasks Within a Loop 2-2
Figure 2-2. Performing a Bubble Sort With Nested #LOOP Statements 2-3
Figure 2-3. Deleting Files in a Subvolume 2-5
Figure 2-4. Processing Macro Arguments 2-8
Figure 2-5. Extracting a Volume Name from a Variable 2-12
Figure 2-6. Retrieving Disk Names From DSAP 2-15

Figure 2-7. Relationships Between System Timestamps and TACL
Functions 2-20

Figure 2-8. Relationships Between #FILEINFO Timestamps and TACL
Functions 2-21

Figure 2-9. Computing the Current Day 2-22

Figure 2-10. Converting Timestamps 2-23

Figure 2-11. Sending Special Characters to a Screen 2-25
Figure 2-12. Displaying a Screen of Text 2-27

Figure 2-13. Locking a Terminal 2-28

Figure 2-14. Displaying a Menu 2-30

Figure 2-15. Starting TEDIT From TACL 2-34

Figure 3-1. Processing Arguments 3-5

Figure 3-2. Returning Characters From a Routine 3-9
Figure 3-3. Returning a Set of Characters From a Variable 3-10
Figure 3-4. Searching for Text 3-10

Figure 3-5. Counting Characters in a Variable 3-11

Figure 3-6. Moving Text Between Variables 3-11

Figure 3-7. Assigning Values to Arguments 3-12

Figure 3-8. Sending Arguments to a Parsing Program 3-14
Figure 3-9. Converting Timestamps 3-15

Figure 3-10. Processing Arguments 3-16

Figure 3-11. Processing File Name Arguments 3-17

Figure 3-12. Sample Release Handler Template 3-20

Figure 3-13. Sample Release Handler 3-21

Figure 3-14. Returning Information From a Release Handler 3-22

Figure 3-15. Sample Keep Exception Handler 3-25

viii 107365 Tandem Computers Incorporated

Contents

Figure 3-16.
Figure 3-17.
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4

Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 7-1
Figure 7-2
Figure 7-3
Figure 8-1

Sample Command Shell 3-27

Using Nested Keep and Release Handlers (Page 1 of 2) 3-31
Performing a Waited Read 4-3

Performing a Nowaited Read 4-5

Reading From a Terminal and Performing a Waited Write 4-7

Reading From a Terminal and Performing a Nowaited
Write 4-9

Copying Records From One File to Another File 4-10
Comparing Two Files 4-13

Listing a File 4-16

TACLLIST Output 4-20

Communicating With FUP 5-8

Building a Script 5-8

Retrieving Output from FUP 5-10

Omitting Terminal Output 5-11

Deleting PERUSE Jobs 5-12

Retrieving the TACL IN File Name 5-15
Communicating With FUP Using INV and OUTV 5-17
Directing FUP Output to a Log File 5-18

Displaying PERUSE Jobs 5-19

Sending Messages to a Terminal 5-22

Creating CMON Messages 5-25

Communicating With FUP Using #SERVER 5-30
Checking Completion Codes 5-33

Retrieving TACL Output 5-36

Starting and Sending Requests to a TACL Server 6-2
Running a TACL Program as a Server 6-7

Screen COBOL Code That Accesses a TACL Server 6-9
Configuring the Pathway Environment 6-11
Comparing Two Subsystem IDs 7-9

Displaying the EMS Log 7-10

Generating an EMS Event 7-13

Monitoring System Status 8-2

107365 Tandem Computers Incorporated ¢

Contents

Tables Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 3-1.
Table 3-2.
Table 3-3.

Table 4-1
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 6-1
Table 7-1
Table 7-2
Table 7-3

Built-In Functions That Edit Variables by Line 2-10
Global Editing Commands 2-13

Data Manipulation Functions 2-16

Timestamp Conversion Functions 2-19
_DEBUGGER Command Syntax 2-32

Functions That Support Arguments 3-3

Functions That Support Exception Handlers 3-19

Differences Between Keep and Release Exception
Handlers 3-20

Functions Used With #REQUESTER 4-2

RUN and #NEWPROCESS Communication Options 5-2
INLINE Commands and Variables 5-6

Variables and Commands for INLINE Display 5-9
Functions and Options Used With INV and OUTV 5-15
Functions to Use With $RECEIVE 5-21

Functions That Support Interprocess Communication 6-2
TACL Functions That Support SPI 7-4

SPI Token Data Types 7-6

Functions That Support EMS 7-12

107365 Tandem Computers Incorporated

About This Manual

This manual describes the Tandem Advanced Command Language (TACL) and
provides information and examples for creating TACL programs.

Audience

This manual is intended for users of TACL who are familiar with TACL commands
and built-in functions and who want to create TACL programs.

Organization

This manual contains the following sections:

1 Section 1, “An Overview of TACL,” contains an overview of TACL features and a
description of the programming conventions used in examples.

[0 Section 2, “Developing TACL Programs,” describes topics that are common to
many TACL programs, whether they are structured as TEXT, MACRO, or
ROUTINE variables. Topics include data editing, flow of control, using time data,
accessing terminals, handling errors, and debugging TACL programs.

[Section 3, “Developing TACL Routines,” describes how to use TACL constructs
that are available only for routines, including the use of #ARGUMENT,
#RETURN, and #ROUTINENAME.

[0 Section 4, “Accessing Files,” provides information and examples that show how
to access files from TACL programs.

[Section 5, “Initiating and Communicating With Processes,” provides information
and examples that show how to start and communicate with processes from TACL
programs.

[J Section 6, “Running TACL as a Server,” describes how to create a TACL program
that acts as a server to other processes.

[0 Section 7, “Using Programmatic Interfaces,” provides information and examples
for sending SP1 and EMS messages.

1 Section 8, “Example of a System Management Program,” contains a sample
program that monitors system status.

O

Section 9, “Syntax Summary,” provides a syntax summary of all TACL functions.

O Appendix A, “Supplemental Information for D-Series Systems,” provides
information on D-series features.

Related Reading

Prerequisites

The following paragraphs list manuals that are related to the development of TACL
programs.

Introductory material describing the steps involved in using TACL as a command
interpreter, as well as using it for defining function keys, writing simple macros, and
other basic purposes, is presented in the Guardian User’s Guide (contains no
descriptions of TACL built-in functions and variables). You should read and
understand the first four sections of that manual before using this programming
guide.

107365 Tandem Computers Incorporated Xi

About This Manual

Related Reading

Xii

Corequisites

To use this manual, you should be familiar with the syntax and structure of procedural
variables (TEXT, MACRO, and ROUTINE), including basic programming concepts
and terminology such as “pushing” and “popping” (creating and deleting) variables,
the use of arguments, and so on. Elements of the TACL language are described in the
TACL Reference Manual.

Additional sources of information you might want to have available for reference are:

Debug Manual

Event Management Service (EMS) Manual

Enscribe Programmer’s Guide

Expand Network Management Guide

File Utility Program (FUP) Reference Manual

Guardian Programmer’s Guide

Introduction to Distributed Systems Management (DSM)
Distributed Systems Management (DSM) Programming Manual
Inspect Manual

NetBatch Manual

Security Management Guide

System Procedure Errors and Messages Manual

NonStop Il and TXP System Operator’s Guide

System Procedure Calls Reference Manual, Volume 1 and 2
Introduction to NonStop Transaction Manager/MP (TM/MP)
ViewPoint Manual

107365 Tandem Computers Incorporated

About This Manual

Related Reading

Figure 1 lists the recommended sequence for reading TACL related manuals.

Figure 1. Documentation Road Map

Prerequisite Manuals

TACL _
Reference Guardian
Manual User's Guide

TACL
Programming

Guide

Related Manuals

NetBatch || Guardian
Manual Programmer's
Guide

Introduction tg | Event

Distributed Management
Systems Service (EMS
Management Manual
(DSM)

001

107365 Tandem Computers Incorporated Xiii

About This Manual

Related Reading

(This page left intentionally blank)

Xiv 107365 Tandem Computers Incorporated

Notation Conventions

General Syntax
Notation

UPPERCASE LETTERS

lowercase italic letters

Brackets []

Braces {}

Vertical Line |

The following list summarizes the notation conventions for syntax presentation in this
manual.

Uppercase letters indicate keywords and reserved words; enter these items exactly as
shown. Items not enclosed in brackets are required. For example:

STATUS
Lowercase italic letters indicate variable items that you supply. Items not enclosed in

brackets are required. For example:

fil e-nane

Brackets enclose optional syntax items. For example:

TERM [\ node- nane. | $t er m nal - nane
A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list may be arranged either vertically, with aligned brackets on

each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

LIGHTS [ON]
[OFF]
[SMOOTH [num]]

Note also that TACL uses brackets in commands and functions.

A group of items enclosed in braces is a list from which you are required to choose one
item. The items in the list may be arranged either vertically, with aligned braces on
each side of the list, or horizontally, enclosed in a pair of braces and separated by
vertical lines. For example:

#BU LTINS [/ { FUNCTIONS | VAR ABLES } /]

Note also that TACL uses braces in comments.

A vertical line separates alternatives in a horizontal list that is enclosed in brackets or
braces. For example:

I NSPECT { OFF | ON | SAVEABEND }

Note also that TACL uses vertical lines to surround labels in enclosures.

107365 Tandem Computers Incorporated XV

Notation Conventions

General Syntax Notation

XVi

Ellipsis ...

Punctuation

[tem Spacing

Line Spacing

An ellipsis immediately following a pair of brackets or braces indicates that you can
repeat the enclosed sequence of syntax items any number of times. For example:

#PUSH variable [[,] variable]

[+1 -1 {0]1]2]|3]|4|5/6]7]|8|9}...
An ellipsis immediately following a single syntax item indicates that you can repeat
that syntax item any number of times.
Parentheses, commas, semicolons, and other symbols not previously described must
be entered as shown. For example:

#CHARACTERRULES

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown.

Spaces shown between items are required unless one of the items is a punctuation
symbol such as a parenthesis or a comma. For example:
PURGE fil e-nane
If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:
$subvol . fil e- nane
If the syntax of a command is too long to fit on a single line, each continuation line is
indented three spaces and is separated from the preceding line by a blank line. This

spacing distinguishes items in a continuation line from items in a vertical list of
selections. For example:

#POP vari abl e
[[,] variable]...

107365 Tandem Computers Incorporated

1

An Overview of TACL

Running the Examples
in This Manual

The Tandem Advanced Command Language (TACL) is the standard command
interface to the Tandem NonStop kernel. In addition to providing full command
interpreter facilities, TACL is a high-level programming language.

As a programming language, the TACL product is most often used for managing
systems and processes. You can, for example, use TACL to:

[0 Automate system startup and shutdown procedures.

0 Automate subsystem startup and shutdown procedures; for example, you can use
TACL statements to initialize Pathway, the TMF subsystem, Transfer, and other
subsystems.

O Run utilities and issue commands—either with a fixed set of commands or a
flexible set that you can tailor at run time.

[J Create a customized environment that simplifies commonly performed tasks for
users.

I Control subsystem operation using the Subsystem Programmatic Interface (SPI).

0 Communicate with the Event Management Service (EMS) and generate EMS
messages.

The TACL language consists of commands, built-in functions, and built-in variables.
Commands are typically used for interactive work. Built-in functions are typically
used for programmatic work. Built-in variables store environmental information; you
can set and retrieve their values.

Procedural constructs such as flow control statements are provided as part of the set of
built-in functions. In addition, TACL provides powerful text manipulation functions
that process output and results from processes.

TACL is extensible; all of the commands supplied by Tandem are implemented as
TACL programs. You can add functions as necessary.

In addition, NetBatch requires the use of TACL.

The following paragraphs describe programming style and the use of examples in this
manual.

Before running the examples in this manual, set the built-in variable #INFORMAT to
TACL, which enables recognition and processing of the TACL special characters ([and
], for example); without this step, TACL does not recognize metacharacters as special
characters. The function call is:

11> #SET #| NFORVAT TACL

In addition, set the built-in variable ##MSEARCHLIST to include (at least)
$SYSTEM.SYSTEM and the keyword #DEFAULTS, which enable the use of implied
RUN commands. An example is:

12> #SET #PMSEARCHLI ST [#DEFAULTS] $SYSTEM SYSTEM

107365 Tandem Computers Incorporated 1-1

An Overview of TACL

Style Conventions

Note

You can add these statements to your TACLCSTM file if you use them frequently.

In cases where TACL provides a built-in function that is similar to a command (such
as PUSH and #PUSH), the examples in this manual use the built-in function. Built-in
functions are the most basic unit of TACL, and they return results and provide easier
programmatic access to error information.

Error checking is as important in TACL programs as it is in programs written in other
languages. Possible sources for errors include terminal input and file system
operations.

Examples and sample programs are for illustration only and might not be suited for
your particular purpose. Tandem does not warrant, guarantee, or make any
representations regarding the use or the results of the use of any examples or sample
programs in any documentation. You should verify the applicability of any example
or sample program before placing the software into productive use.

For additional examples, you can view the code for TACL commands by displaying the contents
(#OUTVAR conmmand)) .

Style Conventions

The examples in this manual adhere to the following conventions for clarity and
maintainability of programs:

0 Built-in functions, commands, variables, and other keywords appear in uppercase:
O #SET
O TIME
0 User-defined functions, commands, and variables appear in lowercase:
O var1l
[0 get_info

O

STRUCT definitions are indented two columns for each level of nesting.

O Similar levels of nested text in #IF, #CASE, and #LOOP statements are indented to
the same column. Indentations are in two-space increments. Matching square
brackets are in the same column; labels within square brackets start at the same
column.

[Square brackets and labels for #IF and #LOOP statements start at the same
column. Conditional text is indented two more spaces. For example:

[#1 F [tinmenow] > 12 | THEN|
#OUTPUT Good afternoon

| ELSE]
#OUTPUT Good norni ng

]

[0 Square brackets for #CASE statements start at the same column. Because
#CASE statements can include include several user defined labels; labels are

107365 Tandem Computers Incorporated

An Overview of TACL

Style Conventions

indented two spaces within the square brackets. Conditional text is indented
two spaces past the labels. For example:

[#CASE [error nunber]
| Of
#OUTPUT [fil enanme] was purged
| OTHERW SE]|
#OUTPUT [fil ename] coul d not be purged
#OUTPUT Error [errornunber]

]

Exceptions to the Style In a few situations, the preceding style conventions do not produce optimal results.
Conventions For example, an #OUTPUT call that continues on a second line includes leading spaces
in the display. Therefore, text that continues an #OUTPUT call should be left-justified.
For example:

[#IF [x] > 0 | THEN|
#OUTPUT This is a test; the text for this #OUTPUT call &
is longer than a single line.

]
The second line of the #OUTPUT call is not indented two spaces.

In such cases, the examples in this manual note the exception and do not follow the
style conventions.

Conventions Specificto The following additional conventions are used for consistency:

ThisManual 1 1,6 cOMPUTE command and the #COMPUTE, #IF, and #LOOP built-in
functions accept expressions as arguments. When you supply a variable name as
all or part of an expression, you can enclose the variable name in square brackets
or omit the square brackets. Either way, TACL retrieves the contents of the
variable.

The examples in this manual include the square brackets, to show that the
statement uses the contents of the variable. This approach, however, requires
slightly more processing by TACL.

[0 The examples in this manual are restricted to a line length of 62 characters (as
opposed to 80 characters for an edit file). There are several function calls in this
manual that are longer than 62 characters; these calls are enclosed in square
brackets or are joined by an ampersand character:

[#SET tenp [#CONTI ME [#FI LEI NFQ MODI FI CATI OV
[thisfile]]]

#SET tenp [#CONTI ME [#FI LEI NFQ' MODI FI CATI ON/ &
[thisfile]]]

Lines that have 80 characters or less can fit on one edit file line; if you join these
lines in your program, you can omit the surrounding square brackets or the
ampersand character.

For more information about expressions, see the TACL Reference Manual.

107365 Tandem Computers Incorporated 1-3

An Overview of TACL

Style Conventions

(This page left intentionally blank)

1-4 107365 Tandem Computers Incorporated

2

Developing TACL Programs

Choosing a Type of
Variable

This section describes topics that are common to all types of procedural variables.
Topics include:

Defining program structure
Processing character data
Accessing time information

Accessing terminals

O Oo0ooaod

Debugging TACL programs

The TACL Reference Manual contains information about TACL statements, programs,
and the TACL environment. This information is prerequisite to the topics in this and
later sections.

The choice of a type of procedural variable depends on the type of work you plan to
do. The variable types can be summarized as follows:

0 A macro is typically used for programs that have limited need for validation of
arguments and no need for conditional exits. Within a macro, you can:

[0 Define and access data structures such as text and STRUCT variables.
[0 Compare, move, and manipulate the contents of variables.

[Process arguments.
O

Use TACL built-in functions and commands, including built-in functions that
provide conditional execution of code.

[0 Use TACL built-in variables to specify or obtain information about the TACL
environment.

O Arroutine is the most general and fully functioned type of procedural variable, and
is required for programs that handle exceptions (unusual events) or perform
complex flow of control operations. If you plan to perform complex argument
processing, a routine is recommended.

Routines provide all of the capabilities that are available from macros, plus they
support built-in functions such as #ARGUMENT and #RETURN that are not
available to macros. While routines can provide more functionality than macros,
they also require more knowledge.

This section contains examples that illustrate the use of macros; except where noted,
these techniques also apply to routines.

Section 3, “Developing TACL Routines,” discusses additional features that apply only
to TACL routines.

107365 Tandem Computers Incorporated 2-1

Developing TACL Programs

Defining Program Structure

Defining Program The following paragraphs describe topics that are related to the structure of TACL
Structure programs:

O Using flow control functions: #LOOP, #IF, and #CASE
[Nesting programs within other TACL programs
[0 Saving and restoring levels of variables

0 Exiting from TACL programs

Using Flow Control The following examples show how #LOOP, #CASE, and #IF statements work.

Functions The macro in Figure 2-1, copi er, demonstrates two ways to perform an activity in a

loop. Copi er makes six copies of a file named TYPE. (The file TYPE must exist
before you run copi er.) For the first three duplications, copi er starts a new FUP
process during each pass through a loop. For the second three duplications, copi er
loops to prepare a sequence of commands and then passes the commands to FUP. The
second method requires one additional variable and one more function call but starts
only one FUP process, and is therefore more efficient.

When you run copi er, your TACL process must be named (using the NAME option
with the TACL command). To run copi er, load the file that contains the macro and
then type:

copi er

Figure 2-1. Performing Tasks Within a Loop

?SECTI ON copi er MACRO

#FRAME
#PUSH | i st var == List of files to be duplicated
#PUSH sn == Serial nunber

== Less efficient method; multiple processes started

#SET sn O

[#LOOP | D]
FUP DUP type, tnpa[sn] == Start FUP for each
#SET sn [#COWUTE sn + 1] == conmand in the | oop

| UNTIL] (sn = 3)
]
== More efficient nmethod; one process started
#SET sn O
[#LOOP | DQ
#APPEND | i stvar DUP type, tnpb[sn]
#SET sn [#COWPUTE sn + 1]
| UNTIL|] (sn = 3)
]
FUP/ I NV |istvar/ == Execute FUP only once
#UNFRAME

2-2 107365 Tandem Computers Incorporated

Developing TACL Programs

Defining Program Structure

You can define a macro that increments a loop variable (passed as the argument); for
example:

[#DEF next MACRO | BODY|
#SET %% [#COMPUTE %% + 1]
]

Use the macro in Figure 2-2, bubbl e, with its nested #LOOP statements, to perform a
bubble sort. A bubble sort compares numbers and switches their places until the
numbers are stored in ascending order.

To run bubbl e, load its file and supply the number of sort elements as an argument:

bubbl e num

Figure 2-2. Performing a Bubble Sort With Nested #LOOP Statements (Page 1 of 2)

?SECTI ON bubbl e MACRO

#FRANMVE
#PUSH i j max ocount el enent pronpt tenp
#SETMANY i j max ocount element, 0 0 0 0 O

#SET pronpt Enter Next Nunber to be Sorted...

== Request the nunber of elenents specified in argunent 1 and
== store themin levels of STACK
[#LOOP | WHI LE| (el ement < 9%49% | DQ
#PUSH st ack
#1 NPUTV st ack pronpt
#SET el enent [#COVPUTE el enent + 1]
] {end of INPUT | oop}

== Loop once for each el enent

#SET ocount 1

[#LOOP | WHI LE| (ocount < %% |DQ
#SET i 1
#SET max [#COWPUTE %% - ocount + 1]

== Conpare each elenment to its adjacent nunber; switch places
== if we encounter a snaller nunber.
[#LOOP |WHILE| (i < max) |DQ
#SET j [#COWPUTE i + 1]
[#1F ([stack.i] > [stack.j]) | THEN|
#SET temp [stack.i]
#SET stack.i stack.j
#SET stack.j tenp
]
#SET i [#COWPUTE i + 1]
] {end of inner |oop}
#SET ocount [#COWPUTE ocount + 1]
] == end of outer |oop

107365 Tandem Computers Incorporated 2-3

Developing TACL Programs

Defining Program Structure

Figure 2-2. Performing a Bubble Sort With Nested #LOOP Statements (Page 2 of 2)

== Loop through all variable |levels and display contents
#SET el enent 1
[#LOOP | DQ
#OUTPUT [stack.[el ement]]
#SET el enent [#COWPUTE el ement + 1]
| UNTIL] (elenent > %%

]
#UNFRAVE

Bubbl e requests the specified number of elements and displays the results:

29> bubble 3

Enter Next Nunber to be Sorted...1
Enter Next Nunber to be Sorted...43
Enter Next Nunber to be Sorted...5
1

5

43

30>

The bubbl e macro does not check the data type of the argument. Therefore, bubbl e
abc causes an error:

29> bubbl e abc
[#IF ((0 < abc))

Expecting a constant

O NOT

O a string

(variabl e does not exist)
O a nunber

O (

30>

Use the routine in Figure 2-3, checkf i | es, with its #IF statements and nested #CASE
statements, to perform file maintenance on a subvolume. The routine asks for an
alphanumeric starting point in the subvolume. It starts at the next file name, loops
through your current subvolume, and displays information about each file in the
subvolume.

Note Whenyourun checkf i | es, you mustaccess your local system and your node name must not be
included in your current #DEFAULTS. To remove a node name, if present, enter SYSTEM at the TACL
prompt before running checkfi | es.

2-4 107365 Tandem Computers Incorporated

Developing TACL Programs

Defining Program Structure

When you run checkf i | es, the routine displays the following:
VWere do you want to start (default = begi nning of subvol)?

To start checking files in the middle of the subvolume, enter a text constant with the
desired starting characters. Checkf i | es then performs the following steps for each
file past the specified starting point in the subvolume:

1. Checkfil es displays the file name and date of last alteration.

2. Foran Editfile, checkf i | es displays the first ten lines of the file; otherwise, it
displays “Not an Edit file; nothing to show you.”

3. Checkfil es asks if you want to purge the file (Y or N). For files that are not Edit
files, checkf i | es also asks if you want to empty the file (E).

Checkfi | es stops at the end of the subvolume; to stop earlier, press BREAK.

Figure 2-3. Deleting Files in a Subvolume (Page 1 of 2)

?SECTI ON checkfil es ROUTI NE

#FRAMVE

#PUSH filenmreply pronmpt vol subvol thisone tenmp resp
#SET t hi sone [#DEFAULTS/ CURRENT/]

#SET vol subvol [thisone]

#SET pr onpt &
Enter the start file (default = beginning of subvol)?

== Read text fromthe termnal
#1 NPUTV fil enm pronpt
#SET filenm [#NEXTFI LENAME [#SH FTSTRING UP/[filenn]]]
[#SET vol subvol
[#FI LEI NFOQ VOLUME/ [fil enn]]. [#FI LEI NFQ SUBVOL/ [fi |l enn]

]

== Loop within the sanme subvol une

[#LOOP | WHI LE] ([_COWPAREV vol subvol thisone]) |DQ
== Display last-altered information
#SET tenp [#CONTI ME [#FI LEI NFO MODI FI CATION [filenn]]]
#OUTPUT
#OUTPUT [filenn] last altered [_CONTI ME_TO TEXT [tenp]]
== Cet the file code
[#CASE [#FI LEI NFO CODE/ [filenm]

== If an edit file, list the first ten lines, then
== determ ne whether the user wants to purge the file
| 101]
FUP COPY [filenm , , COUNT 10

#SET pronpt Do you want to purge [filenn] (y/n)?
#1 NPUTV reply pronpt

107365 Tandem Computers Incorporated 2-5

Developing TACL Programs

Defining Program Structure

Figure 2-3. Deleting Files in a Subvolume (Page 2 of 2)

[# F [#MATCH Y* [#SH FTSTRING UP/ [repl y]1]
| THEN|
#SET resp [#PURCGE [fil enn]]
[#CASE [resp]
| Of
#OUTPUT [filenn] purged
| OTHERW SE]|
#OUTPUT [filenn] could not be purged
#OUTPUT Error [resp]
] {end #CASE}
] {end #lF}

| OTHERW SE]|
== Not an edit file; determ ne whether to purge it
#OUTPUT Not an Edit file; nothing to show you.
#SET pronpt Do you want to purge/enpty [filenn] &
(y/nle)?
#1 NPUTV reply pronpt

[#1 F [#MATCH Y* [#SH FTSTRING UP/[reply]]] | THEN
#SET resp [#PURCGE [fil enni]
[#CASE [resp]
| Of
#OUTPUT [filennj purged
| OTHERW SE]|
#OUTPUT [filenn could not be purged
#OUTPUT Error [resp]
] == end #CASE
] == end #IF

[#I| F [#MATCH E* [reply]] | THEN] == enpty the file
FUP PURGEDATA [filenni

]
] == end #CASE

== Get the next file
#SET filenm [#NEXTFI LENAME [filenn]]
[#SET vol subvol
[#FI LEI NFO' VOLUME/ [fil enm] . [#FI LEI NFQ SUBVOL/ [fil enni]
] == end #SET
] == end #LOOP
#UNFRAVE

Note The previous example starts FUP several times; a more efficient way is to start FUP once and send it a
series of commands. For information about starting a process and sending it commands, see Section 5,
“Initiating and Communicating with Processes.”

2-6 107365 Tandem Computers Incorporated

Developing TACL Programs

Nesting TACL Code

Defining Program Structure

To run another TACL program from within a TACL program, invoke the file name or
variable name, as appropriate.

Certain built-in functions can be used only within one type of program (macro or
routine). To determine the use of such functions in a nested program, see individual
function descriptions in the TACL Reference Manual. For example, #ARGUMENT must
be used within a routine, but can be used in a macro if the macro is nested within a
routine.

To call a program recursively, use %0% (for a macro) or #ROUTINENAME (for a
routine) to specify the name of the program. You cannot call a text variable
recursively.

The following macro calls itself to display each of its arguments on a separate line:

?TACL MACRO
#OUTPUT %1% == Di splay current argunent
[# F NOT [#EMPTY %2% | THEN|

== Test for additional argunents

%% %2 TO *% == Call self wthout current
] == argunent.

To run this macro, type the file name from the TACL prompt and supply one or more
arguments. The macro displays the arguments you supply. In the following example,
the file name that contains the macro is called ARGS:

12> args a b c d
a

b

c

d

13>

Section 3, “Developing TACL Routines,” contains a macro that calls a nested routine.

107365 Tandem Computers Incorporated 2-1

Developing TACL Programs

Defining Program Structure

Saving Levels of Variables

2-8

Use the macro in Figure 2-4, def aul t var s, to assign data to a set of empty variables.
The macro accepts a space-separated list of variables and nonempty values and calls
itself repeatedly until all arguments are processed. To run this macro, load the file that
contains the macro definition and then type:

12> defaul tvars [variabl e constant [variable constant...]]

Figure 2-4. Processing Macro Arguments
?SECTI ON def aul t vars MACRO

== Any nore pairs?
[#1 F NOT [#EWMPTY %1% | THEN|

== |s this variable enpty?
[#| F [#EMPTYV %% | THEN|

== The variable is enpty; install default val ue
#SET %% %2%
]

== Call self again, onitting the current pair.
%% Y8 TO *%
]

The following session shows how def aul t var s works:

15> #PUSH a b ¢
16> defaultvars a 3 b 4 c 5

17> #QUTPUTV a
3
18> #QUTPUTV b
4
19> #QUTPUTV c
5

The #PUSH built-in function creates a new level for a user-defined or built-in variable.
If you push a variable twice, TACL creates two levels of the variable. A new level
remains in existence until you request a #POP, #UNFRAME, or #RESET FRAMES
operation.

The following code redefines the TACL OUT file, retrieves information from the
history buffer, saves the history information in a file named HISTFILE in the current
subvolume, and then restores the OUT file to its previous setting:

?SECTI ON hi st orysave MACRO

#PUSH #OUT == Create a new |l evel for #OUT

#SET #OUT histfile == Set OUT to HI STFILE

#H STORY == Retrieve history infornmation

#POP #OUT == Restore #OUT to its previous val ue

107365 Tandem Computers Incorporated

Developing TACL Programs

Exiting From Programs

Processing Character Data

The #FRAME built-in function creates a local environment for variables. The
#UNFRAME command restores variables to the state they were in at the time of the
last ##FRAME operation. For more information about frames, see the TACL Reference
Manual.

TACL exits from a macro or text variable as soon as it encounters either of the
following conditions:

[0 Successful completion of the code; TACL executes each line and exits when
finished.

[0 Detection of an error condition, in which case TACL restores all variables to the
state they were in when the variable was invoked and then exits the variable.

If you use routine variables, you can use the #RETURN built-in function to return
conditionally from one or more locations in your code. For more information, see
“Returning Results” in Section 3, “Developing TACL Routines.”

Processing Character
Data

When writing a TACL program, you might need to examine or modify the contents of
variables. Such tasks include:

[0 Constructing text strings for input to processes, files, or devices
0 Analyzing process output
0 Analyzing results of functions

For example, whenever you use RUN or #NEWPROCESS to initiate a process from
TACL, you can direct output from the process to a variable:

[0 The OUT option directs program output to a file.

0 The OUTYV option stores program output into a variable for later use.

Section 5, “Initiating and Communicating With Processes,” describes process
initiation.

TACL supports several commands and functions that manipulate characters and lines
of characters within variables:

[0 Commands, typically used for interactive work, perform editing operations on one
or more lines in a variable.

O Built-in functions perform a single operation, referencing text by character
position or line number.

#DELTA, the low-level character editor, provides text editing capabilities similar to
those provided by the character and line oriented built-in functions. #DELTA is
complex; the newer #CHARxxx and #LINExxx built-in functions are easier to use.

STRUCT variables, or structures, allow you to define a set of elements and access the
elements by name. STRUCT variables support a range of data types. Structures are
helpful when communicating with processes such as $SCMON, and are required when
communicating with the Subsystem Programmatic Interface (SPI) and the Event
Management Service (EMS).

107365 Tandem Computers Incorporated 2-9

Developing TACL Programs

Processing Character Data

For additional information about #DELTA and STRUCT variables, see the TACL
Reference Manual. For examples showing the use of STRUCT variables with SPI and
EMS, see Section 7, “Using Programmatic Interfaces.”

The following paragraphs describe how to use string manipulation functions and
commands.

Note Variable levels that contain TACL code contain special internal multicharacter representations of [, |,
and]. When you use character oriented functions, be aware that these representations are counted as
multiple characters; they contain unprintable characters that are subject to change from one release of
TACL to another.

Line and Character The functions in Table 2-1 operate on the contents of variables; each of these functions
Built-In Functions performs an action and/or returns a result. There are two types of functions—one

accepts a character address; the other accepts a line address. Table 2-1 lists both types

of built-in functions; a dash indicates that there is no equivalent function or command.

Table 2-1. Built-In Functions That Edit Variables by Line

Character Address Line Address

Function Function Description

#CHARADDR #LINEADDR Converts between a character address and a line
address.

#CHARBREAK #LINEBREAK Inserts a line break at the specified character or
line address.

#CHARCOUNT #LINECOUNT Counts characters or lines.

#CHARDEL #LINEDEL Deletes consecutive characters or lines.

#CHARFIND #LINEFIND Finds the address of specified text, searching
forward.

#CHARFINDV #LINEFINDV Finds the address of a specified string, searching
forward.

#CHARFINDR #LINEFINDR Finds the address of specified text, searching
backward.

#CHARFINDRV #LINEFINDRV Finds the address a specified string, searching
backward.

#CHARGET #LINEGET Returns a copy of consecutive characters or lines.

#CHARGETV #LINEGETV Places a copy of consecutive characters or lines
in the variable.

#CHARINS #LINEINS Inserts lines of text at a specified address in the
variable.

#CHARINSV #LINEINSV Inserts a string at a specified address in the
variable.

— #LINEJOIN Joins two lines.

2-10 107365 Tandem Computers Incorporated

Developing TACL Programs

Processing Character Data

A character address specifies a particular character within a variable, counting from
the first character, whose character address is 1. Each end-of-line character (except the
last one in the variable) counts as one character. If a specified character address is
greater than the number of characters in the variable, that address is considered to be
equivalent to the address of the character that appears after the last character in the
variable.

A line address specifies a particular line within a variable, counting from the first line,
whose line address is 1. If a specified line address is greater than the number of lines
in the variable, that address is considered to be equivalent to the address of the line
that appears after the last line in the variable. If the variable changes, the assumed line
numbers will be different on the next operation. Unlike line numbers in an edit-format
file, these assumed line numbers are not saved.

For example, a variable called sanpl e contains three lines of text:

10> #PUSH sanmpl e

11> #APPEND sanple This variable is called "sample."

12> #APPEND sanple It contains three Iines of text.

13> #APPEND sanpl e The contents will be edited by built-in
functions.

14> #QUTPUTV sanpl e

This variable is called "sanple."
It contains three Iines of text.
The contents will be edited by built-in functions.

15>
To retrieve the number of lines, enter:

11> #LI NECOUNT sanpl e

#L1 NECOUNT sanpl e expanded to:
3
12>

To retrieve the number of characters, enter:

12> #CHARCOUNT sanpl e

#CHARCOUNT sanpl e expanded to:
117
13>

To find the line address of the first line that contains “text,” starting at line 1, enter:
13> #LI NEFI NDV sample 1 "text"
#LI NEFI NDV sanple 1 "text" expanded to:

2
14>

107365 Tandem Computers Incorporated 2-11

Developing TACL Programs

Processing Character Data

To find the character position of the first occurrence of the string “text,” starting at
character position 1, enter:

14> #CHARFI NDV sample 1 "text"
#CHARFI NDV sanple 1 "text" expanded to:

62
15>

Use the macro in Figure 2-5, vol nane, to extract a volume name from a variable
named nmyl i st. To use this macro, load the file that contains the macro definition and
enter:

vol nane
When you invoke this macro, it displays the following:

15> vol nane
The volurme nane is $DATA
16>

Figure 2-5. Extracting a Volume Name from a Variable

?SECTI ON vol nane MACRO
#FRAME
#PUSH nyl i st begin end vol

== Specify the contents of nylist:
#SET nylist The disk file name is \SYSL. $DATA. SVOL. NAVEL.

== Search for a dollar sign:
#SET begin [#CHARFINDV nylist 1 "$"]

== Search for the first period follow ng the dollar sign:
#SET end [#CHARFI NDV nylist [begin] "."]
== Retrieve the characters between "$" and ".":

#SET vol [#CHARGET nylist begin TO [#COWPUTE end - 1]]
#OUTPUT The vol une nane is vol

#UNFRAME

For examples showing the use of these functions for argument processing in routines,
see “Processing Arguments” in Section 3, “Developing TACL Routines.”

2-12 107365 Tandem Computers Incorporated

Developing TACL Programs

Global Editing Commands

Processing Character Data

Use the commands in Table 2-2 to perform editing operations on the entire contents of
a variable or a range of lines within the variable.

Table 2-2. Global Editing Commands

Command Description

VCHANGE Changes all occurrences of one string to another string in a range of consecutive
lines in a variable. VCHANGE is not case-sensitive.

VCOPY Copies a range of lines from one variable and inserts them at a given line position
in another variable.

VDELETE Deletes a range of consecutive lines in a variable.

VFIND Finds all lines containing occurrences of a specified string in a range of lines in a
variable. VFIND is not case-sensitive.

VINSERT Inserts lines from the TACL IN file at a given line position in a variable.

VLIST Lists a range of consecutive lines in a variable.

VMOVE Deletes a range of lines from one variable and inserts them at a given line position

in another variable.

Unlike the built-in functions, the commands in Table 2-2 do not return a result.
Instead, each of these commands (except VINSERT) lists the lines it operates on, with
sequence numbers, to either the TACL OUT file or another user-specified file. You can
append copies of the lines to an existing variable.

To use these commands, specify a range of line numbers or all of the lines in the
variable (the default). If you use these commands to search for text or change text, the
process is not case-sensitive; TACL performs the operation on all instances of the text.
To specify a case-sensitive text change, use a line-editing or character-editing function,
listed in Table 2-1.

The following code reserves the name of a variable called sanpl e2:
12> #PUSH sanpl e2

(The variable is initialized as soon as you store data in it.)

To insert several lines into the variable, starting at line 1, enter:

13> VI NSERT sanple2 1

1 The name of this variable is "sanple2."
2 There are 37 characters in this |ine.
3 This is the last line in the vari able.

To terminate input, type CTRL/Y (or a line that contains two slashes—//).

107365 Tandem Computers Incorporated 2-13

Developing TACL Programs

Processing Character Data

To display the contents of sanpl e2, enter:

14> VLI ST sanpl e2

1 The nanme of this variable is "sanple2."
2 There are 37 characters in this |ine.
3 This is the last line in the vari abl e.

To find all occurrences of the word “line” in sanpl e2, enter:

15> VFI ND sanpl e2 "line"

2 There are 37 characters in this |ine.
3 This is the last line in the vari abl e.

To change all occurrences of “line” to “sentence,” enter:

16> VCHANGE sanple2 "line" "sentence"

2 There are 37 characters in this sentence.
3 This is the last sentence in the variable.
You can also use a variable for the comparison string:

17> #PUSH var 1
18> #SET varl |ine
19> VFI ND sanpl e2 varl

2 There are 37 characters in this |ine.
3 This is the last line in the vari abl e.

2-14 107365 Tandem Computers Incorporated

Developing TACL Programs

Processing Character Data

Use the macro in Figure 2-6, vol nanes, to display the volume names on your system,
using the VFIND global editing command. To run this macro, load the file and type
vol nanes:

12> vol nanes

The vol une names are:
$SYSTEM

$DATA

$DATA2

$DATA3

13>

This macro uses the OUTYV construct to retrieve process output. For more information
about OUTV, see “Using INV and OUTV” in Section 5, “Initiating and Communicating
With Processes.”

Figure 2-6. Retrieving Disk Names From DSAP

?SECTI ON vol nanes MACRO

#FRAMVE
[#PUSH
dsapout put == an out put stack for DSAP
di skpat hs == a stack of disk nanes
di skinfo == a single |ine from DSAP
vol nane == a vol ume nane
di spl ayi nfo == a stack of volume nanes to display
count == a stack counter
begi n == begi nni ng of the vol unme nane
end == end of the vol une nane

]
== Run DSAP and capture the output:

DSAP / QUTV dsapout put/ *, SHORT
VFIND / QUI ET, TO di skpat hs/ dsapout put "$"

== Set a stack counter for diskpaths
#SET count [#LI NECOUNT di skpat hs]
== Loop through the contents of diskpaths
[#LOOP | WHI LE| [count] <> 0 | DQ
== Extract a line and put it in diskinfo
#SET di ski nfo [#EXTRACT di skpat hs]
== GCet values for the positions of the "$" and
== characters
#SETMANY vol name, [di skinfo]
#APPENDV di spl ayi nfo vol nane
#SET count [#COWPUTE [count] - 1]

]
#OUTPUT The vol une nanes are:

#OUTPUTV di spl ayi nfo
#UNFRAVE

107365 Tandem Computers Incorporated 2-15

Developing TACL Programs

Processing Character Data

Additional Data
Manipulation Capabilities

2-16

Use the built-in functions and commands in Table 2-3 to perform other data
manipulation tasks. A dash indicates that there is no equivalent function or command.

Table 2-3. Data Manipulation Functions

Function Command Description

#APPEND — Adds a line of text to a variable level.

#APPENDV — Appends a string or the contents of a variable level to the
end of another variable level.

#COMPAREV _COMPAREV Compares one string or variable level with another.

— COPYVAR Copies the contents of one variable level to another.

#EMPTY — Determines whether specified text is empty.

H#EMPTYV — Determines whether a variable level or quoted text is
empty.

#EXTRACT — Obtains the first line of a variable level.

#EXTRACTV — Moves the first line of a variable level to another variable
level.

— FILETOVAR Copies data from a file to the end of a variable level.

— JOIN Converts a multiple-line variable level into a single-line
variable level with spaces in place of end-of-line indicators.

— _LONGEST Returns the longest element in a variable containing a
space-separated list.

#SET SET VARIABLE Changes the entire contents of a variable level.

#SETMANY — Distributes the members of a space-separated list into
individual variable levels.

#SETV — Copies a string or variable level into another variable level.

— VARTOFILE Copies data from a variable level to a file.

To read data into a variable from a sequential file, you can use either FILETOVAR or
#SET. The following statements move the contents of fi / enane into vari abl e:

FI LETOVAR fil enane vari abl e
or
#SET /I N fil enanel vari abl e

The #SET command is much faster and is easier to debug: FILETOVAR is
implemented as a looping macro; #SET uses TAL code. The maximum record length
for records in files copied by FILETOVAR is 239 characters. When using #SET, make
sure #INFORMAT is set to PLAIN.

107365 Tandem Computers Incorporated

Developing TACL Programs

Data Types

Accessing Time Data

To obtain input from a terminal, you can use #INPUTV, #SET, VINSERT, or
#APPEND. The following function calls wait for input and store the input into
vari abl e:

#1 NPUTV vari abl e pronpt
#SET vari abl e [#1 NPUT pronpt-text]
#APPEND vari abl e [#] NPUT pronpt-text]

In addition, you can use #REQUESTER to read from a terminal. For additional
information about these built-in functions and commands, see the TACL Reference
Manual.

TACL does not support explicit data type definitions except in STRUCT variables. If
you need to determine the data type of variable contents, such as whether the first
constant in a variable is a number or a text constant, you can check to see if the type
matches one of the alternatives supported by the #ARGUMENT built-in function. You
can access a routine that contains an #ARGUMENT call from any type of procedural
variable. For more information, see “Processing Arguments” in Section 3,
“Developing TACL Routines.”

Accessing Time Data

Timestamp Formats

The system clock keeps track of time as a numeric value known as a timestamp. TACL
supports timestamps in four formats for arithmetic operations, comparisons, and
display purposes.

The four timestamp formats differ in content and form:

O Julian timestamp, a four-word timestamp based on the Julian calendar. This
timestamp represents the number of microseconds since 12:00 January 1, 4713 B.C,
using Greenwich mean time (GMT). A GMT timestamp is stored as a four-word
timestamp; for example:

211479971400000000

The Julian date includes a Julian day number—the integral number of days since
January 1, 4713 B.C. The operating system assumes that the Julian day number
starts at midnight local or Greenwich mean time, depending on the base of the
timestamp.

107365 Tandem Computers Incorporated 2-17

Developing TACL Programs

Accessing Time Data

Retrieving a Timestamp

2-18

0 Local timestamp, a three-word timestamp. This timestamp represents the number

of centiseconds (.01 second) since 00:00 December 31, 1974. An example is:
45553140000
A local timestamp can represent one of the following three time zones:

[0 Local civil time (LCT): The time of day locally. This is in either standard time
or daylight-saving time, depending on the area and the time of year.

0 Local standard time (LST): The time of day expressed in standard time.

O Local daylight time (LDT): The time of day expressed in daylight-saving time.

The daylight-saving time system extends the amount of daylight in the
evenings by advancing the civil time. Usually, but not always, this is done in
hour increments.

[0 Numeric date, a space-separated list in Gregorian date form—year, month, day,

hour, minute, second, and fraction of a second. If obtained for a Julian timestamp,

the list starts with the Julian day number. Examples include:

[1992 4 28 22 59 17 88—converted from a three-word timestamp

[0 2447635 1992 4 28 22 59 17 88—converted from a four-word timestamp
[0 Textual date, in Gregorian form, such as:

May 7, 1992 08:30: 00

Use the following built-in functions to retrieve date and time information from the
system:

[0 #JULIANTIMESTAMP obtains the current timestamp, in Julian (four-word)
format.

[0 #TIMESTAMP obtains the current timestamp, in local (three-word) format.
For example:

14> #TI MESTAVP

#TI MESTAVMP expanded t o:
54861863444

15> #JULI ANTI MESTAMP

#JULI ANTI MESTAMP expanded t o:
211573083848182841

107365 Tandem Computers Incorporated

Developing TACL Programs

Accessing Time Data

Converting a Timestamp As noted previously, you can retrieve timestamps from the system in a three-word or
four-word format. In addition, the #FILEINFO function returns timestamps in a three-
word or four-word format, depending on the option you select. After you obtain the
timestamp, you can include it in a function call, use it for calculations, or display it.

Use the functions and commands in Table 2-4 to convert between time and date
representations. CONTIME is an abbreviation for converted time.

Table 2-4. Timestamp Conversion Functions

Starting Timestamp Ending Timestamp Function

Four-word (Julian) Numeric date, including Julian day #INTERPRETTIMESTAMP
Three-word Numeric date #CONTIME

Numeric date Four-word #COMPUTETIMESTAMP
Numeric date Julian day number #COMPUTEJULIANDAYNO
Three-word Four-word #CONVERTTIMESTAMP
Four-word Three-word #CONVERTTIMESTAMP
Julian day number Numeric date #INTERPRETJULIANDAYNO
Numeric date Textual date _CONTIME_TO_TEXT
Numeric date Textual date without time _CONTIME_TO_TEXT DATE
Numeric date Textual time _CONTIME_TO_TEXT_TIME

In addition, the _"MONTH3 function translates a two-digit month number to a three-
letter month abbreviation.

Figure 2-7 shows the TACL functions that transform system timestamps from four-
word and three-word formats to display format. Figure 2-8 shows how to convert
timestamps returned by #FILEINFO into different formats.

107365 Tandem Computers Incorporated 2-19

Developing TACL Programs

Accessing Time Data

Figure 2-7. Relationships Between System Timestamps and TACL Functions

NonStop System
#TIMESTAMP #JULIANTIMESTAMP
45553140000 211479971400000000
#CONTIME #INTERPRETTIMESTAMP
19896783000 244768519896 7830000

|

[#SETMANY _ yy mm dd hh mn ss ms,
- - - #SET hs [#fCOMPUTE [ms]/10]
l #SET tm [yy] [mm] [dd] [hh] [mn] [ss] [hs]

June 7, 1989 08:30:00 _CONTIME_TO_TEXT[tm]

l

June 7, 1989 08:30:00

002

2-20 107365 Tandem Computers Incorporated

Developing TACL Programs

Accessing Time Data

Figure 2-8. Relationships Between #FILEINFO Timestamps and TACL Functions

#FILEINFO /CREATION_GMT/

#FILEINFO /LASTOPEN_GMT/

211479971400000000

'

#INTERPRETTIMESTAMP

i

2447685198967830000

[#SETMANY _ yy mm dd hh mn ss ms,
244768519896 783000 0]

#SET hs [#COMPUTE [ms]/10]

#SET tm [yy] [mm] [dd] [hh] [mn] [ss] [hs]

_CONTIME_TO_TEXT

i

June 7, 1989 08:30:00

Disk

#FILEINFO /MODIFICATION/

45553140000

l

#CONTIME

l

19896783000

|

_CONTIME_TO_TEXT[tm]

|

June 7, 1989 08:30:00

003

107365 Tandem Computers Incorporated

2-21

Developing TACL Programs

Accessing Time Data

Computing the Day of the Week
Use the macro in Figure 2-9, dayof week, to calculate the day of the week, as follows:

16> dayof week
Tuesday
17>

Figure 2-9. Computing the Current Day

?SECTI ON dayof week MACRO

== Cal cul ates the day of the week fromthe three word
== Tl MESTAMP, which starts at 00:00 31 Decenber 1974
== (a Wednesday).

#FRAMVE

[#PUSH
day”of *week
el apsed”~days
el apsed*weeks

]

== There are 8640000 hundredths of a second in a day.
== Determi ne how nany days have el apsed since

== m dni ght, Decenber 31st, 1974 (starting tinmestanm).
#SET el apsed™days [#COVMPUTE [#TI MESTAMP] / 8640000]

== Det ermi ne how nany whol e weeks have el apsed.
#SET el apsed™weeks [#COWPUTE [el apsed”~days]/ 7]

== The day of the week is the total elapsed days ninus the
== nunber of days in the el apsed whol e weeks.
#SET day”of *week [#COWPUTE [el apsed™days] -

([el apsed™weeks] *7)]

== Qut put the day
[#CASE [day”of *week]
| 0] #OUTPUT Tuesday
| 1] #OUTPUT Wednesday
| 2] #OUTPUT Thur sday
| 3] #OUTPUT Fri day
| 4] #OUTPUT Sat ur day
| 5] #OUTPUT Sunday
| 6] #OUTPUT Monday
| OTHERW SE
#OUTPUT Error: Day of week must be 0-6 inclusive
]

#UNFRAME

2-22 107365 Tandem Computers Incorporated

Developing TACL Programs

Accessing Time Data

Converting Timestamps Into Different Formats

The macro in Figure 2-10, get dat es, converts the current date from a three-word
timestamp to SQL format (yyyy-mm-dd), for use by report generators or other
programs. This type of macro could be used to generate SQL reports.

Figure 3-9 in Section 3, “Developing TACL Routines,” contains a modification of this
example that shows how a nested routine can return dates as results.

Figure 2-10. Converting Timestamps

?SECTI ON get dat es MACRO
#FRAMVE

== Save the current setting of #OUTFORNAT,
== so that it can be restored | ater:
#PUSH #OUTFORVAT #| NFORMAT

[#PUSH
dat e == starting date (30 days ago)
yyyy == year
nm == nonth
dd == day

]

#SET #OUTFORVAT PRETTY

== Cet the date and convert to yyyy nmdd cal endar fornat:
#SETMANY yyyy nmm dd, [#CONTI MVE [#TI MESTAMP]]

== Store as yyyy-mmdd format (SQL date fornmat):
#SET date [yyyy]-[mm -[dd]

== Display the results to the user
#OUTPUT The reports will use a date of [date]
{ place report-generation code here}

#UNFRAME

107365 Tandem Computers Incorporated 2-23

Developing TACL Programs

Accessing Terminals

Accessing Terminals You can use TACL to read and write from a terminal. Sample operations include:
0 Defining function keys
0 Sending escape sequences to a terminal
[l Changing the TACL prompt
O Implementing menus

In addition, you can write programs that execute one or more commands that you use
frequently. The Guardian User's Guide describes how to create command definitions;
these definitions are typically alias or macro variables.

Defining Function Keys TACL recognizes 16 function keys. In the unshifted position they are named F1
through F15 (TACL predefines F16 as its help key). In the shifted position the function
keys are named SF1 through SF16. You can define each function key to perform a
sequence of operations that are useful in your environment. For example, you could
specify F1 as TIME and F2 as FILES.

To define function keys, create an edit-format file that contains definitions for each
function key you want to define. You then load the file (or refer to it from your
TACLCSTM file so that it is loaded when you log on).

Function key definitions are typically ALIAS variables (if you are providing an alias
for a single command or built-in function) or MACRO variables (for more complex
operations). For example, you can redefine #LOGOFF with an alias, but for
#LOGOFF/SEGRELEASE/ you must use a macro variable. The following code
defines two alias variables:

?SECTION f1 ALIAS
TI ME
?SECTION f2 ALI AS
FI LES

You can, additionally, define characters or sequences of characters that perform a
sequence of operations. For example, the following macro performs a FILENAMES
operation on the specified subvolume (or on the current subvolume, if the user does
not specify a subvolume):

?SECTI ON fn MACRO
FI LENAMES % %

To perform the FILENAMES operation, type FN.
The following macro prints a file to $S.#LP:

?SECTI ON pr MACRO
FUP COPY %% $S. #LP

To print afile, type PR fi | enane.

For more information about defining function keys, see the Guardian User's Guide.

2-24 107365 Tandem Computers Incorporated

Developing TACL Programs

Accessing Terminals

Sending Escape The 6530 terminal and devices that emulate the 6530 terminal recognize a set of escape
Sequences to a Terminal characters that allow you to control cursor position, set the size and video attributes of
characters displayed on the screen, and perform other operations. Most escape
sequences have the following format:

escape- character number [nunber]

The escape character is the 27th character in the ASCII character set. To specify an
escape sequence, store binary values as their decimal equivalents in a STRUCT or
DELTA variable. The easiest way to send these values to your terminal is to use
#OUTPUT.

The following examples use STRUCT variables to store escape sequences. To specify
an escape sequence in a STRUCT variable, set a BYTE value to the decimal value of the
escape character and the numbers that perform the desired operation.

To define an escape sequence using #DELTA, specify a decimal number followed by
the | command; for information about #DELTA, see the TACL Reference Manual.

Use the macro in Figure 2-11, di spl ay, to define several escape sequences and send
them to the home terminal. To run this macro, load the file and type di spl ay. The
macro displays a series of lines with different display attributes.

Figure 2-11. Sending Special Characters to a Screen (Page 1 of 2)

2SECTI ON di spl ay MACRO
#FRAVE

== Defi ne escape sequences
[#DEF ascii STRUCT
BEG N

BYTE byt0 VALUE 7;
CHAR bel | REDEFI NES byt O;
BYTE byt1 VALUE 27,
CHAR esc REDEFI NES byt 1;
BYTE byt 2a VALUE 36;
CHAR dol | ar REDEFI NES byt 2a;
BYTE byt2 VALUE 37;
CHAR per c REDEFI NES byt 2;
BYTE byt3 VALUE 38;
CHAR anp REDEFI NES byt 3;
BYTE byt4 VALUE 64;
CHAR at REDEFI NES byt 4;

BYTE byt5 (0:1) VALUE 27 73; == cl ear screen
CHAR clr (0:1) REDEFINES byt5; == escape sequence
END;
] == End ascii

107365 Tandem Computers Incorporated 2-25

Developing TACL Programs

Accessing Terminals

Figure 2-11. Sending Special Characters to a Screen (Page 2 of 2)

== Cl ear the screen
#OUTPUT [ascii:clr(0:1)]
#OUTPUT The screen was just cleared.

== Display text with special video attributes
#OUTPUT Blinking text: [ascii:esc]6b These words are &
bl i nki ng[ascii:esc]6[ascii:at]

#OUTPUT Inverted text: [ascii:esc]6[ascii:dollar]These words&
are inverted [ascii:esc]6[ascii:at]

#OUTPUT Inverted text: [ascii:esc]6[ascii:perc] These words &
are inverted and dim[ascii:esc]6[ascii:at]

#OUTPUT [ascii:esc]o[ascii:esc]6[ascii:anp] These words are &
inverted blinking in Iine 25 ascii:esc]6[ascii:at]

#OUTPUT Here is the bell...[ascii:bell]
#OUTPUT And this is normal text.
#UNFRAME

Figure 5-10, in Section 5, “Initiating and Communicating With Processes,” contains a
sample routine that writes to line 25 of a specified terminal.

2-26 107365 Tandem Computers Incorporated

Developing TACL Programs

Accessing Terminals

Use the routine in Figure 2-12, di spl ayi nf o, to list a screen full of lines and prompt
the user to continue. To use this routine, load the associated file and enter:

di spl ayi nfo

This routine does not display an entire screen of text, but shows how the prompt

works.

Figure 2-12. Displaying a Screen of Text

?SECTI ON di spl ayi
#FRAME

#PUSH hel p_i nput

nfo ROUTI NE

hel p_pr onpt

[#DEF ascii STRUCT

BEG N
BYTE bytO (O:
CHAR esc (O:
BYTE byt1 (O:
CHAR rdf1 (O:
BYTE byt2 (O0:
CHAR rdf2 (O:
END;
]
#SET hel p_pr onpt
conti nue: ~

#OUTPUT Sampl e i
#OUTPUT Line 2...
#OUTPUT Line 3. ..

1) VALUE 27;
1) REDEFI NES byt 0;
1) VALUE 84;
1) REDEFI NES byt 1;
1) VALUE 75;
1) REDEFI NES byt 2;

PRESS CTRL/Y to exit

st text...

#1 NPUTV hel p_i nput hel p_pronpt

or

== The foll owi ng code erases the pronpt
== and resumes output on the line where the pronpt was.

[#1 F [#I NPUTEOF]
#OUTPUT [ascii:

| ELSE]|

| THEN|

esc][ascii:rdfl][ascii:esc][ascii:
[ascii:esc][ascii:

r df 1]

#OUTPUT Di splay nore text...

#OUTPUT Li ne 2.
#OUTPUT Li ne 3.

]

#UNFRAME

roll down

erase to end of line

any ot her

key to &

rdf2] &

107365 Tandem Computers Incorporated

2-27

Developing TACL Programs

Accessing Terminals

Use the macro in Figure 2-13, | ock, to lock a terminal until the user types the
password.

Figure 2-13. Locking a Terminal

?SECTI ON | ock MACRO

#FRAME

#PUSH pw == password

#PUSH pr onpt == pronpt variable

#PUSH rsl t == result of #CHANGEUSER cal |
#PUSH userinfo == result of USERS call
#PUSH | i ne

#SET rslt O

== Define the clear screen escape sequence

[#DEF ascii STRUCT == C ear the screen
BEG N
BYTE byt0 (0:1) VALUE 27 73; == decinmal escape-|
CHAR cl ear (0:1) REDEFINES byt O0;
END;

]
#OUTPUT [ascii:clear(0:1)]

== Di sabl e break npde
#SET #BREAKMODE DI SABLE

== (btain infornmati on about the current user
USERS / QUTV useri nf o/
#EXTRACTV userinfo |ine
#EXTRACTV userinfo |ine
[#SET pronpt Password for [#USERNAVE
[#CHARGET userinfo 22 FOR 8]]:]

== Read a password (no echo) and attenpt to | og on:
[#LOOP | DQ
#1 NPUTV / NOECHO' pw pr onpt
#SET rslt [#CHANGEUSER [#USERNAMVE [#CHARGET userinfo &
22 FOR 8]] [pW]
[#IF NOT [rslt] | THEN] == An error occurred
#OUTPUT I nval id password!

]
| UNTIL|] rslt

]

== After a successful |ogon, enable break node and exit the
== nmmacro:

#SET #BREAKMODE ENABLE

#UNFRAVE

2-28 107365 Tandem Computers Incorporated

Developing TACL Programs

Changing the TACL Prompt

Accessing Terminals

The SETPROMPT command allows you to change the standard TACL prompt so that
it includes the current volume or subvolume name.

To make additional modifications, define a variable called PROMPTER that contains
the definition of the prompt. Within the PROMPTER variable, set the #PROMPT
built-in variable to the desired prompt text. To cause TACL to invoke PROMPTER
prior to displaying a prompt, set the #PREFIX built-in variable to -1.

To save the previous prompt, push the #PREFIX built-in variable before you set
#PREFIX to the new prompt text.

The following code displays the node name, volume, and subvolume in the TACL
prompt:

#SET #PROVPT -1
[#DEF _PROVPTER TEXT | BODY| #SET #PREFI X [#DEFAULTS]]

When you are working on your local system, the prompt looks like this:
$DATA. SVOL 10>

When you have used the SYSTEM command or #SYSTEM built-in function to access
another node, the prompt looks like this:

\ RSYS. $DATA. SVOL 10>

To install the prompt whenever a user logs on, add a section to the user's macro
definition file:

?SECTI ON _PROVWPTER MACRO
#SET #PREFI X [#DEFAULTS]

Add the following line to the TACLCSTM file:
#SET #PROWPT -1

Alternatively, you could use the FILEINFO command to obtain the node name,
volume, and subvolume.

For more information about #PROMPT and #PREFIX, see the TACL Reference Manual.

107365 Tandem Computers Incorporated 2-29

Developing TACL Programs

Accessing Terminals

Implementing Menus You can use TACL to define menus. A menu displays a screen and allows users to
press function keys to access information and utilities.

Use the text variable in Figure 2-14, nenu, to generate a menu. The user can press
function keys to start applications and utilities. Note that the menu text could be
displayed by individual #OUTPUT calls within the #LOOP function; setting

di spl ayvar to the display text avoids multiple #OUTPUT calls. To run this code,
load the file that contains the code and type nenu.

Figure 2-14. Displaying a Menu (Page 1 of 2)

?SECTI ON menu TEXT

#FRAMVE

[#PUSH pronpt pronptl pronpt2 fkey tenp tenp2
di spl ayvar done

]
#PUSH #OUTFORVAT == Save the current val ue

#SET #QUTFORVAT PRETTY

#SET done O

#SET pronpt Pl ease select a function key:~ ~_

#SET pronptl Type file nanme, followed by <return> :~_~_
#SET pronpt2 Type printer name ($S.#AD is the default) :~ ~_
[#APPENDV di spl ayvar

LU R R R I S S b O O R R I S O O

TANDEM APPLI CATI ON MENU

F1 PSMai |
F2 TEDIT
F3 TGAL Docunent Processor
F4 Peruse
F5 TFORM Docunent Processor

SF1 Exit to TACL
SF16 Log off

Version |11 6/ 92

KRR I S R O b S R I O O S S

]

2-30 107365 Tandem Computers Incorporated

Developing TACL Programs

Accessing Terminals

Figure 2-14. Displaying a Menu (Page 2 of 2)

[#LOOP | DQ
#OUTPUTV di spl ayvar
SINK [#]1 NPUT / FUNCTI ONKEY f key/ [pronpt]]
[#CASE [f key]
| F1 | SINK [psnail]
| F2 | #INPUTV tenp pronptl
TEDI T [tenp]
| F3 | #INPUTV tenp pronptl
#SET tenp2
#1 NPUTV t enp2 pronpt 2
[#1 F [#EMPTYV / BLANK/ tenp2] | THEN|
#SET tenp2 $S. #AD|
SINK [TGAL /IN [tenp], OUT [tenp2], NOWAIT/]
| F4 | SINK [PERUSE]
| F5 | #INPUTV tenp pronptl
#SET tenp2
#1 NPUTV t enp2 pronpt 2
[#1 F [#EMPTYV / BLANK/ tenp2] | THEN|
#SET tenp2 $S. #ADM N|
SINK [TFORM /IN [tenp], OUT [tenp2], NOWAIT/]
| SF1 | #SET done 1
| SF16] #UNFRAME
#LOGOFF
| OTHERW SE |
#OUTPUT ** Invalid selection. Select a valid function key

]
| UNTIL| [done]
]
#OUTPUT
#OUTPUT Exiting Application Menu...
#OUTPUT
#UNFRANME

107365 Tandem Computers Incorporated 2-31

Developing TACL Programs

Debugging TACL Programs

Debugging TACL The TACL debugger shows how TACL interprets code. It provides step-by-step
Programs execution, examination of control flow, and examination and modification of variables.
The debugger is a separate function, invoked by TACL upon request.

For information about how to debug #DELTA code, see “#DELTA Built-In Function”
in the TACL Reference Manual.

Enabling the TACL You can enable the debugger interactively or from within a macro or routine:

Debugger [0 AtaTACL prompt, after loading a macro or routine variable, but before invoking

it, type:
10> BREAK vari abl e
O From within a macro or routine, type the following to enable the debugger:
#SET #TRACE -1

When you enable the debugger, TACL waits for an instruction before it performs its
first expansion. At this point, you can set breakpoints and either resume execution or
step through the code.

Debugger Commands When tracing is on, the TACL trace facility invokes the _DEBUGGER function prior to
invoking a variable. The debugger displays the current history number:

- nnn-

At this point, you can enter a command. If you enter a TACL command, the debugger
passes the command to TACL for execution. If you enter a_DEBUGGER command,
_DEBUGGER executes the command. Table 2-5 lists _ DEBUGGER commands.

Table 2-5. _DEBUGGER Command Syntax

Command Description

B[REAK] [variable] Sets a breakpoint on the specified variable or variable level. If you omit
variable, TACL lists all breakpoints. Whenever you invoke variable,
TACL stops executing the code and waits for input from your debugging

terminal.

C[LEAR] [variable | ¥] Clears the breakpoint for the specified variable or variable level. If you
specify an asterisk (*), TACL clears all breakpoints.

D[ISPLAY] variable Displays the contents of the specified variable or variable level.

M[ODIFY] variable Allows you to enter new contents for the specified variable or variable
level.

R[ESUME] Resumes execution until the next breakpoint or until TACL finishes
executing code.

STIEP] Performs one expansion. To step through the function, press the

RETURN key after each subsequent prompt.

2-32 107365 Tandem Computers Incorporated

Developing TACL Programs

Note

A Sample Debugging
Session

Debugging TACL Programs

To reenter the debugger after using STEP, set a breakpoint on a variable that will be
invoked later in your program. Next, type RESUME to run your program until TACL
encounters the breakpoint or finishes the program. Note that setting a variable (such
as#SET x 123) is not an invocation of the variable; [X] is an invocation of the
variable.

To end a debugging session, clear all breakpoints and type RESUME.
The following considerations apply to use of the debugger:

0 The debugger is itself a TACL variable. Any inputs that are not debugger
commands are assumed to be TACL commands, variables, or built-in functions.
Commands such as #UNFRAME can influence the routine that is being debugged.

[0 Debug commands must reference declared variables. The TACL debugger
displays each line before it is evaluated; therefore, a declaration (#PUSH) is in
effect when the debugger is displaying a line that follows the #PUSH function.

0 To set a breakpoint, specify a variable that will be invoked at a later point in the
debugging session. The variable may be used by the function you will debug or
by a later invocation from within the program, but it must be defined when you
set the breakpoint.

You cannot set a breakpoint on a variable that is located in a read-only segment file such as TACLSEGF.

Use the routine in Figure 2-15, t edsave, as sample code for the interactive debugging
session described following Figure 2-15.

The routine in Figure 2-15 invokes TEDIT for a file supplied as the argument. The
syntax for this routine is:

t edsave fil e-nane

The example in Figure 2-15 includes the use of #ARGUMENT, which is described in
Section 3, “Developing TACL Routines.” To perform the same work from a macro,

107365 Tandem Computers Incorporated 2-33

Developing TACL Programs

Debugging TACL Programs

without accessibility to the #ARGUMENT built-in function, you would need to check
that the argument is a valid file name.

Figure 2-15. Starting TEDIT From TACL

?SECTI ON t edsave ROUTI NE
#FRANVE
#PUSH editfil e

== Retrieve the first argunent and place it into editfile:
[#CASE [#ARGUVENT /VALUE editfil e/ FILENAME / SYNTAX/
OTHERW SE]
| 1]
TEDIT [editfile]
#OUTPUT DONE W TH [#FI LEI NFO / FULLNAVE/ [editfile]]
| 2|
#OUTPUT *** Error: invalid filename ***
] == end #CASE

#UNFRAME

When you run t edsave , it displays output similar to the following:
>2 tedsave sect08

Control passes to TEDIT. After the user exits from TEDIT, the routine displays:
DONE W TH $VOL. SUBVOL. SECT08

The following paragraphs describe a sample debugging session. The t edsave routine
is already loaded into memory:

3> BREAK t edsave
4> tedsave sect08
t edsave sect 08

N

- BREAK-

On line 5, the user issues a STEP command and _DEBUGGER displays the next line of
the routine. The user then presses RETURN to continue stepping through the routine;
when the user steps through the routine in this way, the line number does not advance
(lines that show nothing but a line number are terminated by RETURN):

-5- STEP

#FRAME

- TRACE-

- 6_

#PUSH editfile

- TRACE-

- 6_

[#CASE [#ARGUMENT / VALUE editfil e/ FILENANMVE / SYNTAX/
N

2-34 107365 Tandem Computers Incorporated

Developing TACL Programs

Debugging TACL Programs

OTHERW SE]
- TRACE-
-6-
[#CASE 1
N

- TRACE-

-6-

TEDI T [editfile]
N

- TRACE-

The user issues a DISPLAY command to see the contents of the variable EDITFILE and
sets a breakpoint on that variable:

-6- DI SPLAY editfile
sect 08
-7-BREAK editfile

The RESUME command terminates the debug mode, and processing continues until
the routine is ready to invoke EDITFILE, at which point the set breakpoint invokes
_DEBUGGER again, which displays the word -BREAK- to show why it was invoked:

- 8- RESUME
TEDIT editfile
- BREAK-

The user displays the contents of EDITFILE again, clears the breakpoint, and resumes
normal processing:

-9-DI SPLAY editfile

sect 08

-10-CLEAR editfile

- 11- RESUMVE
Control passes to TEDIT. After you exit,
the routine displays:

DONE W TH $VOL. SUBVOL. SECT08

To modify a variable during a debugging session, use the MODIFY command. After
entering the new value, press RETURN, then enter CTRL/Y to signify that there is no
more input. At prompt 10, in the previous example, you could type the following to

change the name of the edit file:

-10- MODI FY editfile

I nput new contents of :EDI TFILE. 1; end with eof
- EDI TFI LE. 1- sect 09

-: EDI TFI LE. 1- ECF!

-11-D editfile

sect 09

-12-

By using the MODIFY command, you can determine how a change affects the
program. You can also force choices based on variable values without having to
change the function and rerun it. For example, you can alter the contents of the text in
a #CASE function to force TACL to take a path that you want to test.

107365 Tandem Computers Incorporated 2-35

Developing TACL Programs

Debugging TACL Programs

(This page left intentionally blank)

2-36 107365 Tandem Computers Incorporated

3

Developing TACL Routines

Processing Arguments

TACL routines provide features that you cannot obtain from any other type of TACL
variable. In a routine, you can:

[0 Use #ARGUMENT to check the syntax and validity of several types of arguments
or to parse data within your program

[0 Use #RESULT to return a specific result (instead of an expansion of text)

0 Use #ROUTINENAME to obtain the name of the active routine, for issuing
recursive calls

[0 Use #RETURN to exit from any location in the routine
[Create an exception handler that processes events or errors

The following subsections describe how to use these features.

When you invoke a routine, you can include a list of arguments after the routine name.
A routine does not, however, access these arguments in the same manner as macro
arguments (%n%). Instead, in your routine, you specify an #ARGUMENT function
with a list of argument alternatives. The #ARGUMENT function steps through the list
and checks to see if the current argument matches a specified alternative. If the
argument matches, #ARGUMENT returns an index to the alternative and optionally
stores the argument in a variable for use within the routine.

The following statement checks to see if the next argument is a valid subvolume name
(SUBVOL alternative) or system name (SYSTEMNAME alternative):

#SET num [#ARGUMENT / VALUE name/ SUBVOL SYSTEMNAME]

If the argument is a valid subvolume name, #ARGUMENT assigns 1 to num indicating
that the argument is a subvolume name, and stores the qualified argument in nane.
(The VALUE option affects how the #ARGUMENT built-in function stores the
argument. For more information, see the TACL Reference Manual.)

The following examples show differences between argument processing in macros and
routines. The programs support the following syntax:

process_argm fil e- nane
process_argr file-nane

107365 Tandem Computers Incorporated 3-1

Developing TACL Routines

Processing Arguments

Note

To process the fi | e- name argument from a macro:

?SECTI ON process_ar gm MACRO

== This macro does not check argunent type or validity.
== Separate coding is required to validate the argunent.
#FRAME

#PUSH f nane

== Store the first argunent in fname.
#SET fnane %%

#OUTPUT File name is [fnane]
#UNFRAME

To process the fi | e- name argument from a routine:

?SECTI ON process_argr ROUTI NE

== This routine checks for correct file nanme syntax and
== exi stence of the naned file.

#FRANVE

#PUSH f nanme rslt

== Check to see if the first argunment is a valid file name

== for an existing file. |If so, store it in fnane.
#SET rslt [#ARGUMENT /VALUE fname/ FI LENAME OTHERW SE]
[#IF rslt = 1 | THEN == valid filenane

#OUTPUT File name is [fnane]
| ELSE]|

#OUTPUT *** |nvalid fil ename ***

]
#UNFRAVE

The OTHERWISE alternative allows you to handle invalid arguments within your program.

#The routine performs more error checking. If, the user does not supply an argument,
or if the file does not exist, the routine returns an error. In contrast, the macro
continues with an invalid file name.

The resulting argument text may be different between macros and routines. In the
previous example, the macro outputs exactly what it was given:

39> process_argmthisfile
File nane is thisfile

The routine, because of the VALUE option in the #ARGUMENT call, returns the fully
gualified file name. For example:

40> process_argr thatfile
File nanme is \ NODE. $VOL. SUBVOL. THATFI LE

107365 Tandem Computers Incorporated

Developing TACL Routines

How #ARGUMENT Works

Processing Arguments

Table 3-1 lists the built-in functions that support arguments to routines.

Table 3-1. Functions That Support Arguments

Function Description

#ARGUMENT Allows you to define a list of argument types. Compares each argument
against these types. If an argument matches a specified type,
#ARGUMENT returns a number that indicates the position of the argument
type in your list of types. You can optionally specify a variable that will
contain the contents of the argument.

#GETSCAN Returns the number of characters that #ARGUMENT has processed, not
including the routine name and the first character after the name.

#MORE Determines whether an entire argument set has been processed.

#RESET Sets the argument pointer to the beginning of the argument list.

#REST Returns the number of unprocessed arguments.

#SETSCAN Specifies the position at which the next #ARGUMENT function will resume

processing arguments.

Use the #ARGUMENT built-in function to specify data types and, in some cases,
entities as arguments. When invoked, #ARGUMENT steps through the list of
supplied arguments.

#ARGUMENT Options
The #ARGUMENT built-in function supports the following options:

0 PEEK processes an argument but keeps the internal argument pointer at the
current argument.

[0 TEXT specifies a variable to contain an exact copy of the argument.

0 VALUE specifies a variable to contain the TACL interpretation of the argument
sequence. For example, FILENAME returns a fully-qualified file name, using
defaults if the user did not specify all components of the file name.

You specify options within slashes (/) after #ARGUMENT.

#ARGUMENT Alternatives

Argument types are called alternatives. You specify alternatives after options and
their associated slashes. Alternatives include:

[0 Contiguous characters (CHARACTERS), a string (STRING), or a number
(NUMBER)

[0 Special characters, including “/”” (SLASH), “(*“ (OPENPAREN), “)”
(CLOSEPAREN), and “,” (COMMA)

0 Keywords defined in the routine (KEYWORD), such as TYPE or AGE

107365 Tandem Computers Incorporated 3-3

Developing TACL Routines

Processing Arguments

3-4

Using #ARGUMENT

O File names (FILENAME), DEFINE names and attribute names (DEFINENAME
and ATTRIBUTENAME), process names (PROCESSNAME), system names
(SYSTEMNAME), and user names (USER)

[J Subsystem IDs (SUBSYSTEM) and text for SPI and EMS tokens (TOKEN)

Some alternatives allow you to limit processing to syntax checking. For example, the
FILENAME alternative looks for the name of an existing file. If, however, you specify
FILENAME /SYNTAX/, the #ARGUMENT built-in function searches for a file name
that is formatted correctly; it does not check for the existence of the file.

If an argument does not match any of the listed alternatives, a TACL error occurs
unless you specify the OTHERWISE alternative. If you use OTHERWISE, an invalid
argument does not produce a TACL error; your routine must retrieve and examine the
invalid argument and determine an appropriate action.

To define a fixed order for arguments, use a sequence of #ARGUMENT statements.
The following statements search for a file name, followed by a slash, followed by a
variable name of type text:

#PUSH fn var

SI NK [#ARGUVENT / VALUE fn/ FlI LENAME/ SYNTAX/]

SI NK [#ARGUVENT SLASH]

SI NK [#ARGUVENT / VALUE var/ VARI ABLE / ALLOW TEXT/]

The VALUE options cause the #ARGUMENT built-in functions to store the actual
argument in the specified variable. If there is an error, the program ends with an
error; otherwise, the SINK calls suppress the results of the #ARGUMENT calls. (Each
#ARGUMENT statement processes one type of argument, so the result is always 1
unless an error occurs.)

107365 Tandem Computers Incorporated

Developing TACL Routines

Processing Arguments

To process several types of arguments entered in any order, use a #CASE statement.
Use the routine in Figure 3-1 to process zero or more of the following:

LI File attribute names (defined in ALL)
L0 Numbers

Figure 3-1. Processing Arguments

?SECTI ON nmul t _args ROUTI NE
#FRANVE

#PUSH st at count end

#SET count O

#SET end O

[#DEF attri butes TEXT | BODY|
Type Size Age Omer Security

]

#OUTPUT Entered arguments were: [#REST]
[#LOOP | DQ
#SET count [#COWPUTE [count] + 1]
[#CASE [#ARGUMENT/ VALUE st at /
KEYWORDY WORDLI ST [attri butes]/ NUVBER END OTHERW SE]

| 1]

#OUTPUT Argunent [count] is the keyword [stat].
| 2

#OUTPUT Argunent [count] is the nunber [stat].
| 3

#SET end 1
| 4]

#OUTPUT *** |nvalid argunent ***

#SET end 1

]
| UNTIL| (NOT [#MORE]) OR end

]
#UNFRAVE

Using #ARGUMENT for Data Within a Program

TACL itself does not provide data type declarations and functions, but you can write a
function that uses #ARGUMENT to determine the type and return the information.
The following routine returns TRUE (not zero) if you pass it a number; otherwise, it
returns FALSE:

2SECTI ON anunber ROUTI NE
#RESULT [#COVPUTE NOT ([#ARGUVENT NUVBER OTHERW SE] - 1)]

Variations on this routine could return TRUE for text or special characters, a number
that reflects a group of argument types, or an index into the entire set of
#ARGUMENT alternatives.

107365 Tandem Computers Incorporated 3-5

Developing TACL Routines

Processing Arguments

The following examples illustrate two ways to retrieve a number from a position
within a line of text (as returned by FUP or other processes). First, you can use the
#CHARGET function:

#PUSH pfree line

#SET line This is a test nunber: 53
#SET pfree [#CHARGET |ine 24 FOR 2]
#OUTPUT [pfree]

The preceding code retrieves two characters from | i ne, but does not check that the
two characters are numbers. The number at position 24 must be two characters long;
the code returns two digits even if the number has a single digit or three digits.

As an alternative, you can define a routine that uses #ARGUMENT.

?SECTI ON get number ROUTI NE
#FRAMVE
#PUSH rslt arg position

== First, get the requested character position
#SET rslt [#ARGUMENT / TEXT position/ NUVBER OTHERW SE]
[#CASE [rslt]

| 1]
== position is K
| 2|
== Caller did not supply a nunber for position arg.
#RESULT -1
#RETURN

]

== Skip [position] characters
SI NK [#ARGUVENT CHARACTERS /W DTH [position]/]
#SET rslt [#ARGUMENT / TEXT arg/ NUMBER OTHERW SE]

[#CASE [rslt]

| 1]
#RESULT 0 [ar(g]
| 2|
== |nvalid argunent; text at specified position is
== not a nunber
#RESULT -2
]
#UNFRAME

If get nunber finds a number, it returns a zero followed by the requested number. If
posi ti onisinvalid, it returns -1; otherwise, it returns -2.

107365 Tandem Computers Incorporated

Developing TACL Routines

Processing Arguments

You could call this routine from your program:

?SECTI ON cal | er ROUTI NE

#FRAMVE

== call getnunmber with the starting position
== and the line of text

#PUSH pfree position |ine
#SET line This is a test nunber: 53
#SET position 23

#SET pfree [getnunber [position] [line]]
#OUTPUT [pfree]
#UNFRAME

The routine performs more checking than #CHARGET and is more flexible with the
length of a space-separated number. The routine, however, takes longer to write,
making it most useful if you plan to perform this action many times in your program.

Processing File Name Arguments

The following routine parses an OUT option enclosed in slashes. The routine first
checks for a slash (/). If present, the routine checks for the word OUT, followed by a
file name and an ending slash. The routine then sets the TACL OUT file to the file
specified in the argument list. If the user does not specify an OUT option, this routine
displays the current setting of the OUT file. To run the routine, type the name of the
file that contains the code:

?TACL ROUTI NE
#FRAME
#PUSH out outfile
[#CASE [#ARGUMENT SLASH END OTHERW SE]
| 1] == Found the first slash character
SI NK [#ARGUVENT KEYWORD / WORDLI ST out /]
SI NK [#ARGUVENT / VALUE outfil e/ FILENAVE / SYNTAX/]
#OUTPUT [outfil e]
SI NK [#ARGUVENT SLASH|
SI NK [#ARGUVENT END|

#PUSH #OUT
#SET #OUT [outfil e]

| 2] == No argunents; display the current OQUT file
#OUTPUT The current OUT file is [#OUT]

| OTHERW SE| == Unknown ar gunent

#OUTPUT I nvalid argunent

]
#OUTPUT [outfil e]

#UNFRAME

107365 Tandem Computers Incorporated 3-7

Developing TACL Routines

Processing Arguments

The following routine expects both a file name and a properly formatted variable
name, but accepts them in either sequence. To run this routine, type the name of the
file that contains this code:

?TACL ROUTI NE
#FRAME
#PUSH f nane vnane
[#CASE [#ARGUMVENT / VALUE f nane/ FI LENAME VARI ABLE / SYNTAX/]
| 1] #I F [#ARGUMENT / VALUE vnane/ VARI ABLE / SYNTAX/]
| 2] #SETV vnane fname == fnane contains the variable naneg;
== nove the variable nane into vnane.
#1 F [#ARGUVENT / VALUE f narme/ Fl LENAME]
]
#OUTPUT vnane
#OUTPUT f name
#UNFRANME

[vhane]
[f nane]

Processing Variables as Arguments

The following routine accepts any type of existing variable except a STRUCT or a
STRUCT item:

?TACL ROUTI NE

#PUSH vnane

#1 F [#ARGUVENT / VALUE vnane/ VARI ABLE / FORBI D STRUCT | TEM]
#OUTPUT [vhane]

#POP vnane

Processing a Space-Separated List of Words

The following routine accepts a space-separated list of words and returns it as a
comma-separated list.

?SECTI ON wor dl i st ROUTI NE

#FRANVE

#PUSH wur d

[#LOOP | WHI LE] [#MORE] | DQ
#1 F [#ARGUMENT / VALUE wur d/ WORD / SPACE/]
#RESULT [wurd] [#I F [#MORE] | THEN ,]

]
#UNFRAVE

If you runwor dl i st interactively, load the file that defines wor dl i st and use
#OUTPUT(V) to display the result:

15> #QUTPUT [wordlist a b c]
a, b, c
16>

For information about #RESULT, see “Returning Results,” later in this section.

3-8 107365 Tandem Computers Incorporated

Developing TACL Routines

Examining the Contents of
Arguments

Processing Arguments

Processing Arguments Recursively

You can use the #ROUTINENAME built-in function to process arguments recursively.
For more information, see “Calling a Routine Recursively,” later in this section.

The following routines examine the contents of arguments. These routines return
results; if you use the routines interactively, use #OUTPUT(V) to display results.

Use the routine in Figure 3-2, f i r st , to retrieve a specified number of characters in a
variable. The syntax is:

first variable nunmber

Figure 3-2. Returning Characters From a Routine

?SECTION first ROUTI NE
#FRANME
#PUSH var num

#| F [#ARGUMENT/ VALUE var / VARI ABLE]
#| F [#ARGUVENT/ VALUE num NUMBER]
#| F [#ARGUVENT END|

== Enclose the following in brackets, in case the result
== contains nore than one |ine
[#RESULT [#CHARGET [var] 1 FOR [nuni]]

#UNFRAME

To obtain the contents of a multiple-line variable, enclose your statement in square
brackets. If, for example, x contains the following:

abcde
fgh

you can display the contents of x (including the line break character at the end of the
first line) with the following statement:

15> [#QUTPUT [first x 9]]
abcde

fgh

16>

The result includes an end-of-line character. For information about #RESULT, see
“Returning Results,” later in this section.

Use the routine in Figure 3-3, subst ri ng, to retrieve characters from position
nunber 1 to position nunber 2 of a variable. The syntax is:

substring variable number1 nunber?2

In this and the following three examples, the #RESULT function call is enclosed in
brackets in case the #CHARGET built-in function returns more than one line.

107365 Tandem Computers Incorporated 3-9

Developing TACL Routines

Processing Arguments

Figure 3-3. Returning a Set of Characters From a Variable

?SECTI ON substring ROUTI NE
#FRAME
#PUSH bgn end var

#| E [#ARGUVENT/ VALUE var / VARI ABLE]
#| E [#ARGUVENT/ VALUE bgn/ NUVBER]
#| E [#ARGUVENT/ VALUE end/ NUVBER]
#| E [#ARGUVENT END|

[#RESULT [#CHARGET [var] [bgn] TO [end]]]
#UNFRAME

Note This routine does not check to make sure that nunber 2 is a greater number than nunber 1. For
more thorough argument validation, include that check.

Use the routine in Figure 3-4, scan, to scan for text and retrieve the first position,
starting at a specified position, where the text occurs in the variable. The syntax is:

scan vari abl e nunber text

Do not enclose t ext in double quotes unless the quotes are part of the text.

Figure 3-4. Searching for Text

?SECTI ON scan ROQUTI NE
#FRAME
#PUSH var num t xt

#| E [#ARGUVENT/ VALUE var / VARI ABLE]
#| E [#ARGUVENT/ VALUE num NUVBER]
#| E [#ARGUVENT/ VALUE t xt / TEXT]

#| E [#ARGUVENT END|

[#RESULT [#CHARFINDV [var] [num] txt]]
#UNFRAME

Note If you do not include square brackets around the variable names in the #CHARxxx calls, TACL uses the
declared variables (var and nunj instead of the variables passed to the routine and referenced by var
and num

Use the routine in Figure 3-5, | engt h, to retrieve the number of characters in a
variable (including end-of-line characters). The syntax is:

| ength variabl e

3-10 107365 Tandem Computers Incorporated

Developing TACL Routines

Parsing Arguments for a
Caller

Note

Processing Arguments

Figure 3-5. Counting Characters in a Variable

?SECTI ON | engt h ROUTI NE
#FRANVE
#PUSH var

#| E [#ARGUVENT/ VALUE var / VARI ABLE]
#| E [#ARGUVENT END|

[#RESULT [#CHARCOUNT [var]]]
#UNFRANE

Use the routine in Figure 3-6, i nsert, to insert the contents of vari abl el into
vari abl e2 at the specified position. The syntax is:

insert variabl el variabl e2 nunber

Figure 3-6. Moving Text Between Variables

?SECTI ON i nsert RQUTI NE
#FRANVE
#PUSH var1 var2 num

#| F [#ARGUVENT/ VALUE var 1/ VAR ABLE]
#| F [#ARGUVENT/ VALUE var 2/ VAR ABLE]
#| F [#ARGUVENT/ VALUE num NUMBER]

#| F [#ARGUVENT ENDJ

[#RESULT [#CHARI NSV [var2] [num [varl]]]
#UNFRAVE

You can use the #ARGUMENT built-in function to provide a general parser for other
TACL programs. Figure 3-7 contains two sample programs;

[J get ar gs, a macro that parses arguments for a routine that calls it and returns the
value in a variable (the calling program supplies a name)

O cal | _get ar gs, aroutine that calls get ar gs

Get ar gs is defined as a macro, and can be used only when called by a routine. Otherwise, the
#ARGUMENT call inside the macro is not valid.

107365 Tandem Computers Incorporated 3-11

Developing TACL Routines

Processing Arguments

3-12

The syntax for get ar gs is:

getargs triplet [triplet]...

where t ri pl et contains three parts:

O

O

SE%JIO%EE } type vari abl e

REQUIRED or OPTIONAL specifies whether the corresponding argument is
required or optional.

Type is an #ARGUMENT alternative such as FILENAME. The specified type
must not permit spaces. The KEYWORD alternative, for example, cannot be used
because it requires the WORDLIST alternative, which allows spaces in its syntax.

Vari abl e is a name for the argument. Cet ar gs stores the argument value in a
variable with this name. Get ar gs pushes vari abl e and sets it if a matching
argument is found; otherwise, var i abl e is empty.

The following statement asks get ar gs to search for two arguments—one required
number and one optional text constant:

get args REQUI RED NUMBER numvar OPTI ONAL TEXT dat avar

If get ar gs finds a numeric argument, it pushes numand stores the argument into
num. If get args finds a text argument, it pushes dat a and stores the argument in
dat a.

Figure 3-7. Assigning Values to Arguments (Page 1 of 2)

?SECTI ON get ar gs MACRO

== Loop through all triplets
[# F [#EMPTY %% | THEN
== No nore triplets; routine nmust have no nore argunents

SI NK [#ARGUVENT END]| == Only valid if called by a routine
| ELSE
#PUSH %8% == Push the variable

== Check first word of triplet for REQU RED or OPTI ONAL
[#CASE %1%

| opti onal |
[#I F [#EMPTY %1% | THEN] == Check for nore triplets
== No nore triplets; argunent cannot be followed by
== a conma
[#CASE [#ARGUMENT/ TEXT 9%8% 9%2% END|
| 1]
SI NK [#ARGUMENT END]
| 2|
#SET %B8%
| 3

]

107365 Tandem Computers Incorporated

Developing TACL Routines

Processing Arguments

Figure 3-7. Assigning Values to Arguments (Page 2 of 2)

| ELSE]
== More triplets; argunent can be followd by a conma

[#CASE [#ARGUVENT/ TEXT %8% 92% COWVA END]

| 1]
SI NK [#ARGUMENT COMVA END]
| 2|
#SET %B8%
| 3
]
] == end #F
| required|
SI NK [#ARGUMENT/ TEXT 98% 9%2% == Get required argunent
[#| F [#EMPTY %1% | THEN| == Check for nore triplets
== No nore triplets; argunent cannot be followed by
== a conma
SI NK [#ARGUMENT END]
| ELSE]

== More triplets; argunent can be followed by a conma
SI NK [#ARGUVENT COMVA END]
] ==-end #lF
] == end #CASE
== Call self again, without the current triplet.
%% %4 TO *%
] ==-end #lF

Cal | _get ar gs supports the following syntax:

call _getargs filenane, filenane [, nunber, nunber]

3-13

107365 Tandem Computers Incorporated

Developing TACL Routines

Processing Arguments

The following shows a sample invocation of cal | _get ar gs:

11> cal |l _getargs datal, data2, 4
filel = datal

file2 = data2

nl = 4

12>

Figure 3-8. Sending Arguments to a Parsing Program

?SECTI ON cal | _getargs ROUTI NE
#FRANMVE
[getargs
REQUI RED filenane filel
REQUI RED fil enane file2
OPTI ONAL nunber nil
OPTI ONAL nunber n2

]

== Display the results

#OUTPUT filel = [filel]

#OUTPUT file2 = [file2]

[#1 F NOT [#EMPTY [nl1]] | THEN
#OUTPUT nl = [n1]

]

[#1 F NOT [#EMPTY [n2]] | THEN
#OUTPUT nl = [n2]

]

#UNFRAME

3-14 107365 Tandem Computers Incorporated

Developing TACL Routines

Returning Results

Returning Results

Function results come from one or more #RESULT built-in functions within the
routine. This is an important distinction between macros and routines: a macro
invocation returns the expansion of the text of the macro; a routine returns only what
the #RESULT function provides.

Use the macro in Figure 3-9, r eport _shel | , to calculate today’s date and the date
thirty days ago and convert the dates to SQL format (yyyy-mm-dd). This example is
similar to Figure 2-10, but returns results. To run this macro, load the associated file
and enter:

report _shell

Figure 3-9. Converting Timestamps

?SECTI ON report _shel |l MACRO
#FRANMVE

#PUSH #OQUTFORMAT #| NFORMAT t oday
#SET #OQUTFORMAT PRETTY

#SET #| NFORVAT TACL

== Calling part of Macro

#OUTPUT This macro di splays a start and end date.
#SETMANY t oday, [get dates]

#OUTPUT

#OUTPUT The date is [today]

#UNFRAVE

?SECTI ON get _dat es ROUTI NE
#FRAME

== Save the current setting of #OUTFORNAT,
== so that it can be restored | ater:
#PUSH #OUTFORVAT #| NFORMAT

[#PUSH
dat e == starting date (30 days ago)
yyyy == year
nm == nonth
dd == day

]
#SET #OUTFORVAT PRETTY

== Cet the date and convert to yyyy nmdd cal endar fornat:
#SETMANY yyyy mm dd, [#CONTI MVE [#TI MESTAMP]]

== Store as yyyy-mmdd format (SQL date format):

#SET date [yyyy]-[mm]-[dd]

== Return the result to the caller.

#RESULT [dat e]

#UNFRAME

107365 Tandem Computers Incorporated 3-15

Developing TACL Routines

Calling a Routine Recursively

Calling a Routine
Recursively

3-16

#The #ROUTINENAME built-in function returns the name of the currently active
routine, which allows you to invoke a routine from within the routine. The function is
similar to accessing %0% from a macro, but you cannot use #ROUTINENAME in a
macro or %0% in a routine.

If you call #fROUTINENAME for a routine defined with a ?TACL ROUTINE directive,
#ROUTINENAME returns the name of the variable TACL uses to hold the active copy
of the routine.

Use the macro in Figure 3-10, cal | er, to process one or more arguments. To use this
macro, load the associated file and enter:

caller { file-nane | TACL | TAL | PASCAL | systemnane }...

Cal | er calls proc_ar g to process each argument. Proc_ar g calls itself additional
times if there is more than one argument.

Figure 3-10. Processing Arguments

?SECTI ON cal | er MACRO

#FRANVE

#PUSH el varl rslt

[#] F NOT [#EMPTY 9%49% | THEN|
proc_arg %%

]

#UNFRAME

?SECTI ON proc_arg ROUTI NE
#SET rslt [#ARGUMENT /VALUE var1/ FlILENAME KEYWORD &
/WORDLI ST tacl tal pascal/ SYSTEMNAME OTHERW SE]

[#CASE [rslt]
| 1] == File name
FI LEI NFO [var 1]
| 2] == Keyword
#OUTPUT [#SH FTSTRING /UP / [varl]] is a keyword
| 3] == System nane
#OUTPUT /HOLD/ The system nunmber for [varl] is :
#OUTPUT [#SYSTEMNUMBER [var 1]]
| 4] == Wérd
#OUTPUT Expecting a file name, the word TACL, TAL,
#OUTPUT or PASCAL, or a system nane.
#RETURN
]
[#| F [#MORE] | THEN|
#OUTPUT == bl ank line
[#ROUTI NENAME] [#REST]

]

107365 Tandem Computers Incorporated

Developing TACL Routines

Exiting From a Routine

Use the routine in Figure 3-11, ar gr ec, to process one or more file names, checking
for syntax but not for file existence. File names can be separated by spaces or commas.
After processing each file name, the routine scans ahead and skips over commas. It
calls itself to process each additional file name.

Figure 3-11. Processing File Name Arguments

?SECTI ON argrec ROUTI NE
#FRAME
#PUSH fn nextfn rslt
#SET rslt [#ARGUMENT / TEXT fn/ FILENAVE / SYNTAX/ OTHERW SE]
[#IF [rslt] = 2 | THEN
#OUTPUT *** |nvalid filename ***
#RETURN
]
== Process the first argunent
#OUTPUT current argument = [fn]

== Check for another file name
#SET rslt [#ARGUMENT / TEXT nextfn/ FILENAVE / SYNTAX &
COWA END OTHERW SE]

[#CASE [rslt]

| 1]

|2 3
== Next argunent is a comma or end; ignore it
#SET nextfn

| OTHERW SE]|
#OUTPUT *** |nvalid argunent ***
#RETURN

]

== |f nextfn contains a file name or there are additional
== unprocessed argunents, call self, appending the results.
[#1 F NOT [#EMPTY [nextfn] [#REST]] | THEN

#RESULT [#ROUTI NENAME] [nextfn] [#REST]

]
#UNFRAVE

Exiting From a Routine

To exit from a routine, use the #RETURN built-in function. #RETURN exits
immediately and does not reset any frames unless you specify #UNFRAME or
#RESET FRAMES prior to #RETURN.

You can use #RETURN to define several exit points within a routine. For examples of
the use of #RETURN, see the next subsection, “Writing an Exception Handler.”

107365 Tandem Computers Incorporated 3-17

Developing TACL Routines

Writing an Exception Handler

Writing an Exception An exception is an event or condition that requires special handling. If, for example, a

3-18

Handler

user presses the BREAK key or enters alphabetic data when a number is expected, an
exception occurs. TACL cannot detect a modem disconnect, but can detect and
process other exceptions, including ones you define. TACL recognizes three types of
exceptions:

0 Pressing the BREAK key
0 A TACL error, as defined in Section 2, “Developing TACL Programs.”

[0 A user-defined exception, such as an end-of-file, for which special handling may
be necessary.

Any one of these exceptions causes TACL to search for an exception handler. An
exception handler is a portion of code that performs actions after an exception. For
example, if a TACL routine opens one or more files and then purges them when
finished, the user could press the BREAK key while the files are still open. TACL
would then close any open files, but would not purge them. If the routine contained
an exception handler, TACL could close the files before exiting. Activities of exception
handlers can include:

Issuing error messages

Resetting data defaults

Terminating open INLINE processes
Resetting frames or accumulated results
Purging scratch files

Performing INITTERM operations

Oo0O0o0Ooooao

Passing information to the calling routine
0 Returning control to the calling routine

If you declare local variables within the body of your routine, determine whether or
not to delete these variables within the exception handler.

If an exception occurs and the current routine has no exception handler, TACL exits
from the routine and returns control to the calling routine. TACL continues to
backtrack through the chain of calling routines, exiting routines as it goes, until it finds
a routine that can process the type of exception that occurred. TACL then reinvokes
that routine to process the exception. If TACL finds no such routine, it performs its
own exception handling—it resets frames and results and, if the exception is of type
_ERROR, displays an error message. Similarly, you can nest routines that contain
exception handlers. TACL uses the first exception handler that can process the type of
exception that occurred.

Exception handlers provide a way to release control and deallocate resources. In
addition, you can write an exception handler that does not permit a user to exit the
routine. In this manner, you can write command shells that define a set of commands
available to users.

107365 Tandem Computers Incorporated

Developing TACL Routines

Types of Exception
Handlers

Constructing an Exception
Handler

Writing an Exception Handler

Exception handlers can be divided into two types, depending on how they return
control:

[0 Release handlers that relinquish control to the calling procedure

O Keep handlers that retain control regardless of exceptions (usually for security
purposes)

A routine can contain both types of exception handlers.

Use the built-in functions in Table 3-2 to construct exception handlers.

Table 3-2. Functions That Support Exception Handlers
Function Description

#ERRORNUMBERS Returns the most recent TACL error.

#ERRORTEXT Intercepts error text that would have been written to the OUT file if there
had been no exception handler.
#EXCEPTION Returns the type of exception that invoked the exception handler:

[0 _CALL if the routine containing #EXCEPTION was invoked normally.

L1 The name of the exception if the routine was invoked in response to an
exception that was listed in a #FILTER function.

#FILTER Specifies the types of exceptions a routine can handle.
#RAISE Causes an exception to occur.
#RETURN Returns immediately from the routine.

As shown in Figure 3-12, a routine that contains an exception handler has the
following structure:

O It begins with a #CASE statement immediately after the ?SECTION directive. This
#CASE statement uses the #EXCEPTION built-in function to determine which
exception occurred. The #CASE statement includes the following:

[0 The first label in the #CASE is_CALL. This exception occurs as part of normal
processing when a calling program invokes the routine.

0 Remaining labels identify the exceptions for which the handler can be
invoked. Each case contains statements that handle the associated type of
exception.

Do not place a #FRAME call before the #CASE statement.

] The body of code for the routine follows the #CASE statement. This code includes
a #FILTER call that lists the exceptions for which this code is protected—and
which are defined as labels in the #CASE statement. You can change the setting of
#FILTER as necessary during processing to enable or disable processing of specific
exceptions.

O The routine ends with an #UNFRAME function.

107365 Tandem Computers Incorporated 3-19

Developing TACL Routines

Writing an Exception Handler

3-20

Creating a Release
Exception Handler

Figure 3-12. Sample Release Handler Template
?SECTI ON nanme ROUTI NE

== Exception handl er ==
[#CASE [#EXCEPTI ON]

| _CALL |
== No action required when first called
| _BREAK]
== Code to handl e BREAK goes here
| _ERROR|
== Code to handle errors goes here
] == End CASE

== Begi nning of body of routine ==

== Filter these exceptions:
#FI LTER _BREAK _ERROR

== Body of executable code goes here

#UNFRAME

Keep and release handlers have slightly different structures, as shown in Table 3-3.

Table 3-3. Differences Between Keep and Release Exception Handlers

Keep Handler Contents Release Handler Contents
The #CASE statement: The #CASE statement:
Contains a #FRAME and variable
declarations in the _CALL portion Does not contain a #FRAME
Pushes global variables Does not push global variables
Does not invoke #RESET Invokes #RESET and #RETURN
The body of code ends with #UNFRAME The body of code starts with ##RAME and
ends with #UNFRAME

A release exception handler processes exceptions and returns to the calling procedure.
The _CALL path, taken when the routine is invoked by a calling program, typically
requires no action.

Use the routine in Figure 3-13, conmand_pr ocessor , as a sample release handler.
The routine requests commands from the user and allows the user to enter an ADD or
SUB command. The routine then displays the command.

The body of the routine begins with a ##RAME function call and #PUSH (or PUSH)
and #DEF entries to define variables, followed by a #FILTER function call that
declares the exceptions against which the code that follows is to be protected.

107365 Tandem Computers Incorporated

Developing TACL Routines

Writing an Exception Handler

If the user presses the BREAK key while the processing loop is running, TACL raises
the BREAK exception and reinvokes the routine. The #CASE function executes the
_BREAK case, displays a message, and exits. If the user enters anything other than
ADD or SUB, the #CASE in the loop raises _ERROR, and TACL reinvokes the routine;

in this situation, the #CASE function takes the _

ERROR path, displays a message, and

exits. To invoke this routine, load the associated file and enter:

conmand_pr ocessor

Figure 3-13. Sample Release Handler

?SECTI ON comand_pr ocessor

Excepti on handl er
[#CASE [#EXCEPTI ON|
| _CALL |

| _BREAK|
#OUTPUT BREAK key pressed.
#RESET RESULTS FRAMES
#RETURN

| _ERROR)|
#OUTPUT | nput error
#RESET RESULTS FRAMES

#RETURN
] == End CASE
== Begi nni ng of body of routine
#FRANMVE
#PUSH cnd
== Filter predefined exceptions

#FI LTER _BREAK _ERRCR

== Processing loop: runs until
[#LOOP | DQ
#SET cnd [#] NPUT Enter cnd:]
[#CASE [cnd]
| ADD|
#OUTPUT ADD
| SUB|
#OUTPUT SUB
| OTHERW SE]|

#OUTPUT I nvalid command
#RAlI SE _ERROR
] == End CASE
| UNTIL] O =1 == (do forever)
] == End LOOP

#UNFRAME

ROUTI NE

No action required when first called

occurred.

only

i nval id conmand or BREAK key

== CGet value fromterm nal

107365 Tandem Computers Incorporated

3-21

Developing TACL Routines

Writing an Exception Handler

When you invoke conmand_pr ocessor , the output looks like this:

16> command_pr ocessor
Enter cnd: add

ADD

Enter cnd: clr

I nvalid command

TACL error occurred.

17> command_pr ocessor
Enter cnd: <BREAK>
BREAK key pressed.
18>

Use the routine in Figure 3-14, pur gef i | es, to purge files based on file name
templates. Pur gefi | es illustrates the use of #FILTER, #FILENAMES, and the
TEMPLATES alternative for the #ARGUMENT built-in function. To use this routine,
load the associated file and enter:

purgefiles [!] file-tenplate [, file-tenplate]

The ! specifies purge without confirmation; without it, the routine prompts for each
file. If the routine encounters a _BREAK exception, it displays a message with the
number of files purged and the number not purged, and then exits.

Figure 3-14. Returning Information From a Release Handler (Page 1 of 3)

?SECTI ON pur gefil es ROUTI NE
[#CASE [#EXCEPTI ON|
| _CALL|
| BREAK _ERROR]|
#PUSH errt ext
#ERRORTEXT / CAPTURE errtext/
#OUTPUT Break or error term nated function.
#OUTPUT
[#1 F NOT [#EMPTYV /BLANK/ errtext] | THEN|
#OUTPUTV errt ext
#OUTPUT
]
#OUTPUT Nunmber of files purged = [fil espurged]
#OUTPUT Nunmber of files not purged = [fil esnot purged]
#UNFRANME
#RETURN

]
#FRAVE

== Filter _BREAK and TACL errors

#FI LTER _BREAK _ERROR

[#PUSH fil etenpl ate excl ude prevname purgeerr opt firsttine
filespurged fil esnotpurged

]

3-22 107365 Tandem Computers Incorporated

Developing TACL Routines

Writing an Exception Handler

Figure 3-14. Returning Information From a Release Handler (Page 2 of 3)

[#DEF want t opur ge ROUTI NE | BODY
#RESULT -1
[#I F [exclude] | THEN
#RETURN
]
[#I F [#MATCH y [#] NPUT Purge [prevnane] (Y/N)?]] | THEN
#RETURN
]
#RESET results
#RESULT 0O
] == end #DEF wantt opurge
[#DEF handl et enpl at e MACRO | BODY
#SET firsttinme O
[# F ([#ARGUVENT SLASH OTHERW SE] = 1) | THEN|
[# F [#ARGUVENT KEYWORD / WORDLI ST start/]]
[#| F [#ARGUMENT / VALUE prevname/ FlILENAME / SYNTAX/]]
[#| F [#ARGUMVENT SLASH]]
#SET prevnane [#FI LEI NFO / FULLNAME/ [prevnane]]
#SET firsttine -1
]
[#LOOP | DQ
[#IF [firsttinme] | THEN
#SET firsttinme [#FILEI NFO / EXI STENCE/ [prevnane]]
]
[#IF [firsttinme] | THEN
#SET firsttinme O
| ELSE|
#SET prevnanme [#FI LENAMES / MAXI MUM 1, &
PREVI QUS [prevnane]/ [fil etenplate]]
]
[#] F NOT [#EMPTYV /BLANK/ prevnane] | THEN
[#] F [wantt opurge] | THEN
#SET purgeerr [#PURGE [prevnane]]
[#| F [purgeerr] | THEN
#OUTPUT Purge error [purgeerr] on [prevnane]
#SET fil esnotpurged [#conpute fil esnot purged+1]
| ELSE
#OUTPUT [prevnane] purged
#SET fil espurged [#COWPUTE fil espurged + 1]
]
| ELSE
#SET fil esnot purged [#COVPUTE fil esnot purged + 1]
]
]
| UNTIL| [#EMPTYV /BLANK/ prevnane]
] == end #LOOP
] == end #DEF

107365 Tandem Computers Incorporated 3-23

Developing TACL Routines

Writing an Exception Handler

Figure 3-14. Returning Information From a Release Handler (Page 3 of 3)

#SETMANY fil espurged fil esnotpurged exclude, 0 0 O
[#CASE [#ARGUVENT / VALUE fil etenpl ate/ TEMPLATE &
TOKEN / TOKEN ! /]
| 1|
| 2|
#SET excl ude -1
SINK [#ARGUMENT /VALUE fil etenpl ate/ TEMPLATE]

]

[#LOOP |WHI LE| 1 |DQ
handl et enpl at e
[#CASE [#ARGUMENT / VALUE fi |l et enpl ate/ COWWA TEMPLATE

END|
| 1]
#1 F [#ARGUVENT / VALUE fil et enpl ate/ TEMPLATE]
| 2|
| 3
#OUTPUT == bl ank |ine
#OUTPUT Nunmber of files purged =[fil espurged]
#OUTPUT Number of files not purged=[fil esnotpurged]
#UNFRANME
#RETURN

]
] == end of #LOOP

Creating a Keep Exception A keep exception handler processes exceptions but does not return to the calling
Handler process. If, for example, you want to provide a restrictive command shell with five
commands, a keep handler allows you to process the five commands and any errors or
break conditions without exiting the routine. The user could not, then, gain access to a
standard TACL prompt.

The _CALL path is the entry point for the routine and, because control is to remain in
the routine, it is not likely to be executed repeatedly. Therefore, the CALL path
contains the ##FRAME and variable declarations that typically begin a routine.

Use the routine in Figure 3-15,restri ct ed_cnd_pr ocessor, as a sample keep
exception handler. If the BREAK key is pressed while the processing loop is running,
TACL raises the _BREAK exception and reinvokes the routine; the #CASE function
takes the BREAK path and then reenters the loop.

If the user enters anything other than ADD or SUB, the #CASE statement in the loop
raises _ERROR, and TACL reinvokes the routine; in this situation, the exception-
processing #CASE takes the ERROR path before resuming the loop.

3-24 107365 Tandem Computers Incorporated

Developing TACL Routines

Writing an Exception Handler

Note The examples in this subsection include an EXIT case for testing purposes, which allows you to exit the

routines. To prohibit exits, delete the EXIT case from the #FILTER statement and from the exception
handler and main loop.

Toinvokerestricted_cnd_processor, load the file and enter:

restricted_cnd_processor

Figure 3-15. Sample Keep Exception Handler
?SECTION restricted_cnd_processor ROUTI NE

[#CASE [#EXCEPTI ON|
| _CALL |
#FRAMVE
#PUSH cnd
| _BREAK|
#OUTPUT BREAK key pressed.
| _ERROR|
#OUTPUT TACL error occurred.
| EXIT| == For denp only
#RESET FRAMES RESULTS
#RETURN
| OTHERW SE]|
#OUTPUT Unknown excepti on occurred.
] == End #CASE

== Filters predefined exceptions only
#FI LTER _BREAK _ERROR EXI T

== After you enter this loop, control stays here unless the
== routine is processing an exception.
[#LOOP | D]
#SET cnd [#I NPUT Enter cnd:] == Get value fromterm nal
[#CASE [cnd]
| ADD|
#OUTPUT ADD
| SUB|
#OUTPUT SUB
| EXIT]
#RAI SE EXI T == For denp only
| OTHERW SE]|
#OUTPUT I nvalid command
#RAlI SE _ERROR
] == End CASE
| UNTIL|] O == Al ways fal se
] == End LOOP
#UNFRAME

107365 Tandem Computers Incorporated 3-25

Developing TACL Routines

Writing an Exception Handler

3-26

When you invokerestri ct ed_cnd_processor, the output looks like this:

16> restricted_cnd_processor
Enter cnd: add

ADD

Enter cnd: clr

I nvalid command

TACL error occurred.

Enter cnd: <BREAK>

BREAK key pressed.

Enter cnd: exit

17>

By using the definitions in Figure 3-16, a user can start and stop an application. (In the
example, there is no code to start an application; the code performs a delay sequence
to simulate application activity.)

The definitions in Figure 3-16 use the following global variables:

L0 Conditionisan error flag; if 0, there is no error; if 1, there is an error, and
recovery might be necessary.

[l Recovery indicates the need to run a routine to clear local variables. If OFF,
recovery is not necessary; if ON, recovery is necessary.

The shell supports the following commands:

[0 Col dst art —Pops old variables if necessary, pushes new variables, sets the
condition and recovery variables, and then starts the application. If the user
presses BREAK during this time, the exception handler sets the condi ti on and
recovery flags.

When finished, col dst art resetsthe condi ti onandrecovery flags.

O War nst ar t —Attempts to purge a file with an invalid file name; this attempt
forces a TACL error to show exception handler operation.

O Shut down —Performs a cleanup operation and sets condi ti on to 0.

0 Exit—Teststhe condi ti on variable and does not allow the user to exit until the
error is resolved. Ifcondi tionisO, exit raisesthe user-defined EXIT exception
and exits the shell.

Variables a, b, c, d, e, f, g, and h are created but are not used in this example; they are
deleted during the cleanup phase before exiting.

If an error occurs during col dst art or war st ar t , the user cannot exit the shell
until a successful col dst art or shut down occurs.

For this example, the keep handler returns if you enter an exi t command. Usually, a
keep handler would not provide an exit mechanism.

107365 Tandem Computers Incorporated

Developing TACL Routines

Writing an Exception Handler

Figure 3-16. Sample Command Shell (Page 1 of 4)

?SECTION restrictive_conmand_shel | ROUTI NE
#PUSH #CQUTFORMAT
#SET #OUTFORMAT PRETTY

== Define the code that handl es exceptions
[#CASE [#EXCEPTI ON|
| _CALL|
#FRAVE
#PUSH err cnd pronpt condition recovery
#PUSH name step
#SET condition O
di splay_initial _nessage
| BREAK
#OUTPUT /HOLD/ BREAK key hit during~_
[#OUTPUT [#l F NOT [#EMPTYV nane] | THEN
[nanme] at step [step]
| ELSE
i nput
] == end of #IF
] == end of #OUTPUT
#SETMANY condition recovery , 1 REQUI RED
| ERROR)|
#OUTPUT Error occurred during [nanme] at step
#OUTPUT [st ep]
#ERRORTEXT / CAPTURE err/
#OUTPUT The error is:
#OUTPUTV err
#SETMANY condition recovery , 1 REQUI RED

| EOF

#OUTPUT CTRL/Y will not break ne
| EXIT

#RESET FRAMES RESULTS

#RETURN

]

== Body of the routine--enable four exception types:
#FI LTER _BREAK ERROR EOF EXI T

#OUTPUT
[#LOOP | DQ
[#I F condition = 1 | THEN|
#SET pronpt An error condition exists--select &
COLDSTART or SHUTDOWN: ~ ~
| ELSE
#SET pronpt Sel ect WARMSTART, COLDSTART, SHUTDOMWN, &
or EXIT: ~_~

107365 Tandem Computers Incorporated 3-27

Developing TACL Routines

Writing an Exception Handler

Figure 3-16. Sample Command Shell (Page 2 of 4)

#1 NPUTV / UNTI L TACL/ cnd pronpt
[#1 F ([#| NPUTECF]) | THEN|

#RAl SE ECF
]

[#CASE [cnd]
| WARMSTART
war nst ar t
| COLDSTART
col dstart
| SHUTDOWN
shut down
| EXI T
EXIT
| OTHERW SE
#OUTPUT | nval i d conmand
]

|[UNTIL] 0 =1
] == end #LOOP
#UNFRANE

?SECTI ON di splay_initial _nessage TEXT

#OUTPUT This interface is used to:

#OUTPUT COLDSTART, WARMSTART, or SHUTDOWN the application
#OUTPUT

#OUTPUT EXIT is disabled if an error exists.

#OUTPUT The BREAK key and CTRL/Y do not cause an EXIT.

?SECTI ON war nstart MACRO == WARMSTART the application
[#I F condition = 1 | THEN
#OUTPUT An error condition exists.
#OUTPUT Must COLDSTART or SHUTDOM
#OUTPUT
| ELSE|
[#CASE [recovery]
| REQUI RED]|
cl eanup
| OTHERW SE
]
#SET nane [#VARI ABLElI NFO / VARI ABLE/ %0%
#SET step 1
#PUSH a b
#DELAY 200
#OUTPUT WARMSTARTI ng application $X

3-28 107365 Tandem Computers Incorporated

Developing TACL Routines

Writing an Exception Handler

Figure 3-16. Sample Command Shell (Page 3 of 4)

#SET step 2
#PUSH c d
#DELAY 200
#PURGE fil ewi t hl ongnane
#OUTPUT
] ==-end #lF

?SECTI ON col dstart MACRO == COLDSTART the application
[#CASE [recovery]
| REQUI RED |
cl eanup
| OTHERW SE

]

#SET name [#VARI ABLElI NFO / VARI ABLE/ %0%
#SET step 1
#PUSH e f

== |f an error occurs during this step, force recovery
#OUTPUT COLDSTARTI ng application $X

#OUTPUT (Press BREAK now to force a recovery)

#DELAY 300

#SETMANY condi tion recovery , 0 OFF

#OUTPUT COLDSTART Successfu

#OUTPUT

?SECTI ON shut down MACRO == SHUTDOWN t he application
#OUTPUT SHUTDOWN of application $X
[#CASE [recovery]
| REQUI RED)
cl eanup
| OTHERW SE

]

#SET nane [#VARI ABLElI NFO / VARI ABLE/ %0%
#SET step 1

#PUSH g h

#DELAY 300

#SET condition O

#OUTPUT SHUTDOWN Successfu

#OUTPUT

107365 Tandem Computers Incorporated 3-29

Developing TACL Routines

Writing an Exception Handler

3-30

Combining Keep and
Release Handlers

Figure 3-16. Sample Command Shell (Page 4 of 4)

?SECTION exit MACRO == EXIT the exception handl er
[#I F condition = 1 | THEN|
#OUTPUT Can not EXIT wi thout resolving the error.
#OUTPUT Must WARMSTART, COLDSTART, or SHUTDOWN.
#OUTPUT
| ELSE]
#OUTPUT Exiting restrictive command shell.
#RAI SE EXI T

]

?SECTI ON cl eanup MACRO == del ete variables fromprev. errors
#SET #BREAKMODE DI SABLE
#OUTPUT Perform ng cl eanup procedure
#OUTPUT The Break Key is disabled until cleanup is conplete.
[#CASE [nane] [st ep]
| WARMSTART1 |
#POP a b
| WARMSTART2 |
#POP a b c d
| COLDSTART1 |
#POP e f
| SHUTDOMNL |
#POP g h
]

#OUTPUT

#DELAY 200

#SETMANY condi tion recovery , 0 OFF
#SET #BREAKMODE ENABLE

#OUTPUT C eanup procedure conpl ete.

The routines in Figure 3-17 show one way to combine a keep handler

(restricted _call er)and arelease handler (pr ot ect ed_code).
Restricted_cal |l er starts first; therefore, if an exception occurs, control returns to
the processing loop after the exception is processed.

When the user enters a valid command, restri ct ed_cal | er calls

pr ot ect ed_code to execute the command; that routine, in turn, calls either do_add
or do_sub. If the user presses the BREAK key or an unknown exception is raised
during execution of either of the latter routines, TACL pops the routine and reinvokes
pr ot ect ed_code. The #CASE function takes the OTHERWISE path, which
performs an orderly deallocation of resources and then raises the same exception.

TACL then pops that routine (the #FILTER function has not yet been executed in the
reinvocation) and returnstorestri ct ed_cal | er. The #CASE function in that
routine takes the appropriate path to deal with the exception and restarts the
processing loop.

107365 Tandem Computers Incorporated

Developing TACL Routines

Writing an Exception Handler

For this example, the keep handler terminates if you enter an EXIT command.
Usually, a keep handler does not provide an exit mechanism.

Figure 3-17. Using Nested Keep and Release Handlers (Page 1 of 2)

?SECTION restricted _call er ROUTI NE
[#CASE [#EXCEPTI ON|
| _CALL|
#FRANMVE
#PUSH cnd exceptionli st
#SET exceptionlist BREAK ERROR EXIT

| _BREAK|
#OUTPUT BREAK key pressed.

| _ERROR|
#OUTPUT TACL error occurred.

| EXIT| == for denonstration purposes
#RESET FRAMES RESULTS
#RETURN

| OTHERW SE]|
#OUTPUT Unknown exception occurred.

] == End CASE

== Filter for predefined exceptions only
#FI LTER [exceptionlist]

[#LOOP | DQ
#SET cnd [#I NPUT Enter cnd:] == Get value fromterm nal
[#CASE [cnd]
| ADD|
protected code do_add
| SUB|
protected code do_sub
| EXIT| == For denobnstration purposes
#RAI SE EXIT
| OTHERW SE]|

#QOUTPUT I nvalid command
#RAl SE _ERRCR
] == End CASE
[UNTIL] O =1 == (do forever)
] == End LOOP
#UNFRANME

107365 Tandem Computers Incorporated 3-31

Developing TACL Routines

Writing an Exception Handler

Figure 3-17. Using Nested Keep and Release Handlers (Page 2 of 2)

?SECTI ON prot ect ed_code ROUTI NE
[#CASE [#EXCEPTI ON|

| _CALL |
== No action required when first called
| OTHERW SE|
#RESET FRAMES RESULTS == Deal | ocate resources
#RAIl SE [#EXCEPTI ON| == Return to caller with
== exception raised, so that
== the caller executes its
== exception handl er
] == End CASE

#FI LTER [exceptionlist]
[#REST] == Invoke rest of argunents (call rmacro)

?SECTI ON do_add ROUTI NE
#OUTPUT Addi ng

?SECTI ON do_sub ROUTI NE
#OUTPUT Subtracti ng

3-32 107365 Tandem Computers Incorporated

A

Accessing Files

The #REQUESTER built-in function allows you to open a file, process, or device so
that you can send messages or records to it or read messages or records from it.

This section describes how to use #REQUESTER to access files. For information about
the use of #REQUESTER with processes, see “Using $SRECEIVE” in Section 5,
“Initiating and Communicating With Processes.”

#REQUESTER
Operation

Note

To open afile, call the #/REQUESTER function and include the file name and a set of
variables that are used to transmit data. If you plan to set up more than one
#REQUESTER operation, you can identify variables by including file identification
information in each variable name. To list a variable and its association with the
#REQUESTER operation, use the VARINFO command.

The call to #/REQUESTER does not perform input or output; it opens the specified file
and initializes the associated variables. If a file system error occurs during this step,
#REQUESTER returns the error.

The #REQUESTER function opens a file for waited or nowaited 1/0. After you invoke
the #REQUESTER function, TACL continues to execute code. For waited 1/0
operations, TACL stops at the next 1/0 request and ensures that each read or write is
complete before processing the next request. For nowaited operations, call #WAIT to
determine whether your request has been completed. If you plan to read or write
records larger than 239 bytes, you must use waited 1/0.

To initiate a read or write operation, you append data to the appropriate variable, as
described in the following subsections. When your TACL process first detects data in
the variable, TACL initiates the operation and transfers a record of data.

To read and write from the same file, call #fREQUESTER twice to establish two
communication paths to the file. Use a separate set of variables for each
communication path.

When you use #REQUESTER, your TACL process does not create a separate process,
but manages the 1/0 from within your TACL process. The #REQUESTER function
uses sequential 1/0 to access files, devices, and processes.

The way in which you order the variables in the #REQUESTER call is very important; the file name must
be first, followed by the error variable and the read or write variable. For a read operation, the prompt
variable must be specified last.

To close afile, call #REQUESTER with the CLOSE option.

107365 Tandem Computers Incorporated 4-1

Accessing Files

Requesting Waited Reads

Table 4-1 lists functions related to #REQUESTER operation.

Table 4-1. Functions Used With #REQUESTER

Function Description
#APPEND, #APPENDV Adds lines to a variable.
HEXTRACT, #EXTRACTV Retrieves lines from a variable.

Requesting Waited
Reads

Note

To open a file for waited read operations, issue a #REQUESTER call and include the
WAIT option; for example, the following statement opens FILE1 and initializes
error _var,read_var, and pronpt _var:

#SET rslt [#REQUESTER /WAl T/ READ filel error_var read_var
pronpt _var]
You can also use the WAIT option to specify the size of the text buffer. To specify

shared, protected, or exclusive access to the file, use the EXCLUSION option; the
default for a read operation is shared. For example:

#REQUESTER / EXCLUSI ON PROTECTED/ READ file2 error_var &
read_var pronpt_var

It is very important to check the results of the open operation; otherwise, you will not know if the open
request received an error.

To initiate a read operation, append data to the prompt variable:
#APPEND pronpt _var *start read*

When reading a disk file, TACL discards the data in pr onpt _var ; you can specify any
non-null data. TACL reads a record from FILE1 and places itintoread_var. You can
use #EXTRACT(V) to retrieve data from r ead_var ; as you #EXTRACT records,

TACL deletes them fromr ead_var.

Each time you append a line to pr onpt _var , the TACL process reads a record from
the disk file FILE1 and appends it tor ead_var. TACL then performs a READ
operation. TACL continues executing code until it encounters an #APPEND(V) or
H#EXTRACT(V) call that refers to one of the #REQUESTER variables. TACL then waits
until the current read operation is complete before initiating the next read operation.

When you are finished reading from the file, issue a CLOSE request and supply one of
the variable levels associated with the file; for example:

#REQUESTER CLOSE read_var

This operation closes FILE1 (associated with r ead_var) and terminates the
#REQUESTER function.

107365 Tandem Computers Incorporated

Accessing Files

Requesting Waited Reads

Use the routine in Figure 4-1, wai t ed_r ead, to perform waited reads from the file
specified in the first argument in the invocation and display the records on the
terminal. To invoke this routine, load the file and type:

wai ted_read filenane

The routine stops when it detects an error or end-of-file.

Figure 4-1. Performing a Waited Read

?SECTI ON wai t ed_read ROUTI NE

#FRANME

#PUSH open_error read_error read_data read_pronpt |ine
#PUSH read_file rslt

#SET rslt [#ARGUMENT /VALUE read _file/ FILENAVE OTHERW SE]
[#CASE [rslt]
| 1]
== Open the file:
#SET open_error [#REQUESTER /WAI T/ READ [read_fil e]
read_error read_data read_pronpt]

[#I F [open_error] | THEN
#OUTPUT *** Error opening [read_file]: [open_error]
#RETURN
]
#SET read_error O
[#LOOP | WHI LE] NOT [read_error] | DQ
#APPEND read_pronpt *start*
#EXTRACTV read_data line
#OUTPUTV [i ne

]

| OTHERW SE|
#OUTPUT *** Error: Invalid file ***
#RETURN
] == end #CASE

[#IF read_error = 1 | THEN|
#OUTPUT *** End of file ***
| ELSE]
#OUTPUT *** Error reading [read_file]: [read_error]

]

SI NK [#REQUESTER/ WAI T/ CLOSE r ead_dat a]
#UNFRAME

107365 Tandem Computers Incorporated 4-3

Accessing Files

Requesting Nowaited Reads

Requesting Nowaited

4-4

Reads

Note

To open a file for nowaited read operations, issue a #REQUESTER call and omit the
WAIT option; for example, the following statement opens FILE1 and initializes
error_var,read_var,and pronpt _var:

#SET rslt [#REQUESTER READ filel error_var read_var
pronpt _var]

It is very important to check the results of the open operation; otherwise, you will not know if the open
request received an error.

To specify shared, protected, or exclusive access to the file, use the EXCLUSION
option; the default for a read operation is shared. For example:

#REQUESTER / EXCLUSI ON PROTECTED/ READ file2 error_var &
read_var pronpt_var

To initiate a read operation, append data to the prompt variable:
#APPEND pronpt _var *start read*

To read a disk file, TACL discards the data in pr onpt _var, reads a record from
FILE1, and places itintor ead_var. You can use #EXTRACT(V) to retrieve data from
read_var ; as you #EXTRACT records, TACL deletes them fromr ead_var .

Each time you append a line to pr onpt _var , the TACL process reads a record from
disk file FILE1 and appends it to r ead_var . TACL then performs a READ operation.
TACL continues executing code; when you are ready to wait for completion of the
read operation, use the #WAIT built-in function to wait until r ead_var contains
data. To avoid writing over data that has not yet been transmitted, use #WAIT to
make sure the previous operation has finished.

When you are finished reading from the file, issue a CLOSE request and supply one of
the variables associated with the file; for example:

#REQUESTER CLOSE error_var

This operation closes FILE1 (associated with er r or _var) and terminates the
#REQUESTER function.

Use the routine in Figure 4-2, nowai t ed_r ead, to perform nowaited reads from the
file specified in the first argument in the invocation and display the records on the
terminal. To invoke this routine, load the file and type:

nowai ted_read filenane

107365 Tandem Computers Incorporated

Accessing Files

Requesting Nowaited Reads

This routine uses #VARIABLEINFO/VARIABLE/ to return a variable name to the
#CASE statement. #VARIABLEINFO/VARIABLE/ returns the name of a variable
without the level number so that it will match one of the labels. The #WAIT built-in
function, when used alone, returns the variable name with the level number.

Figure 4-2. Performing a Nowaited Read

?SECTI ON nowai t ed_read ROUTI NE

#FRAVE

#PUSH open_error read_error read_data read_pronpt |ine
#PUSH read file rslt

#SET rslt [#ARGUMENT /VALUE read_file/ FILENAVE OTHERW SE]
[#CASE [rslt]
| 1]
== (Open the file:
#SET open_error [#REQUESTER /WAI T/ READ [read_fil €]
read_error read_data read_pronpt]

[#| F [open_error] | THEN|
#OUTPUT *** Error opening [read_file]: [open_error]
#RETURN
]
#SET read _error O
[#LOOP | WHI LE| NOT [read_error] | DQ
#APPEND read_pronpt *start*
[#CASE [#VARI ABLEI NFO' VARI ABLE/
[#WAI'T read_data read_error]] | THEN
| read_data |
#EXTRACTV read_data line
#OUTPUTV [i ne
| read_error|
== exit | oop
] == end case
] == end | oop
| OTHERW SE]|
#OUTPUT *** Error: Invalid file ***
#RETURN
] == end #CASE

[#| F read_error = 1 | THEN
#OUTPUT *** End of file ***
| ELSE]
#OUTPUT *** Error reading [read_file]: [read_error]

]

SI NK [#REQUESTER/ WAI T/ CLOSE r ead_dat a]
#UNFRAME

107365 Tandem Computers Incorporated 4-5

Accessing Files

Requesting Waited Writes
Requesting Waited To open a file for waited write operations, issue a #/REQUESTER call and include the
Writes WAIT option. The following statement opens FILE1 and initializes er r or _var and
write var. If FILEL does not exist, TACL creates an Edit file:
#SET rslt [#REQUESTER /WAI T/ WRITE filel error_var wite_var]
Note Itis very important to check the results of the open operation. Otherwise, you will not know if the open
request received an error.
You can also use the WAIT option to specify the size of the text buffer. To specify
shared, protected, or exclusive access to the file, use the EXCLUSION option; the
default for a write operation is shared. For example:
#REQUESTER / EXCLUSI ON PROTECTEDY WRITE file2 error_var &
write var
To initiate the write operation, append data to the write variable:
#APPEND wite_var This is a test
When TACL detects datainwri t e_var, it writes the data to FILEL.
You can add a record to a structured file but cannot replace a record. If you attempt to
write a record that already exists, TACL returns an error.
Each time you append a linetowr i t e_var, the TACL process writes the record to
FILE1l. TACL continues executing code until it encounters an #APPEND(V) call that
refers to one of the #REQUESTER variables, signifying that you have more data to
write. TACL then waits until the current operation is complete before initiating the
next write operation.
When you are finished writing to the file, issue a CLOSE request and supply one of the
variable levels associated with the file; for example:
#REQUESTER CLOSE error_var
This operation closes FILE1 (associated with er r or _var) and terminates the
#REQUESTER function.
4-6 107365 Tandem Computers Incorporated

Accessing Files

Requesting Waited Writes

Use the routine in Figure 4-3, wai t ed_wri t e, to perform waited writes to the file
specified as the first argument in the invocation. If the file already contains data, this
routine appends the new data to the end of the file. To invoke this routine , load the
file and type:

waited wite filenane

The #INPUT call in Figure 4-3 reads a line from the TACL IN file.

Figure 4-3. Reading From a Terminal and Performing a Waited Write

?SECTI ON wai ted_write ROUTI NE

#FRAVE

#PUSH open_error wite_error wite_data wite_pronpt |ine
#PUSH wite file rsilt

#SET #1 NPUTEOF O

#SET rslt [#ARGUVENT /VALUE wite file/ FILENAVE OTHERW SE]
[#CASE [rslt]
| 1]
== Open the file:
#SET open_error [#REQUESTER/ VAI T/WRITE [write file]
wite error wite_ data]
[#I F [open_error] | THEN
#OUTPUT *** Error opening [wite_file]: [open_error]
#RETURN
]
[#LOOP | DO
#APPEND wite data [#I NPUT a_:]
== Add error checking here for output file if necessary
| UNTI L| [#I NPUTEOF]
]
| OTHERW SE|
#OUTPUT *** Error: Invalid file ***
#RETURN
] == end #CASE

SI NK [#REQUESTER/ WAl T/ CLOSE wri t e_dat a]
#UNFRAVE

107365 Tandem Computers Incorporated 4-7

Accessing Files

Requesting Nowaited Writes

Requesting Nowaited To open a file for nowaited write operations, issue a #fREQUESTER call and omit the
Writes WAIT option. The following statement opens FILE1 and initializes er r or _var and
write var. If FILEL does not exist, TACL creates an Edit file:

#SET rslt [#REQUESTER WRI TE filel error_var wite_var]

Note Itis very important to check the results of the open operation. Otherwise, you will not know if the open
request received an error.

To specify shared, protected, or exclusive access to the file, use the EXCLUSION
option; the default for a write operation is shared. For example:

#REQUESTER / EXCLUSI ON PROTECTEDY WRI TE file2 error_var &
write_ var

To initiate the write operation, append data to the write variable:
#APPEND wite_var This is a test
When TACL detects datainwr i t e_var, it writes the record to FILE1.

You can add a record to a structured file but you cannot replace a record. If you
attempt to write a record that already exists, TACL returns an error.

Each time you append alinetowr i t e_var, the TACL process writes a record to
FILE1l. TACL continues executing code. When you are ready to wait for completion of
the read operation, use the #WAIT built-in function to wait until thewri t e_var
contains data. To avoid writing over data that has not yet been transmitted, use
#WAIT to make sure the previous operation has finished.

When you are finished writing to the file, call the #WAIT function to make sure that
the last write has finished. Next, issue a CLOSE request and supply one of the variable
levels associated with the file; for example:

#REQUESTER CLOSE write_var

This operation closes FILE1 (associated with wr i t e_var) and terminates the
#REQUESTER function.

4-8 107365 Tandem Computers Incorporated

Accessing Files

Requesting Nowaited Writes

Use the routine in Figure 4-4, nowai t ed_wr i t e, to perform nowaited writes to the
file specified in the first argument in the invocation. If the file already contains data,
this routine appends the new data to the end of the file. To invoke this routine, load
the file and type:

nowai ted wite filenane

Figure 4-4. Reading From a Terminal and Performing a Nowaited Write

?SECTI ON nowai ted_wite ROUTI NE

#FRAME

#PUSH open_error wite_error wite_data wite_pronpt |ine
#PUSH wite_file rslt

#SET #| NPUTEOF 0

#SET rslt [#ARGUMENT /VALUE wite_file/ FILENAVE OTHERW SE]
[#CASE [rslt]
| 1]
== Open the file:
#SET open_error [#REQUESTER WRITE [wite_file]
wite error wite_data]
[#I F [open_error] | THEN
#OUTPUT *** Error opening [wite_file]: [open_error]
#RETURN
]
[#LOOP | DQ
[#CASE [#VARI ABLEI NFO' VARl ABLE/
[#WAI T wite_data wite_error]]
|wite data |
#APPEND write_data [#I NPUT b_:]
|wite_error|
#OUTPUT Error [wite_error] on wite

]
| UNTI L| [#! NPUTEOF]

]
| OTHERW SE|
#OUTPUT *** Error: Invalid file ***
#RETURN
] == end #CASE

SI NK [#REQUESTER/ WAl T/ CLOSE wri t e_dat a]
#UNFRANE

107365 Tandem Computers Incorporated

Accessing Files

Copying Records Between Files

Copying Records Use the routine in Figure 4-5, copy, to read records from one file and write them to
another file. The source file is specified as the first argument; the destination file is
specified as the second argument; both files must exist. In this example:

Between Files

4-10

O

OO oo

read_err isthe error variable for the read operation
read_var contains the data obtained from the read operation
pronpt _var isthe prompt variable to start the read operation
write_err isthe error variable for the write operation

wri te_var contains the record to be written

To invoke this routine, load the file that contains copy and then type:

copy filel file2

Copy appends data to the end of FILE2. Copy could be changed to modify records
before copying them; for example, you could search for a string and, if it is present,
modify the string before writing the record to the destination file.

Figure 4-5. Copying Records From One File to Another File (Page 1 of 2)

?SECTI ON copy ROUTI NE

#FRANVE

#PUSH rslt rslt2 source dest

#PUSH wite err wite var read err read_var pronpt_var
#PUSH Ready open_err

== Check for existence of the first argument. If enpty,
== display a nessage and exit.

#SET rslt [#ARGUMENT /VALUE source/ FILENAVE OTHERW SE]
[#CASE [rslt]
| 1]
== Check for the second file.
#SET rslt2 [#ARGUVENT /VALUE dest/ FI LENAVE OTHERW SE]
[#CASE [rslt2]
| 1]
== (pen the source and destination files and
== associate variables with them
#SET open_err [#REQUESTER READ [source] read_err
read_var pronpt_var]
[#I F open_err = 0 | THEN
#OUTPUT [source] opened successfully
| ELSE
#OUTPUT [source] not open; error [read err]
#RETURN
]
#SET open_err [#REQUESTER WRI TE [dest] wite err
wite var]

107365 Tandem Computers Incorporated

Accessing Files

Copying Records Between Files

Figure 4-5. Copying Records From One File to Another File (Page 2 of 2)

| 2

]
| 2]
#OUT

]
#UNFRAVE

[#I F open_err = 0 | THEN
#OUTPUT [dest] opened successfully

| ELSE
#OUTPUT [dest] not open; error [wite err]
SINK [#REQUESTER CLOSE read_var] == cl ose source
#RETURN

]

== |nitiate read and wite operations.
#SET read_err O == initialize read_err
[#LOCP | DQ
== Start the read.
#APPEND pronpt _var READI T
== WAit for read var or read _err to change.
#SET ready [#WAIT read_var read_err]
== |f read_var changed, the read was successful.
[#| F [#MATCH read_var.* [Ready]] | THEN
== Wait for the last wite to conplete
SINK [#WAIT wite_var]
== Move the record into wite var to initiate the
== wite operation.
#EXTRACTV read_var wite_var

]
| UNTIL| ([read_err])
] == end of #l oop

== Wit for the last wite operation to finish.
SINK [#WAIT write_var]

== Close both files and term nate the #REQUESTER
== functi ons.

SI NK [#REQUESTER CLOSE read_var]

SI NK [#REQUESTER CLOSE write_var]

|

#OUTPUT *** Error: Invalid destination fil ename ***

PUT *** Error: Invalid source filename ***

The #EXTRACTYV call that performs the write operation clears the contents of
read_var andwite_var. TACL moves a record out of read_var and into

write var.
write var.

107365 Tandem Computers Incorporated

After TACL writes the data, TACL deletes the record from

4-11

Accessing Files

Comparing Files

Comparing Files Use the routine in Figure 4-6, f conp, to perform a line-for-line comparison of two

4-12

files. A mismatch does not resynchronize the two files.

Fconp reads a record from each of the two files and then calls #COMPAREYV to
compare the records. The maximum line length for an edit file is 239 bytes; f conp
uses this value as a maximum line length for the input records.

Fconp supports two options: you can limit the comparison to a range of columns
within the files, and you can write the results to a file.

Fcomp calls the get ar gs macro (from Section 3, “Developing TACL Routines”) and
the def aul t var s macro (from Section 2, “Developing TACL Programs”):

[0 Get ar gs parses the arguments of a calling routine; it accepts sets of three
arguments:

[0 REQUIRED or OPTIONAL specify whether an argument must be present or
can be omitted from the list of arguments.

O Type specifies an #ARGUMENT alternative, such as FILENAME or
KEYWORD.

[0 Vari abl e is pushed and set by the TEXT option of #ARGUMENT if the
argument is supplied; otherwise, the variable remains empty.

0 defaul t var s accepts a space-separated list of space-separated pairs (variable
levels and values) and sets each empty variable level to its corresponding value.
For each pair of arguments:

O Vari abl e- I evel specifies the name of a variable level.

[0 Val ue specifies the corresponding value, or can be empty. Value cannot
contain any spaces.

To call f conp , load the associated file and enter:
fconp filel, file2 [, [f1] [, [f2] [, [result]]]]

where

filel

is the name of one of the comparison files.

file2

is the name of the other comparison file.

fl

is a starting field range (optional).

107365 Tandem Computers Incorporated

Accessing Files

Comparing Files

f2

is an ending field range (optional).

result

is a file that will contain the results of the comparison (optional).

Figure 4-6. Comparing Two Files (Page 1 of 3)

?SECTI ON f conmp ROUTI NE
#FRAME

== Define a character array; the naximumline length is 239
== characters.
#DEF char _array STRUCT BEG N CHAR col unm(1: 239); END;

== Use the character array to define two STRUCTs that contain
== character arrays. Fconp uses these STRUCTS to conpare

== lines of data.

#DEF |inel STRUCT LIKE char_array;

#DEF | i ne2 STRUCT LIKE char_array;

#PUSH | i necount filel err filel var filel pronpt

#PUSH file2 err file2 var file2 pronpt

#SET | i necount 0

== Call the getargs nacro to parse FCOWP argunents
[getargs required FILENAME fil el

required FILENAME fil e2

optional NUMBER f1

optional NUMBER f2

optional FILENAME/ SYNTAX/ results

]

== Call defaultvars to set defaults if parts of the colum
== range were not specified.
[defaul tvars fl1 1 f2 239]

== Check to nake sure the columm range is between 1 and 239.
== |f not, display a nessage and exit.
[#1F (fl<l) OR (f1>239) OR (f2<1) OR (f2>239) OR (f1>f2)
| THEN
#OUTPUT Il legal field range val ue
#UNFRAVE
#RETURN

107365 Tandem Computers Incorporated 4-13

Accessing Files

Comparing Files

Figure 4-6. Comparing Two Files (Page 2 of 3)

== |f aresult file was specified, use it for output.
== Ot herw se, use the default QUT file.
[#I F NOT [#EWMPTYV results] | THEN|

#PUSH #0OUT

#SET #OUT [results]

]

== Di splay the user's request.
#OUTPUT

210 B 11l U I e
= Qpen the files.

#SET filel err [#REQUESTER /WAI T/ READ [filel] filel_err &
filel var filel pronpt]

[#IF filel_err = 0 | THEN
#OUTPUT [fil el] opened successfully

| ELSE
#OUTPUT [filel] not open; file error [filel_err]
#RETURN

]

#SET file2 err [#REQUESTER/ WAI T/ READ [file2] file2 err &
file2 var file2 pronpt]

[#IF file2_err = 0 | THEN|
#OUTPUT [fil e2] opened successfully

| ELSE]|
#OUTPUT [file2] not open; file error [file2_err]
SI NK [#REQUESTER CLCSE filel_err] == close FILEl
#RETURN

== While there are no errors, read and conpare |ine
[#LOOP | WHILE] filel err = 0 AND file2_err = O|Dq
== |Increnment the |ine counter by 1.

#SET | i necount [#COWPUTE |inecount + 1]

== Read a line fromthe first file
#SET filel_pronmpt *start*
#EXTRACTV filel_var linel

4-14 107365 Tandem Computers Incorporated

Accessing Files

Comparing Files

Figure 4-6. Comparing Two Files (Page 3 of 3)

== |If the first read was successful, read a line fromthe
== second file.
[#IF filel err <= 1 | THEN
#SET file2_prompt *start*
#EXTRACTV fil e2_var line2
== |f the second read was successful, performthe
== conpari son.
[#IF NOT file2_err | THEN
== |f the two lines do not match, display them
[#I F NOT [#COWPAREV |inel:colum([f1]:[f2])
line2:colum([f1]:[f2])] | THEN
#OUTPUT File [filel] line [linecount]: [linel]
HOUTPUT % - - - oo e oo oo *
#OUTPUT File [file2] line [linecount]: [line2]
HOUTPUT % - - - oo e oo oo *
] == end of #IF ... #COVWPAREV
] == end of #IF NOT file2_err
] == end of #F filel_ err
] == end of #LOOP

== Close the files
SI NK [#REQUESTER CLOSE filel err]
SI NK [#REQUESTER CLCSE fil e2_err]
== Handl e EOF conditions, file size msmatches, and errors.
[#CASE [filel_err]~[file2_err]
| 171 #OQUTPUT [linecount] |ines conpared == Nornmal exit;
| 071 #OUTPUT [filel] is has nore lines than [file2]
| 170 #CQUTPUT [file2] is has nore lines than [filel]
| OTHERW SE
[#IF filel_err > 1 | THEN
#OUTPUT Error [filel_err] on [filel]
]
[#IF file2 err > 1 | THEN
#OUTPUT Error [file2 err] on [file2]
]
]
#UNFRAME

107365 Tandem Computers Incorporated 4-15

Accessing Files

Listing a File
Listing a File Use the macro in Figure 4-7,t acl | i st , to format, paginate, and print TACL program
files. This macro calls #REQUESTER to read the TACL file, copies the TACL file to a
disk file designated as the OUT file in TFORM format, and then calls TFORM to
format and print the file. Tacl | i st displays the following:
0 A listing banner with the TACL file date and the current date.
[J The contents of the file, including line numbers and page numbers.

Note Figure 4-7 shows the use of a macro for a more complex set of operations. Because a macro cannot use
the #ARGUMENT built-in function, the macro must provide more argument checking capabilities. In
addition, the macro cannot use the #RETURN built-in function, so it uses a series of #IF calls. The bulk of
the code resides in the innermost #IF statement, making the program more difficult to read.

You can use the TFORM \NEW command within the TACL file to cause TFORM to
advance to the top of a new page. When you insert a directive of the form ==\NEW in
the file to be printed, t acl | i st replaces it with \NEW. The macro sets the page
width to 132 characters.
To preview your output before printing, specify your terminal name as the output file.
Following a preview, reinvoke t acl | i st to get a printed listing. To run this macro,
load the file and enter:
tacllist infilenane [outfilenane]
If out fi | enane already exists, TACL purges the file. If you do not specify a result
file,t acl | i st writes to a file called TACLTFRM.
Figure 4-7. Listing a File (Page 1 of 5)
?SECTION tacl i st MACRO
#FRANVE
#PUSH err_inp rec_inp pronpt default_outfile
#PUSH | i ne_num | i ne page_num page_out bin _date file_date
#PUSH | i st _date year nonth day file hour file_min
#PUSH |ist_hour list_nmin short _stars long stars
#PUSH | i nes_out nax_lines match_string printer
#PUSH #OUTFORVAT #W DTH
#SET printer $S. #LP5 == Put local printer nane here
#SET max_lines 55 == Set to maxi num | i nes/ page
#SET default_outfile TACLTFRM == Default output file nane
#SET #W DTH 132 == Listing wap columm
#SET #OUTFORMAT PLAI N
4-16 107365 Tandem Computers Incorporated

Accessing Files

Listing a File

Figure 4-7. Listing a File (Page 2 of 5)

[#DEF file STRUCT
BEG N
CHAR i nput (0:33);
CHAR out put (0: 33);
END;

] == end DEF

== Qutput a banner

[#DEF out put _banner TEXT | BODY|
#SET short _stars ****x**xx*

#SET Iong StarS EE R I I R I I R R I R I I R I I I

#OUTPUT [| ong_st ars]

tacllist [long_stars]

#OUTPUT/ HOLD /I &
*** Program Nane: [file:input(0:33)]

#OUTPUT/ HOLD, COLUMN 49 /I &
Listing Date: [list_date]

#OUTPUT/ HOLD, COLUWN 71, WDTH 2, JUSTI FY RIGHT, FILL ZERO &
[l1ist_hour]

#OUTPUT/ HOLD, COLUWN 73, W DTH 1 I &

#OUTPUT/ HOLD, COLUWN 74, W DTH 2, JUSTI FY RIGHT, FILL ZERO &
[list_mn]

#OUTPUT/ COLUWN 77 I &

#OUTPUT/ HOLD /I &
*** Program Date: [file_date]

#OUTPUT/ HOLD, COLUWN 27, WDTH 2, JUSTI FY RIGHT, FILL ZERO &
[file_hour]

#OUTPUT/ HOLD, COLUWN 29, W DTH 1 I &

#OUTPUT/ HOLD, COLUWN 30, WDTH 2, JUSTI FY RIGHT, FILL ZERO &
[file_mn]

#OUTPUT/ HOLD, COLUMN 49 /I &
Page Nunber:

#OUTPUT/ HOLD, COLUWN 73, WDTH 3, JUSTI FY RI GHT, FILL ZERO &
[page_nunj

#OUTPUT/ COLUWN 77 I &

#OUTPUT [l ong_stars][short_stars][long_stars]

#OUTPUT

#SET page_num [#COMPUTE page_num + 1]

] == end DEF
107365 Tandem Computers Incorporated 4-17

Accessing Files

Listing a File

4-18

Figure 4-7. Listing a File (Page 3 of 5)

== CGet dates nmcro
[#DEF get dates TEXT | BODY|

#SET bi n_date [#FI LEI NFO MODI FI CATION/ [file:input(0:33)]]
#SETMANY year nmonth day file_hour file_nmin, &

[#CONTI ME [bi n_dat e]]
#SET file date &

[#COWPUTE ((year - 1900) * 100000) + (rmonth * 100) + day]
#SETMANY year nmonth day list_hour list _mn, &

[#CONTI MVE [#TI MESTAMP]]
#SET |ist _date &

[#COVWPUTE ((year - 1900) * 100000) + (rmonth * 100) + day]

Mai n Part of the Code

Look for the input file nane. |If enpty, drop out of the
| oop and display an error.

[#| F NOT [#EMPTY %494 | THEN|

#SET file:input(0:33) [#SH FTSTRI NG UP/ %4%

== Look for the out file nanme. If enpty, use the default
== QUT file.
[#| F NOT [#EMPTY %% | THEN|
#SET file:output(0:33) [#SH FTSTRI NG UP/ 9%2%
| ELSE|
#SET file:output(0:33) [default _outfile]
]
== Open the input file for read access.
#SET err_i np [#REQUESTER/ WAI T/ READ [file:input(0:33)] &
err_inp rec_inp pronpt]

[#|F err_inp <> 0 | THEN] == open error; drop out of | oop.
#OUTPUT [file:input(0:33)] not open; error: &
[err_inp]
| ELSE|

== |f the output file already exists, purge it.

[#1 F [#FI LEI NFQ' EXI STENCE/ [file: output (0:33)]] | THEN|
SINK [#PURGE [file:output(0:33)]]

]

== Save (push) the current #OUT setting, then set it to
== the new val ue.

#PUSH #0OUT

#SET #OUT [fil e: out put (0: 33)]

107365 Tandem Computers Incorporated

Accessing Files

Listing a File

Figure 4-7. Listing a File (Page 4 of 5)

== The followi ng vari abl es keep track of the |ine nunber,
== page nunber, and nunber of lines already witten to
== a page (for calculation of autonatic page break).
#SET line_num 1

#SET page_num 1

#SET |lines_out 0O

#SET match_string \ NEW

#OUTPUT \ STYLE FORM W DTH 132 CHARS

get dates

out put _banner

== Start the read operation; place the record into |ine.
#APPEND pronpt *start*
#EXTRACTV rec_inp line

[#LOOP | WHILE] NOT err_inp | DQ
== |f the line equals \NEW perform a page break.
[#I F [#MATCH *[match_string]* [line]] | THEN
#OUTPUT \ NEW
out put _banner
#SET lines_out 0O
== Ot herw se, output the |ine number and the line.
| ELSE]
#OUTPUT/ HOLD, W DTH 3, COLUMN 1, JUSTI FY RIGHT, FILL &
ZERQ [line_nunm
#OUTPUT/ HOLD, W DTH 1/
#OUTPUTV i ne
#SET |ines_out [#COWUTE |ines_out + 1]

== |If the page is full, issue a page break
[#IF (lines_out = max_lines) | THEN
#OUTPUT \ NEW
out put _banner
#SET lines_out 0O
]
== Move the next record into |line.
#APPEND pronpt *start*
#EXTRACTV rec_inp line

== |Increnment the |ine counter.
#SET |i ne_num [#COMPUTE | i ne_num + 1]
] == end LOOP

107365 Tandem Computers Incorporated 4-19

Accessing Files

Listing a File

Figure 4-7. Listing a File (Page 5 of 5)

[#1F err _inp <> 1 | THEN| == Error 1 is EOF (OK)
#OUTPUT Error [err_inp]: Opening/reading file &
[file:input(0:33)]
]

#SET err_i np [#REQUESTER/ WAI T/ CLCSE rec_i np]

#POP #OUT

[#| F [#FI LEI NFO CODE/ [file:output(0:33)]] = 101 | THEN
TFORM IN [file:output(0:33)], OQUT [printer], NOMI T/

]

] == end of #IF [err_inp] <> 0

| ELSE| == Error in input paraneters
#OUTPUT
#OUTPUT ERROR: M ssing input paraneter. Format is:
#OUTPUT
#OUTPUT/ COLUMN 3/ TACLLI ST i nputfil enane~[out putfil enane~]
#OUTPUT

] == end of #lF NOT [#EMPTY %%

#UNFRAME

Figure 4-8 contains a sample listing produced by the TACLLIST macro.

Figure 4-8. TACLLIST Output

\ STYLE FORM W DTH 132 CHARS

kkhkkkkhkhkkkhkhhkkkhhkkhkhhkkkhhkxkhkkk*k taC||ISt kkhkkkkhkkhkhkkhkkhkhkkkhhhkkhkkhhkkxkhkhkkk*k
*** Program Nanme: S6A Li sting Date: 920415 12:21 ***
*** Program Date: 920415 12: 20 Page Number: 001 ***

khkhkkhkhkkhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhhhhhhdhhkhkhhkhhkhkhdhkhkhkrkk rkk kkx*x**x

001 ?SECTI ON defaul tvars MACRO
002

003 == Any nore pairs?

004 [#IF NOT [#EMPTY %% | THEN|

005

006 == 1s this variable | evel enpty?

007 [#| F [#EMPTYV %% | THEN|

008

009 == The variable level is enpty; install default val ue
010 #SET %% %2%

011]

012 == Call self again with the renai ni ng argunents.

013 == Upon reaching this point, the rest

014 == of the macro is gone, so this causes a | oop w thout
015 == any recursion.

016 %% % TO *%

017]

4-20 107365 Tandem Computers Incorporated

5 Initiating and Communicating
With Processes

TACL provides several ways to initiate, control, and handle the results of processes,
whether they are application programs, utilities, or other TACL processes. For
example, you can;

] Run a program and wait to process TACL commands until the program is finished
running.

0 Run a program and continue to process TACL commands while the program is
running.

[0 Start a utility, such as FUP, and send it a list of commands.

00 Start a utility, send it commands, and make decisions about further commands,
depending on information obtained from the utility.

If you access a utility or other process frequently during interactive work, you can save
process startup overhead by starting the process once, sending it commands as
needed, and letting it run in the background until you are finished.

The following subsections describe mechanisms for starting and communicating with
processes, including:

O] Initiating a process: RUN and #NEWPROCESS

0 Communicating with a process and retrieving results through TACL IN and OUT
files, using:

0 INand OUT files

INV and OUTYV variables
The INLINE facility
$RECEIVE

#SERVER

O 0O oo

These methods use the following type of communication:

-<+—OPEN

| <— WRITEREAD |

el REPLY —— Ve ceause
- WRITE _FUP or PUP

| <——CLOSE |

107365 Tandem Computers Incorporated 5-1

Initiating and Communicating With Processes

Using RUN and #NEWPROCESS Options

Initiating a Process

Using RUN and
#NEWPROCESS Options

[0 Communicating with a process through $RECEIVE, using #REQUESTER,
#APPEND(V), and #EXTRACT(V).

This method uses the following type of communication:

OPEN——*

WRITEREAD —

TACL Process s_uch
- REPLY as a device

CLOSE—*

[l Processing completion information

You can use the Define Process (DP) facility (not part of TACL) to communicate with
processes if your system has ViewPoint software. See “Using DefineProcess,” later in
this section.

Section 6, “Running TACL as a Server,” describes how to access TACL as a server
process.

The RUN command and #NEWPROCESS built-in function allow you to start a
process. For example, the following statement starts FUP:

#NEWPROCESS $SYSTEM SYSTEM FUP / CPU 3, NAME $FUP/

TACL provides RUN and #NEWPROCESS options that allow you to specify whether
your TACL process waits for the new process to finish or not. In addition, TACL
provides commands and a RUN and #NEWPROCESS option (IN) that send startup
information to the new process. Table 5-1 lists these options and commands.

Table 5-1. RUN and #NEWPROCESS Communication Options
Associated RUN or #NEWPROCESS

Communication Requirements at Startup Time Options and TACL Commands
Start a process and wait for it to finish; no communication None

Start a process and return to TACL immediately; no NOWAIT option

communication

Start a process and pass information at startup time ASSIGN, PARAM, and DEFINE

commands; IN option

TACL also provides RUN and #NEWPROCESS options that support communication
to the new process. For information about these options and other related functions,
see “Communicating With a Process,” later in this section.

The SPI and EMS interfaces provide programmatic interfaces to processes. For
additional information, see Section 7, “Using Programmatic Interfaces.”

107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Sending Information at
Initiation Time

Using RUN and #NEWPROCESS Options

You can supply IN and OUT files for processes that accept input from an IN file and
write to an OUT file. This mechanism does not allow you to evaluate the results of
each request and make decisions before the next request; it does, however, provide a
way to send a set of requests to a process.

In addition to supplying IN and OUT files, the following three commands send
information to a new process:

[J ASSIGN associates a physical file name with a logical file name.
[0 PARAM associates parameter values with parameter names.
[0 DEFINE allows you to specify a named set of attributes and values for a process.

TACL stores the associated values until you log off or until you delete the association
explicitly.

The following paragraphs provide an overview of the use of these three commands.
The TACL Reference Manual contains additional information about each command.

Assigning File Names

The ASSIGN command allows you to pass file names and, optionally, file
characteristics to programs. ASSIGN associates a physical file name with a logical file
name. The physical file name is any valid file name. The logical file name is defined
and used within the program you are starting.

The following code assigns the file DATAFILE to the logical file name FT002 for use by
a FORTRAN program, f or cal c, that accesses the logical file FT002.

14> ASSI GN FT002, datafile
15> forcalc

TACL stores the assigned values and sends those values to requesting processes in the
form of assign messages. TACL does not interpret the assigned values—that task
must be performed by the application program.

A new process must request its ASSIGN messages (if any) following receipt of the
startup message. The COBOL and FORTRAN compilers provide the code for this
function. TAL programs that use ASSIGN commands must provide their own code
for handling ASSIGN messages.

The LOGOFF command deletes existing assignments.

Defining Parameter Values

PARAM allows you to pass parameter values to a process. PARAM associates an
ASCII value with a parameter name. The parameter name is an identifier that is
defined and used within the program you are starting.

Use the following code to set a parameter named DEVICE_TYPE to the value 2 prior to
running a program called runi t :

15> PARAM DEVI CE_TYPE 2
16> runit

107365 Tandem Computers Incorporated 5-3

Initiating and Communicating With Processes

Communicating With a Process

TACL stores the values of parameters assigned by the PARAM command and sends
these values to processes that request parameter values when the processes are started.
Processes that request the parameter values interpret the values.

CLEAR PARAM par am nane clears a specific parameter value; CLEAR ALL
PARAM clears all parameter values. TACL clears all parameter values when you use
the LOGOFF command.

Using DEFINEs

DEFINEs allow you to specify a named set of attributes and values for a process.
There are several types of DEFINEs, many of which are intended for use with specific
subsystems:

1 A MAP DEFINE allows you to substitute a logical DEFINE name for an actual file
name.

0 A TAPE DEFINE allows you to specify labeled-tape attributes for a subsequent
tape operation.

[0 A SPOOL DEFINE allows you to set parameters for a spooler job.

0 The DEFAULTS DEFINE contains standard default values such as your default
volume and subvolume name.

[0 The SORT and SUBSORT DEFINEs allow you to specify parameters for the
FASTSORT program.

You can use the #DEFINESAVE and #DEFINERESTORE built-in functions to save a
copy of one or more DEFINEs for later use. This operation is similar to a #FRAME
and #UNFRAME for a set of variables; you can save the current set of DEFINEs and
restore them when you are finished with your work.

For more information about how to create and use DEFINES, see the TACL Reference
Manual or the Guardian User"s Guide.

Communicating Witha To communicate with a process, you must provide a communication path to the
Process process. The type of path depends on how the process communicates with other
processes. For example, some processes, such as FUP and PERUSE, use IN and OUT
files. Other processes, such as Pathway requesters, use $RECEIVE, write to their home
terminal, or use INV and OUTYV variables.

The type of path also depends on whether the process opens your TACL process or
your TACL process opens the other process.

If your work involves communicating with subsystems and utilities that must
communicate with a terminal, the processes probably use IN and OUT files. Your
TACL program can simulate a terminal if you follow these steps:

1. Start the process. The process opens your TACL process and issues a
WRITEREAD operation.

2. Wait for a prompt from the process (from the WRITEREAD operation).

5-4 107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Note

Communicating With a Process

3. Send acommand.
4. Wait for output from the process (a WRITE operation).

5. Based on the reply, decide upon the next action and either go back to Step 2 or
continue to Step 6.

6. When finished, send an exit message to the process.
The following facilities support this type of operation.
O INLINE

O INV and OUTV (sometimes called implicit servers)
[l #SERVER

[0 Define Process (part of ViewPoint)

A second communication method uses $RECEIVE to communicate with processes,
devices, and files, following these steps:

1. Open the process prior to sending a request.
2. Send arequest to the process.

3. Receive a reply from the process.
4

Based on the reply, decide upon the next action and either go back to Step 2 or
continue to Step 5.

5. When finished, close the process.

The #REQUESTER, #APPEND(V), #EXTRACT(V), and #WAIT built-in functions
support this type of communication.

There is also a third communication method that allows TACL to run as a server
process. Section 6, “Running TACL as a Server,” describes this method.

The following subsections describe these communication mechanisms and describe
how to send a request, retrieve results, handle errors, and terminate communication.

If TACL attempts to open a process for communication at the same time that process is attempting to
open TACL for communication, a deadlock condition can occur. Coordinate your use of communication
mechanisms to avoid simultaneous open operations.

TACL cannot intercept messages from processes that are in block mode.

107365 Tandem Computers Incorporated 5-5

Initiating and Communicating With Processes

Using the INLINE Facility

Using the INLINE Facility The INLINE facility allows you to incorporate command stream processing into your

Note

TACL program. The syntax closely resembles interactive syntax. The INLINE facility
provides the flexibility of an interactive interface; you can read process output,
examine it, and make decisions about further commands.

The INLINE facility allows you to switch output variables during the operation of
your TACL program. This ability can be especially useful if you are gathering
information and then sending commands—such as in a PERUSE session where you
obtain a list of jobs and then delete the jobs. You can work from the first set of output
and use a second output variable for results and errors.

The INLINE facility supports only one active communication path at a time. You can
push and define new INLINE processes while maintaining existing INLINE processes,
but you can only access the most recently defined process. To communicate with more
than one process at the same time, use the INV and OUTV options or #SERVER.

To use the INLINE facility, you define a prefix for commands that you send to the new
process. You start the process with a RUN or #NEWPROCESS command and specify
the INLINE option. Your commands appear as they would in an interactive session,
except that they start with the defined prefix and a space character.

You can capture the output into a queue, examine the contents of the queue, and
enable and disable output to the queue.

TACL IN and OUT files coexist with INLINE input and output streams; when you
start a process with the INLINE option, TACL does not use its own IN and OUT files
as the default files for the process; instead, it uses the file $name.#Sn, where $name is
the name of the TACL process and n is the ASCII representation of a decimal number
chosen by TACL. Process 170 is therefore directed to TACL itself, which can then
handle the I/0 as determined by your TACL code.

Your TACL process must be started with a process name if you want to use the INLINE option—the
operating system does not allow an unnamed process to be opened using a qualifying name, and TACL
uses a qualifying name (of its own choosing) to recognize OPEN operations from processes using the
INLINE option.

Table 5-2 lists the minimum set of commands or variables you use to run a process and
communicate with it through the INLINE facility.

Table 5-2. INLINE Commands and Variables

Command or Function Description

RUN or #{NEWPROCESS with the INLINE option Starts a process

#INLINEPREFIX or INLPREFIX Sets the prefix for commands to the process
TACL command or function, preceded by the prefix Sends a request to the process

and a space

#INLINEEOF or INLEOF Closes the process

107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Using the INLINE Facility

To retrieve the current settings of the INLINE variables, expand the variables (using
square brackets) or use the ENV command. The default value for #iINLINEPREFIX is
NULL.

Generating Input

To define the inline prefix, use the #INLINEPREFIX built-in variable or the
INLPREFIX command. The following command sets the prefix to +:

#SET #| NLI NEPREFI X +

When TACL passes a prefixed line to a process, it first removes the prefix and the
space. If a prefixed line contains square brackets, TACL evaluates them before
sending the line. TACL strips comments in == (double equal sign) or {} (enclosing
braces) format from prefixed lines. If a prefixed line contains only the prefix, TACL
sends a blank line to the process.

If an unprefixed line generates a prefixed line, TACL passes the prefixed line to the
process as its input.

In addition to program-defined termination commands, you can use the #iINLINEEOF
built-in function to pass an EOF to an inline process.

Lines sent as input to processes started with the INLINE option are not copied to the
TACL OUT file unless you set #NLINEECHO to a nonzero value.

Use the macro in Figure 5-1, i nl i ne_f up, to set the INLINE prefix, start a FUP
process, and send commands to FUP. Input comes from the TACL macro; output goes
to the home terminal. To run this macro, load the associated file and enter:

12> inline_fup
The macro displays the FUP banner, the two commands, and FUP responses:
2> LOAD / KEEP 1/ | NLI NEEX

Loaded from $DATA. TEST. | NLI NEEX:
I NLI NE_FUP

3> inline fup
File Wility Program- T9074C31 - (12FEB92) System \ NY
Copyri ght Tandem Computers | ncorporated 1981, 1983, 1985-1992

info taclcstm

CODE ECOF LAST MODI F OWNER RVWEP TYPE REC BLOCK
$DATA. TEST
TACLCSTM 101 76 11JAN92 20:43 167,1 NO-O

i nfo nykeys
CODE EOF LAST MODIF OMER RWEP TYPE REC BLOCK
$DATA. TEST
MYKEYS 101 1306 1JUN91 15:19 167,1 NO-O
exit

107365 Tandem Computers Incorporated 5-7

Initiating and Communicating With Processes

Using the INLINE Facility

Figure 5-1. Communicating With FUP

?SECTION i nline_fup MACRO

#FRAVE
#PUSH #| NLI NEPREFI X == Create a new |l evel of
== #| NLI NEPREFI X
#SET #| NLI NEPREFI X + == Set the prefix to "+"
FUP /1 NLI N/ == Start FUP with the INLINE option
+ info taclcstm == Send FUP a command
+ info nykeys == Send FUP anot her command
+ exit == Terminate the FUP process
#UNFRAME

Use the macro in Figure 5-2, scri pt, to build a script definition for use by a FUP
process, using double slash characters (//) as the prefix. The syntax is:

scri pt

When you invoke this macro, it displays the FUP banner, the SECURE command, and
FUP results.

Figure 5-2. Building a Script

?SECTI ON scri pt MACRO

#FRAME

[#DEF getinfo TEXT | BODY| == Define the script:

/1 SECURE *, " NUNU' == Resecure all files
[l EXIT == Fi ni shed

]

#PUSH #| NLI NEPREFI X == Save the current prefix

| NLPREFI X // == Set the new prefix

FUP/ | NLI NE/ == Start FUP in I NLI NE npode
getinfo == |l nput the script as if typed here
#POP #1 NLI NEPREFI X == Restore the previous prefix
#UNFRAME

5-8 107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Using the INLINE Facility

Processing and Displaying Messages

The commands and variables in Table 5-3 control the display of process input and
output and the capture of process output. To retrieve the setting of a built-in variable,
expand the variable or use the associated command. You can set these values at any
time while communicating with an INLINE process.

Table 5-3. Variables and Commands for INLINE Display

TACL Built-In TACL Default

Variable Command Value Description

#INLINEECHO INLECHO OFF Enables or disables input line echoing to the TACL
OUT file

#INLINEOUT INLOUT ON Enables or disables output lines to the TACL OUT
file

#INLINETO INLTO NULL Specifies an output variable

Lines written by a process started with the INLINE option, and without the OUT or
OUTYV options, are copied to the current TACL OUT file unless the #INLINEOUT
built-in variable is set to zero to disable copying.

If the #INLINETO built-in variable contains the name of a variable, TACL appends all
output from processes started with the INLINE option—and without the OUT or
OUTYV options—to the specified variable. If #INLINETO is empty, TACL does not
append the output to any variable.

The settings of #AINLINEOUT and #INLINETO are not related to each other. You can
send process output to the current TACL OUT file, to a variable, to both, or to neither.
You can change the setting of #INLINETO to distribute inline process output among
multiple variables.

107365 Tandem Computers Incorporated 5-9

Initiating and Communicating With Processes

Using the INLINE Facility

5-10

Use the routine in Figure 5-3,i nl i ne_f up_|I og, to interact with FUP and send
output to a variable, | og, for FUP output. The routine displays the entire output
variable at the end. The routine accepts two file name arguments and retrieves
information about each file. To use this routine, load the associated file and enter:

inline fup log filel file2

Figure 5-3. Retrieving Output from FUP

?SECTION inline_fup_l og ROUTI NE
#FRAMVE

#PUSH filel file2

#1 NLI NEPREFI X == Create a new | evel of #I NLI NEPREFI X
#1 NLI NETO == Create a new |l evel of #l NLINETO
| og == Create a variable to contain out put
#SET #1 NLI NEPREFI X + == Set the new prefix to "+"
#SET #1 NLI NETO | og == Associate | og with process out put

SI NK [#ARGUMENT /VALUE fil el/ FI LENAME]
SI NK [#ARGUMENT /VALUE fil e2/ FI LENAME]

FUP /I NLI NE/ == Start FUP with the INLINE option
+ info [filel] == Send a command to FUP

+ info [file2] == Send a second conmand to FUP

#1 NLI NEECF == Stop FUP

I NLTO == Stop | oggi ng FUP out put

== Display the results

#OUTPUT Here are the contents of the output |og:
#OUTPUTV | og

#OUTPUT End of the | og.

#UNFRAME

107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

A\ Caution

Using the INLINE Facility

To control the output displayed by TACL, use the INLOUT command. To inhibit
terminal output from the INLINE_FUP_LOG routine in Figure 5-3, add an
#INLINEOUT call as shown in Figure 5-4. The syntax is:

inline_fup_log2 filel file2

Figure 5-4. Omitting Terminal Output

?SECTION i nline_fup_| og2 ROUTI NE

#FRAMVE

#PUSH filel file2

#PUSH #| NLI NEPREFI X == Create a new | evel of #l NLI NEPREFI X
#PUSH #1 NLI NETO == Create a new | evel of #I NLINETO
#PUSH | og == Create a variable to contain out put
#SET #1 NLI NEPREFI X + == Set the new prefix to "+"

#SET #1 NLI NETO | og == Associate | og with process out put

SI NK [#ARGUVENT / VALUE fil el/ FI LENAME]
SI NK [#ARGUVENT / VALUE fil e2/ FI LENAME]

#SET #1 NLI NEQUT O == Disable output to the term nal
FUP /I NLI NE/

+ info [filel] == Send a conmand to FUP

+ info [file2] == Send a second comand to FUP
#1 NL1 NEEOF == Stop FUP

I NLTO == Stop | oggi ng FUP out put

#SET #1 NLI NEQUT 1

== Display the results

#OUTPUT Here are the contents of the output |og:
#OUTPUTV | og

#OUTPUT End of the | og.

#UNFRAME

Use the macro in Figure 5-5, enpt yspool , to interact with PERUSE and send output
to a variable.

This macro deletes jobs in the spooler. Before running it, make sure you want to delete all jobs
associated with your user ID.

The macro examines each line of output and, for JOB lines, deletes the associated job.
TACL returns the entire result string; you can use string-handling and character-
handling functions as needed to evaluate the output and determine the next step. The
syntax is:

enpt yspool

107365 Tandem Computers Incorporated 5-11

Initiating and Communicating With Processes

Using the INLINE Facility

5-12

The macro displays the PERUSE banner and spooled jobs; it then deletes the jobs and
exits.

Figure 5-5. Deleting PERUSE Jobs

?SECTI ON enpt yspool NA

#FRAMVE == Arrange for cleanup

#PUSH #| NLI NEPREFI X == Save current prefix

#PUSH #I NLI NETO == Save current | NLINETO

#PUSH | i ne == Variable for line at a tinme
#PUSH | obno == Variable for current job nunber
#PUSH queue == Variabl e for output queue
#PUSH del rslts == Variable for deletion results
#SET #| NLPREFI X + == Set prefix wanted here
#SET #1 NLI NETO queue == Use variable to collect sumary
PERUSE /| NLI NE/ == Start PERUSE in inline node

== The precedi ng comand waits until the PERUSE sumary is
== avail abl e and PERUSE pronpts for its first command

#SET #1 NLI NETO del rslts == Now store deletion results

== Loop over renaining |lines
[#LOOP | WHI LE| NOT [#EMPTYV queue] | DQ
#EXTRACTV queue |ine
[#1 F [#MATCH JOB [1ine]] | THEN
[#LOOP | WHI LE| NOT [#EMPTYV queue] | DQ

#EXTRACTV queue |ine == CGet the next job line
#SETMANY j obno, [I1ine]
+ J [jobno]; DEL == Delete the job
]
]

]

+ E == Tel|l PERUSE to exit

#UNFRANVE

Stopping an INLINE Process

An INLINE process remains in existence until one of the following conditions occurs:

O

O

The originating process sends an exit message to the process. The exit message
can be defined by the process (such as EXIT for FUP) or can be INLEOF or
#INLINEEOF.

You log off.
The process finishes its work and stops its own execution.

The originating process terminates.

107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Using the INLINE Facility

The following code stops an INLINE process as part of the _BREAK portion of an
exception handler:

| _BREAK|
#OUTPUT BREAK was pressed...terminating processing
#PUSH x
#SET x [#1 NLI NEPROCESS] == get the INLINE process name
[#1 F NOT [#EMPTYV x] | THEN|
#1 NL1 NEECF

]
#POP x

#RESET FRAMES
#RETURN

Limitations of the INLINE Facility

Not all processes can interface with the INLINE facility. The following processes
cannot interface with INLINE:

[J Processes that use their home terminal (rather that IN and OUT) for their 1/0;
therefore, their 170 cannot be intercepted by the INLINE facility.

0 Processes that do not accept IN, OUT, INV, or OUTV options.
L Processes that use terminal block mode.

Some processes behave differently when run under the INLINE facility than when run
from a terminal, because some processes, when controlled by another process, change
their error handling, their output format, or the rules for some of their commands.

The output from some processes changes with the release of new Tandem software.
The input syntax and output formats can vary from release to release. If you process
text strings, reevaluate process-dependent code for new releases of software.

The INLINE option cannot be combined with the IN or INV options. The INLINE
option includes the effect of the NOWAIT option.

TACL allows more than one inline process to exist at a time, but you can communicate
with only the most recent one. You must delete the most recent INLINE environment
before you can communicate with its predecessor. To determine the name of the
current inline process, check #INLINEPROCESS. To set up an INLINE environment,
push the #INLINEPROCESS built-in variable. To delete the environment, issue an
#INLINEEOF and then pop #INLINEPROCESS (or unframe it).

The ability to push and pop #INLINEPROCESS allows you to write code that uses the
INLINE facility without regard to whether a program that calls your TACL code is
already using the facility. You can also use this mechanism to access multiple
processes within a single TACL program.

107365 Tandem Computers Incorporated 5-13

Initiating and Communicating With Processes

Using INV and OUTV

Using INV and OUTV ~ The INV and OUTYV options for the RUN command and the #NEWPROCESS built-in

5-14

function allow you to use variables in place of IN and OUT files. To use INV or
OUTV, your TACL process must be a named process. You cannot use IN and INV
together for the same process; nor can you use OUT and OUTYV together. You can,
however, start more than one process with different sets of INV and OUTV variables
to communicate with more than one process.

When you use INV, the contents of the associated variable are passed line by line to
the process as the process reads from its input method. There are two ways to use
INV:

O] Static (default): Provides a batch-type environment. Set the variable to the desired
contents and start the process. TACL sends the lines one-by-one to the process.
This mechanism acts much like a file. When all of the lines in the variable have
been sent, subsequent reads get an end-of-file indication. You cannot add lines to
the variable or change the variable after the process has started; if you attempt to
add lines, TACL returns an error.

0 Dynamic: Provides an interactive-type environment. You can add lines at any
time during the life of the process. To specify dynamic, include the word
DYNAMIC after the variable name in the INV option. TACL sends the lines one-
by-one to the process. If the variable is empty, the process waits until the variable
contains data.

If you use a dynamic INV variable, you can use the PROMPT option to capture
prompts. TACL places the most recent prompt string from the process into this
variable.

To specify an INV or OUTV variable, start the process with a RUN or #NEWPROCESS
command and include INV or OUTV and associated variables. To send a command,
append the command to the variable associated with INV. To retrieve output, extract
lines from the variable associated with OUTV.

When the process sends a WRITEREAD, TACL stores the prompt in the PROMPT
variable (if requested with the INV PROMPT option), removes the first line of the IN
variable, and passes it to the process. If the IN variable is empty, the process waits
until you put data into the IN variable.

When the process writes to your program, TACL appends the line to the end of the
OUT variable associated with the process. You can capture the output into a queue,
examine the contents of the queue, and enable and disable output to the queue.

107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Using INV and OUTV

Table 5-4 lists the functions and options that support communication through INV and
OUTV. You can request waited or nowaited communication.

Table 5-4. Functions and Options Used With INV and OUTV

TACL Command or Function Description

RUN or #{NEWPROCESS with INV and OUTV variables Starts a process.

specified

#APPEND(V) to INV variable Sends a request to the process.

#EXTRACT(V) from OUTV variable Retrieves a result.

HWAIT Waits until a variable is empty (read)
or full (write).

Set INV variable to #EOF or send an exit message Closes the process.

appropriate for the process

Determining the Name of the IN File

TACL assigns a name to the IN file used by the new process. The name consists of the
name of your TACL process, followed by a period, a number sign, the letter S, and a
number in the range 0 through 32767 ($T127.#S3, for example). Use the routine in
Figure 5-6, get nan®, to start a FUP process and retrieve the name of its IN file. To use
the routine, load the associated file and enter:

get nane
The following session shows sample output:

12> get nane
The IN file nanme is: $L11.#S9.

Figure 5-6. Retrieving the TACL IN File Name

?SECTI ON get nanme ROUTI NE
#FRAMVE
#PUSH i nfile_name in_var out_var pronpt_var status_var
FUP /I NV in_var DYNAM C PROVPT pronpt_var, &
QUTV out var, STATUS status_var, NOMI T/
SINK [#WAI T pronpt _var]
#SET infil e_name [#VARI ABLEI NFO / SERVER/ in_var]
#OUTPUT The INfile nane is: [infile_nane].
#UNFRAME

107365 Tandem Computers Incorporated 5-15

Initiating and Communicating With Processes

Using INV and OUTV

5-16

A Caution

Generating Commands

Because data transfer occurs through variables, be careful when moving data to and
from the variables. For example, when a process is running in the nowait mode, it is
possible to attempt an operation before the preceding operation has finished.

Data can be unexpectedly lost or duplicated during data transfer. To avoid lost or duplicated data, follow
these guidelines.

O

Use #APPEND or #APPENDV to manage IN variables. Each of these functions
appends a line to a variable level in such a way that no data is lost or removed. Do
not expect to examine data you have put into an IN variable—the data can be sent
as soon as you append it to the variable. (If you use #SET instead of #APPEND to
manage IN variables, queued lines in the IN variable can be lost before they are
sent.)

Use #EXTRACT or #EXTRACTYV to manage OUT variables. Each of these
functions removes the first line from a variable level in such a way that no data is
lost if the process is simultaneously adding lines to a variable level. If you use
#OUTPUTYV to display an OUT variable and then use #SET to clear it, a new line
could arrive between the #OUTPUT and the #SET; that line would be lost.

Use #WAIT to delay processing until one of a list of variable levels is ready.
H#WAIT returns the fully qualified name of that variable level.

[0 The OUT and PROMPT variables are ready if they have data in them.

0 AnIN variable is ready if it is empty and a process is waiting for you to put
data into it.

[0 A STATUS variable is ready if its process was deleted.
1 Any other variable is always ready.

Use #EOF to cause an end-of-file on an IN variable. If the IN variable is empty
and a process is waiting, an end-of-file is immediately sent to the process. If the
IN variable is empty and a process is not waiting, a flag is set. The next time the
process attempts to read from the empty IN variable, TACL sends an EOF and the
flag is cleared. #EOF does not alter the state of the process or the IN variable, but
it can cause the process to terminate.

The following examples illustrate the use of INV and OUTV.

107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Using INV and OUTV

Use the macro in Figure 5-7, f upi n, to communicate with FUP using OUTV and a
static INV.

Figure 5-7. Communicating With FUP Using INV and OUTV

?SECTI ON fupi n MACRO

#FRANMVE
PUSH i n_vari abl e == Create an IN variable
PUSH out vari abl e == Create an QUT variabl e

== Place a FUP conmand into the IN vari abl e
#SET i n_variabl e | NFO STElI N. BOOK

FUP /INV in_variable, OUTV out_variabl e/

#QOUTPUTV out vari abl e == Di splay FUP out put
#UNFRAVE

You can start a process in the background and send it commands from your terminal.
The following steps illustrate an interactive session with FUP:

1. Define the variables:

9> #PUSH i nput _queue out put _queue pronpt_string
termnation_results

2. Starta FUP process that runs concurrently with the TACL process:

10> FUP /I NV i nput _queue DYNAM C PROVPT pronpt_string,
QUTV out put _queue, NOWAI T, STATUS term nation_results/

3. Use #WAIT to make sure the previous operation has finished:
11> SINK [#WAI T pronpt _string]

4. Clear the prompt variable:
12> #SET pronpt_string

5. You can then send commands to FUP:

13> #APPEND i nput _queue purge X
14> SINK [#WAI T pronpt _string]
15> #SET pronpt_string

16> #APPEND i nput _queue files
17> SINK [#WAI T pronpt _string]
18> #SET pronpt_string

6. Finally, terminate the FUP process and delete associated variables:

19> #APPEND i nput _queue exit
20> #POP i nput _queue out put _queue pronpt_string &
termnation results

When used for productive work, include error checking for the #WAIT operations.

107365 Tandem Computers Incorporated 5-17

Initiating and Communicating With Processes

Using INV and OUTV

5-18

Use the macro in Figure 5-8, f up2, to modify a FUP operation so that user requests
and FUP responses are recorded in a log file. The syntax is:

fup2 fup-command

where f up- conmand is a valid FUP command. The macro logs the request, the time
of the request, and the FUP output to a file called LOGFILE. The macro displays the
contents of LOGFILE before exiting.

Figure 5-8. Directing FUP Output to a Log File

?SECTI ON fup2 MACRO
#FRAVE
#PUSH errvar, fupout, |l ogvar,result == Create variables

== (Qpen logfile for witing
SINK [#REQUESTER /WAI T/ WRITE | ogfile errvar |ogvar]
#APPEND | ogvar &

[#CONTI ME [#TI MESTAMP]]: FUP %% FROM TERM NAL [#MYTERM

== Wite a log record
$SYSTEM SYSTEM FUP / QUTV fupout/ % % == | nvoke FUP
[#LOOP | WHI LE] NOT [#EMPTYV fupout] | DQ

== Retrieve FUP out put

[#SET result [#EXTRACT fupout]]

#APPEND | ogvar [result] == Wite FUP result to logfile

]

SI NK [#REQUESTER CLGCSE | ogvar] == Close logfile
#OUTPUT The | og cont ai ns:

FUP COPY logfile

#UNFRAMVE == Renpve vari abl es

107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Using INV and OUTV

Use the macro in Figure 5-9, show_spool er _j obs, to interact with the PERUSE
utility and display a list of jobs without PERUSE banner lines. To use this macro, load
the associated file and enter:

show _spool er _j obs

Figure 5-9. Displaying PERUSE Jobs

?SECTI ON show_spool er _j obs MACRO
#FRAMVE

#PUSH | i ne job input_queue pronpt_string output_queue

== Start PERUSE as an inplicit server:
PERUSE / | NV input _queue DYNAM C PROVPT pronpt_string, &
NOWMAI T, QUTV out put _queue/

== Wait for PERUSE to start:
SINK [#WAI T pronpt_string]

== Look for a line that contains "Job":
[#1 F [#L1 NEFI NDV out put _queue 1 "Job"] > 0 | THEN|
[VDELETE / QUI ET/ out put _queue 1/
[#L1 NEFI NDV out put _queue 1 "Job"]]

]

[#LOOP | D]
== Retrieve one line from out put_queue
#EXTRACTV out put _queue line
#OUTPUTV [i ne
| UNTI L]
[#EMPTYV out put _queue]
]

#ECF i nput _queue
#UNFRAME

107365 Tandem Computers Incorporated 5-19

Initiating and Communicating With Processes

Using INV and OUTV

5-20

Stopping a Process That uses INV and OUTV

A process that uses INV and OUTV remains in existence until one of the following
conditions occurs:

[0 The originating process sends an exit message to the process. The exit message
can be defined by the process (such as EXIT for FUP). Some processes accept
an end-of-file indicator as a termination request. For example, an EDIT process
started by the command:

EDIT /INV in_var DYNAM C/
stops as soon as it reads an end-of-file produced by
#EOF in_var
In other cases, you can use #SERVER with the KILL option.
O You log off.
[J The process finishes its work and stops its own execution.
[J The originating process terminates.

TACL supports a STATUS option that stores an indication of why the process
terminated. The possible indications are STOP, ABEND, CPU (CPU failure), and NET
(network failure).

Limitations on the Use of INV and OUTV

Each process is associated with three to four variables. A particular variable level can
be associated with only one process at a time.

A TACL process can have a maximum of 100 simultaneous openers, including active
processes using variables for STATUS, PROMPT, INV, OUTV, or #REQUESTER.
Multiple openers of a given process must use the process with care: If one opener has
issued a WRITEREAD and is waiting for data to be appended to the IN variable of the
process, any other openers attempting to do likewise receive a file system error 28.

You can specify the NOWAIT option with INV and OUTV. You must specify the
NOWAIT option if you wish to examine the OUTV, PROMPT, or STATUS variables
while the process is running, or if you use DYNAMIC INV.

If your TACL process ends, processes having it open receive a file-system error 66
(device downed) on all further operations after it is deleted.

If you delete a variable level (with #POP, #UNFRAME, or #KEEP) that is being used
by a process as an INV, OUTV, PROMPT, or STATUS variable, TACL continues to
send the contents to the process, but you can no longer access the variable level from
TACL. If you use the variable asa DYNAMIC INV variable, any further references to
the variable by the process receive a file system error 66 once all data has been
transferred.

107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Using $RECEIVE

Using $RECEIVE To establish your TACL program as a requester process, follow these steps:

1.
2.
3.

If the process does not already exist, start the process as appropriate.
To open the process, issue a #fREQUESTER READ call.

To send a message, append data to the prompt variable. Unlike communication to
a disk file (described in Section 4, “Accessing Files”), TACL issues a WRITEREAD
operation and sends the prompt data to the process or device. The process reads
the data from its SRECEIVE file. When the process or device replies, TACL stores
the reply into the read variable associated with the process or device.

To access the reply, extract lines from the read variable.

When finished, issue a CLOSE request and supply one of the variable levels
associated with the file.

These guidelines apply to processes associated with devices as well as other types of
processes.

Table 5-5 lists the functions and commands with which you can run a process and
communicate through its $SRECEIVE mechanism. You can request waited or nowaited
170.

Table 5-5. Functions to Use With $RECEIVE

TACL Function or Command Description

#REQUESTER with the READ option Opens the process (by name)
#APPEND(V) Sends a WRITEREAD to the process
#EXTRACT(V) Retrieves results

#REQUESTER with the CLOSE option Closes the process

Generating Waited and Nowaited Requests

When you communicate using $RECEIVE, you can specify waited or nowaited
communication:

O For waited communication, TACL sends the WRITEREAD and continues

executing code until it encounters a statement that refers to one of the
#REQUESTER variables. TACL then waits until the current operation is complete
before initiating the next write. To open a running process and specify waited
communication, issue a #REQUESTER READ call with the WAIT option. The
following statement opens $T1 for waited 1/0:

#REQUESTER / WAI T/ READ $T1 read_error read_var pronpt_var

107365 Tandem Computers Incorporated 5-21

Initiating and Communicating With Processes

Using $RECEIVE

5-22

0 For nowaited communication, TACL sends the WRITEREAD and continues
executing code. Each time you append a line to prompt_var, the TACL process
reads a record from $T1 and appends ittor ead_var. To open a running process
and specify nowaited communication, issue a #REQUESTER READ call without
the WAIT option. The following statement opens $T1 for nowaited 1/0:

#REQUESTER READ $T1 error_var read_var pronpt_var

To wait for completion of the read operation, and when you are finished writing to
the process, use the #WAIT built-in function to wait until r ead_var contains
data. To avoid writing over data that has not yet been transmitted, use #WAIT to
make sure the previous operation has finished.

Sending Messages to a Process

The following examples show how to use #REQUESTER to communicate with
processes.

Use the routine in Figure 5-10, send, to open a terminal and write a message to line 25
of the terminal. The syntax is:

send device-id text

The #OUTPUT statements out put _hel p_t ext in this example do not follow the
indentation style guidelines in Section 1, “An Overview of TACL.” This modification
avoids extra spaces in the display.

Figure 5-10. Sending Messages to a Terminal (Page 1 of 3)

?SECTI ON send ROUTI NE
[#CASE [#EXCEPTI ON]|
| _CALL| == code to execute when first entering the routine
#FRAMVE
[#PUSH error _nessage,
destinati on_nane,
nessage,
t enp_nessage,
error,
send_nessage,
reg_st at us,
out put _ti ne,
origin_tinme,
origin_time_hh,
origin_time_mm
| _ERROR| == code to execute when an _ERROR is detected
#ERRORTEXT / CAPTURE error _nessage/
#OUTPUT Send Ternminated - Error: [error_nessage]
#UNFRAME
#RETURN

107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Using $RECEIVE

Figure 5-10. Sending Messages to a Terminal (Page 2 of 3)

| BREAK|
#OUTPUT Send Term nated - Break Pressed
#UNFRANME
#RETURN

] {End CASE}

[#DEF L25 STRUCT == Set address to line 25
BEG N
BYTE BYTE (0: 1) VALUE 27 111 ;
CHAR CHAR (0:1) REDEFI NES BYTE ;
END;
]
[#DEF out put _hel p_text TEXT
| BODY|
#OUTPUT/ COLUWN 1/ This routine sends a nessage to line 25 &
of a termnal.
#OUTPUT/ COLUW 1/ The syntax is as follows:
#OUTPUT/ COLUWN 3/ SEND term nal - nane nessage
#OUTPUT
#OUTPUT/ COLUW 3/ Where: terminal-nane is the &
destination term nal
#OUTPUT/ COLUWN 10/ nessage is the nessage text
#OUTPUT
#OUTPUT/ COLUWN 3/ SEND with no argunents displays &
this information
#OUTPUT

]
#FI LTER _BREAK _ERROR

== Get the argunents. |If the user did not provide any
== argunents, or if either of the argunents is invalid,
== then display the help text.
[#CASE [#ARGUVMENT/ VALUE desti nati on_nane/ DEVI CE END

OTHERW SE]

| 1]
== Devi ce nane supplied. Now get the nessage.
[#CASE [#ARGUMENT / TEXT tenp_message/ TEXT END]

| 1]
== Cot the text; nothing to do here

| OTHERW SE]|
== The user did not supply a nessage. Display help
== text.
out put _hel p_t ext
#UNFRAME
#RETURN

] == end of inner #CASE

107365 Tandem Computers Incorporated 5-23

Initiating and Communicating With Processes

Using $RECEIVE

5-24

Figure 5-10. Sending Messages to a Terminal (Page 3 of 3)

| OTHERW SE
== The user did not supply a device nane. Display help
== text.
out put _hel p_t ext
#UNFRAME
#RETURN
] == end of outer #CASE
== (btain the current tinme
== Note: the underscores act as placehol ders for unwanted
== text.
#SETMANY _ _ _ origin_tine_hh origin_time_mm &
[#CONTI MVE [#TI MESTAMP]]
[#IF (origin_tinme_nmm < 10) | THEN|
== |f the minute value in the timestanp is |ess than 10,
== add a zero to the front of the number to keep it at
== two digits.
#SET origin_time_nmO[origin_time_mm
]
#SET origin_time [origin_time_hh]:[origin_time_mi
== Build the nessage

#SET nessage [L25:char(0:1)][origin_time] == Line 25
#SET nessage [nmessage] [#USERNANVE
[#PROCESSI NFQ PAI D/ [#MYPI D]]] == Orig userlD
#SET nessage [nessage] [tenp_nessage] == The nessage text

== (pen the destination device
#SET req_status [#REQUESTER WRI TE [destinati on_nane] &
error send_mnessage]
[#I/ F (req_status <> 0) | THEN
== The open failed. Report the error and exit.
#OUTPUT The open of the terminal failed with Guardian &
Error [req_status].
#UNFRAME
#RETURN
]
#APPENDV send_message message == Send the message
[#] F [#MATCH [#VARI ABLEI NFO' VARI ABLE/ &
[#WAI T send _nessage error]] error] | THEN
#OUTPUT Wite to the ternminal failed: Cuardian Error [error]
]
#SET req_status [#REQUESTER CLOSE error]
[#IF (reg_status <> 0)
| THEN| == Close failed
#OUTPUT Cl ose of the terninal failed: Guardian Error &
[reqg_status]
]
#OUTPUT Message to [destination_nanme] Transnitted
#UNFRAME

107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Using $RECEIVE

Testing Server Programs

You can use TACL to test server programs. One way to do this is to perform the
following steps:

1. Define a request STRUCT and a reply STRUCT.

2. Verify that the server process is running.

3. Open the server using #REQUESTER with the READ option.
4

Loop and prompt for request type; use #CASE enclosures to issue specific test
requests.

Communicating With $CMON

The routine in Figure 5-11, st ri o, shows how to use STRUCTs and the #REQUESTER
built-in function to send messages to CMON and display replies. For more
information about CMON, see the Guardian Programming Guide. To run this example,
load the file that contains the definitions in Figure 5-11 and enter:

strio

(stri ois listed at the end of Figure 5-11.)

Figure 5-11. Creating CMON Messages (Page 1 of 4)

?SECTI ON cnon_ci STRUCT == Common i nformation for nessages

BEG N

STRUCT groupuser; == (oup and user as separate
BEG N == nunbers for ease of setting
BYTE group;
BYTE user,
END;

I NT cipri;

FNAVE ciinfile;
FNANME cioutfile;
END;

?SECTI ON | ogon_nsg STRUCT

BEG N
I NT nsgcode VALUE - 50;
STRUCT ci;
LIKE cnon_ci;
END;

107365 Tandem Computers Incorporated 5-25

Initiating and Communicating With Processes

Using $RECEIVE

Figure 5-11. Creating CMON Messages (Page 2 of 4)

?SECTI ON

BEG N
I NT
CHAR
END;

?SECTI ON

BEG N
I NT
STRUCT
LI KE
END;

?SECTI ON

BEG N
I NT
CHAR
END;

ogon_reply STRUCT

repl ycode;
repl ytext (0:131);

ogof f _msg STRUCT

nsgcode VALUE -51;
ci;
cnon_ci ;

ogoff_reply STRUCT

repl ycode;
repl ytext (0:131);

?SECTI ON processcreati on_nsg STRUCT

BEG N
I NT
STRUCT
LI KE
FNAVE
I NT
I NT
FNAVE
FNAVE
FNAVE
FNAVE
END;

nsgcode VALUE -52;
Cci;

cnon_ci ;

pr ognare;
priority;
processor;
proginfile;
progoutfile;
proglibfile;
progswapfil e;

?SECTI ON processcreation_reply STRUCT

BEG N
I NT
CHAR

repl ycode;
repl ytext (0:131);

5-26 107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Using $RECEIVE

Figure 5-11. Creating CMON Messages (Page 3 of 4)

STRUCT run_i nfo REDEFI NES repl yt ext;

BEA N
FNANE pr ognarne;
| NT priority;
I NT processor;
END;

END;

?SECTI ON tal k_to_cnon ROUTI NE

== This routine accepts the nanes of two STRUCTs as its
== argunents. The first has been set by the caller to the
== nessage to send to CMON and the second is set by this
== routine to the response from CMON.

#FRAVE

== Get the nanes of the two structures
#PUSH t o_cron from cnon

#| F [#ARGUVENT/ VALUE t o_cnon/ VARI ABLE]
#| F [#ARGUVENT/ VALUE from cnon/ VARI ABLE]
#| F [#ARGUVENT ENDJ

== Set the comon information for the caller
#SET [to_cnon]:ci:groupuser [grp_usr &
[#PROCESSI NFQ' PAI DY [#MYPI D]]]
#SET [to_cnon]:ci:cipri [#PROCESSI NFQ PRI/ [#MYPI D]
#SET [to_cmon]:ci:ciinfile [#WTERM
#SET [to_cnon]:ci:cioutfile [#MYTERM

== Open CMON
#PUSH e r p
#l F [#REQUESTER/ WAI T 5000/ READ $cnon e r p]

== Show t he nessage bei ng sent
#OUTPUT -- Message to $CMON - -
#OUTPUTV [to_cnon]

H#OUTPUT --------mmmmmeea e oo oo -

== Send the nmessage and get the reply
#APPENDV p [to_cnon]
#EXTRACTV r [from cnon]

== Show the reply

#OUTPUT -- Reply from $CMON - -

#OUTPUTV [from cnon]

H#OUTPUT --------mmmmmeea e oo oo -

== Exit, popping the variables and cl osi ng CMON
#UNFRAME

107365 Tandem Computers Incorporated 5-27

Initiating and Communicating With Processes

Using $RECEIVE

Figure 5-11. Creating CMON Messages (Page 4 of 4)

?SECTI ON gr p_usr ROUTI NE

== Converts a group, user to a space-separated |i st
#FRAVE

#PUSH v

#1 F [#ARGUVENT/ VALUE v/ NUMBER]

#RESULT [Vv]

#1 F [#ARGUVENT COMVA]

#1 F [#ARGUVENT/ VALUE v/ NUMBER]

#RESULT [Vv]

#UNFRAME

?SECTI ON stri o ROUTI NE
== | nvoke this for the denp
#FRAME

== Do a simulated LOGON

#DEF nsg STRUCT LI KE | ogon_nsg;
#DEF reply STRUCT LIKE | ogon_reply;
tal k_to_cnon nsg reply

== Do a sinul ated processcreation

#DEF nmsg STRUCT LI KE processcreati on_nsg;
#SET nsg: prognane tacl == These are sinul ated RUN options
#SET nsg:priority 148

#SET nsqg: processor 13

#SET nsg: proginfile taclin

#SET nsg: progoutfile tacl out

#SET nsg: proglibfile tacllib

#SET nsg: progswapfile tacl swap

#DEF reply STRUCT LI KE processcreation_reply;
tal k_to_cnon nsg reply

== Do a sinmul ated LOGOFF

#DEF nsg STRUCT LI KE | ogoff_msg;
#DEF reply STRUCT LI KE | ogoff_reply;
tal k_to_cnon nsg reply

#UNFRAME

5-28 107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Using #SERVER

Using #SERVER

Stopping a Process That Communicates Using $RECEIVE

Your ability to stop this type of process depends on how the process started and your
access capabilities. The process might stop if one of the following occurs:

LI The process finishes its work and stops its own execution.
[The originating process terminates.

[0 The originating process sends an end-of-file or other end signal (for example, exit
for FUP).

If you want your TACL program to communicate with more than one process at once,
you can define subdevice names for it. This qualified process name is known as a
server path. Processes can use the server path to open your TACL process by name.
This mechanism is very flexible; it can be used for complex processing such as
multiple input streams.

Your TACL process must have a process name for you to be able to use #SERVER.

For information about accessing a TACL process as a server, see Section 6, “Running
TACL as a Server.”

Naming Your Process

To create a server path for your TACL process, use the #SERVER built-in function.
After TACL creates the name, other processes can open your TACL as if it were a file
so that you can write to and read from those processes. For example:

#PUSH server _name in_var out_var pronpt_var

#SET server _name [#PROCESSI NFQ' PROCESSI D/ | . #A39

SINK [#SERVER /I N i n_var, PROVWT pronpt_var, OUT out_var/ &
[server _nane]]

Valid names consist of your TACL process name followed by a period, a number sign
(#), a letter, and zero to six alphanumeric characters ($T127.#A39, for example). If you
want, that name can be followed by another period, a letter, and zero to seven
alphanumeric characters ($T127.#A39.Z48F, for example).

If you do not specify a name, TACL supplies the name for you. The name consists of
the process name of your TACL followed by a period, a number sign, the letter S, and
a number in the range 0 through 32767:

#PUSH server _name in_var out_var pronpt_var
#SET server _name [#SERVER /IN i n_var, PROWT pronpt_var, &
QUT out _var/]

107365 Tandem Computers Incorporated 5-29

Initiating and Communicating With Processes

Using #SERVER

5-30

Sending Commands

When your TACL program has a server path, other processes can open it and issue
WRITEREAD operations. TACL receives a prompt; your TACL process can then write
to the other process. This code is exactly the same as that used with #REQUESTER in
“Using $RECEIVE,” earlier in this section.

Use the macro in Figure 5-12, ser v, to communicate with a FUP process. The macro
obtains a server name and then uses it for the IN and OUT files of the FUP process.
The macro requests an INFO * operation.

Figure 5-12. Communicating With FUP Using #SERVER

?SECTI ON serv MACRO
#FRANVE
#PUSH server _name in_v out_v pronpt_v response |ines

== Assign a nane to this process
#SET server _name [#SERVER /IN in_v, PROWT pronpt_v, OUT
out v/]

== Start FUP and use this process for its IN and OUT files
FUP /I N [server_nane], OUT [server_nane], NAME $fp, NOWAI T/

== Wait for a pronpt and issue a conmand
SINK [#WAI T pronpt _v]
#APPEND in_v I NFO *

SINK [#WAI T in_v]
SINK [#WAI T out _v]

== When we have a result, extract it and display all lines
#SET | i nes [#VARI ABLEI NFO /LI NES/ out V]
[#LOOP | WHILE] lines > 0 | DQ
#EXTRACTV out _v response
#OUTPUTV response
#SET |ines [#COWUTE [lines] - 1]
]
STOP $fp
#UNFRAME

Note You could use #NEWPROCESS instead of RUN in the previous example, which would allow you to
handle the results of the process initiation.

107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Using Define Process

Using Define Process

Limitations on the Use of #SERVER

TACL supports only one active READ at a time from each server path. If more than
one process sends a READ or WRITEREAD to a server path, TACL process the first
such request that arrives and returns a file system error 28 to each of the other
processes. For additional limitations, see the TACL Reference Manual.

Deleting the Process Name

Your program remains accessible until you delete the name with a call to #SERVER
with the KILL option. For example:

#SERVER [/ KI LL/ server-nane

If you log off, all server paths are deleted immediately.

The Define Process (DP) facility is a library of TACL commands that is part of the
ViewPoint product. DP provides a mechanism for starting and communicating with
processes. If ViewPoint is installed on your system, you can use DP to:

[0 Define and start one or more background processes
[0 Communicate with a background process interactively or with a list of commands
[0 Manage response data

As with other asynchronous background processes, you can use DP to run a process
and access it frequently to avoid the startup overhead associated with multiple
initializations of the same program.

To use DP, add the DP directory to your uselist:
#SET #USELI ST [#USELI ST] DP

Next, associate a name with a background process. The following code starts a FUP
process, associates the name F with it, requests a FUP INFO * operation, and then
deletes the FUP process and associated variable:

20> DP FUP / PNAME f/

21> F I NFO *
CCODE ECF LAST MODI F OMNNER RVWEP
$DATA. SV
MYKEYS 101 2536 16MAY92 13:01 8,16 cucu
TACLCSTM 101 20480 24SEP91 15: 20 8,16 cucu
22>
44> UNDP F

For more information about DP, see the ViewPoint Manual.

107365 Tandem Computers Incorporated 5-31

Initiating and Communicating With Processes

Processing NetBatch Jobs and Completion Codes

Processing
Completion
Information

Processing NetBatch Jobs

5-32

and Completion Codes

Depending on how you run a process and how the process handles termination, TACL
can access several types of completion information:

0 TACL supports a STATUS option that stores an indication of why the process
terminated. The possible indications are STOP, ABEND, CPU (CPU failure), and
NET (network failure).

I If the process specifies a completion code, you can access the completion code.

Processes can be run as batch jobs under the control of the NetBatch product. The
following paragraphs describe the role and use of TACL as a NetBatch command
interpreter and how to monitor the status of jobs in progress. For detailed information
on scheduling processes as batch jobs, see the NetBatch Manual.

TACL saves completion code information in the variable : COMPLETION, if it exists.
Tandem code in the standard TACLSEGF defines :_COMPLETION as follows:

[#DEF : _conpl eti on STRUCT

BEG N
| NT nessagecode;
CRTPI D process;
I NT header si ze VALUE 14;
| NT4 cputi ne;
| NT j obi d;
| NT conpl eti oncode;
STRUCT internal;
BEG N
I NT t erm nati oni nf o;
SSID subsystem
END;
STRUCT external REDEFINES internal;
BEG N

BYTE group;
BYTE user,
CRTPI D process;

END;
| NT t ext| engt h;
CHAR text (0:79);
END;

]

TACL sets this variable whenever you attempt to start a process, whenever you
successfully start a process, and whenever a process you started terminates
(successfully or otherwise). Whenever TACL sets this variable, its previous contents
are lost.

If you define a variable named :_COMPLETION, it should be a STRUCT. Each time
TACL stores datain ;. COMPLETION, it resets the STRUCT to default values. If the
STRUCT is shorter than the data to be stored in it, the extra data is discarded. If the
STRUCT is longer than the data to be stored in it, the extra space remains set to default
values.

107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Processing NetBatch Jobs and Completion Codes

If you incur a syntax error while trying to start a process, TACL sets MESSAGECODE
to 0, COMPLETIONCODE to 4, and TERMINATIONINFO to 0.

If a NEWPROCESS failure occurs while you are trying to start a process, TACL sets
MESSAGECODE to 0, COMPLETIONCODE to 4, and TERMINATIONINFO to the
NEWPROCESS error code.

If you successfully start a process, TACL sets MESSAGECODE to 0,
COMPLETIONCODE to 0, and TERMINATIONINFO to 0.

When a process terminates (STOP or ABEND), the system message is put into
:_ COMPLETION.

An interactive TACL displays completion code information whenever one or more of
the following are true:

[0 PMSG is ON.

[0 MESSAGECODE is -5 (STOP) and COMPLETIONCODE is not 0 and not 6
(stopped externally).

[0 MESSAGECODE is -6 and COMPLETIONCODE is not 5 and not 6 (stopped
externally).

[0 TERMINATIONINFO is not 0 and COMPLETIONCODE is not 6 (stopped
externally).

[0 TEXTLENGTH is not 0.

For more information about MESSAGECODE and other definitions, see the System
Procedure Calls Manual.

The display shows only those numeric fields that are nonzero, and displays the
amount of TEXT indicated by TEXTLENGTH.

Use the macro in Figure 5-13, sql conp, to perform preparation, COBOLS85, and SQL
compile steps for a COBOLS85 program called SRCFILE. The syntax is:

sql conmp
Figure 5-13. Checking Completion Codes (Page 1 of 2)

?SECTI ON sql conp ROUTI NE

#FRANMVE

== Purge files fromthe previous conpilation
FUP PURGE CBLFL, SQ.FL!

== Run the preprocessor as a waited process
SQ.COBOL /name, CPU 3, PRI 140, I N SRCFILE, OUT $S. #PM CBLFL,
SQ.FL

107365 Tandem Computers Incorporated 5-33

Initiating and Communicating With Processes

Processing NetBatch Jobs and Completion Codes

5-34

Figure 5-13. Checking Completion Codes (Page 2 of 2)

== Check the conpletion code; if an error occurred, display
== it and exit
[# F [: _COVPLETI ON: COVPLETI ONCODE] <> 0 | THEN|
#OUTPUT *** Error during preprocessing
#OUTPUT Conpl etion code = [:_COVPLETI ON: COVPLETI ONCCDE]
#UNFRAME
#RETURN

]

== Conpile and bind with COBO.85, again as a waited process
PARAM BI NSERV $SYSTEM SYSTEM BI NSERV

PARAM SYMSERV $SYSTEM SYSTEM SYMSERV

COBOL85 /name, CPU 3, PRI 140, IN CBLFL, QUT $S. #PM APPOBJ

== Check the conpletion code; if an error occurred, display
== it and exit
[# F [: _COVPLETI ON: COVPLETI ONCODE] <> 0 | THEN|
#OUTPUT *** Error during COBOL85 conpil ation and bi nding
#OUTPUT Conpl etion code = [:_ COVPLETI ON: COVPLETI ONCODE]
#UNFRAME
#RETURN

]

== SQ. conpilation; waited process
SQLCOWP / name, CPU 3, PRI 140, I N APPOBJ, QUT $S. #PM

== Check the conpletion code; if an error occurred, display
== it and exit

[# F [: _COVPLETI ON: COVPLETI ONCODE] <> 0O | THEN|

#OUTPUT *** Error during SQ conpil ation

#OUTPUT Conpl etion code = [:_ COVPLETI ON: COVPLETI ONCODE]
#UNFRAME

#RETURN

]

107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Monitoring Job Status:
ENQUIRY

Note

Monitoring Job Status: ENQUIRY

The ENQUIRY facility allows you to acquire the last 22 lines written to the OUT file of
a TACL process; it provides the same functionality as the NetBatch-Plus ENQUIRY
screen. To access this information, you open the TACL process and send it an enquiry
message (-22). TACL replies with the lines of text from its OUT buffer.

To limit open access to a TACL process, use the #TACLSECURITY built-in function.

The following considerations apply:

O If aline in the buffer is less than 80 bytes long, TACL does not pad the remaining
bytes. The byte length of the line can be used to determine the amount of valid
information on the line.

LI Ifaline in the buffer was greater than 80 bytes, TACL truncates the text to 80
bytes but records the actual length in the buffer.

[0 TACL writes a copy of all OUT data to the buffer; it does not perform any filtering
or checking of the content of the data, except that it does not copy blank lines to
the buffer.

[0 TACL initializes the buffer to nulls. If you detect a null line length, the remaining
part of the buffer is empty. You can use this information to determine where in
the buffer to start reading. On the initial read, if the next line field has a zero
length, you must begin reading at line 0.

Use the routine in Figure 5-14, enqui r y, to access the ENQUIRY feature of TACL.
The enqui ry routine acquires the last 22 lines that a TACL process has written to its
primary OUT file. The routine performs the following steps:

1. Opens the TACL process specified by the pr ocess_nane variable.
2. Sends the TACL process an enquiry message (message code of -22).
3. Receives a reply buffer (I ogri ng) containing the last 22 output lines.
4. Displays the buffer as follows:

If the | ogri ng buffer is full (typical situation):

a. Startreading! ogri ng at the line number specified by the next element of
the I ogri ng STRUCT. When the linel ast _I| i ne is read, start reading at
line 0 and terminate after reading the line next - 1.

b. Aseach line is read, display the number of characters specified in the length
element of the | ogri ng STRUCT.

c. Ifthe length exceeds max_char s, truncate the line to the length of
max_chars.

If | ogri ng: next points to a line with zero length, the buffer is only partially full.
Start reading | ogri ng at line 0 and terminate after reading line
[ogri ng: next -1.

107365 Tandem Computers Incorporated 5-35

Initiating and Communicating With Processes

Monitoring Job Status: ENQUIRY

To run this routine, load the associated file and enter:

enqui ry TACL-process-nane

Figure 5-14. Retrieving TACL Output (Page 1 of 2)

?SECTI ON enqui ry ROUTI NE
#FRAME
[#PUSH
last _|ine last_char nmax_chars
status r_error r_rec pronpt
process_narre
next last record length
]
#SET max_chars 80 == Truncate display at this position
#SET last _line 21
#SET | ast _char [#COWPUTE [nmax_chars] - 1]
[#DEF enqui ry_nessage
STRUCT
BEG N
I NT nessage_code VALUE -22;
END;
]

[#DEF enquiry _reply

STRUCT

BEG N

I NT next ;

STRUCT line (O:[last_line]);
BEG N
I NT | engt h;
CHAR text (O:[last_char]);
END;

END;

]

== CGet the nane of the TACL process
SI NK [#ARGUMENT / TEXT process_hanme/ PROCESSNAME]
== (Open the TACL process.
#SET status &
[#REQUESTER/ WAI T 5000/ READ [process_nane] r_error

r_rec pronpt]

== |f unsuccessful process open, display an error and exit.
[#1 F [status] <> 0 | THEN

#OUTPUT Error opening the process: [status]

#UNFRAVE

#RETURN

5-36 107365 Tandem Computers Incorporated

Initiating and Communicating With Processes

Monitoring Job Status: ENQUIRY

Figure 5-14. Retrieving TACL Output (Page 2 of 2)

== Successful open:

== Send our mnessage and get a reply (like a WR TEREAD)
#APPENDV pronpt enquiry_nessage == The WRI TE
#EXTRACTV r_rec enquiry_reply == The READ

#SET next [enquiry_reply:next]
#SET | ast [enquiry_reply: next]

== A zero length at this point neans a partial buffer, so
== start processing at the beginning
[#IF ([enquiry_reply:line([next]):length] = 0) | THEN
#SET next O
== |f we do not have an enpty buffer, begin the processing
[#IF ([enquiry_reply:line([next]):length] <> 0) | THEN
[#LOOP | DQ
== Check the line length and truncate if necessary
[#IF [enquiry_reply:line([next]):length] > [nmax_chars]
| THEN|
#SET enquiry_reply:line([next]):length [max_chars]
]

== Display it for length characters
#SET | ength [#COWUTE &
[enquiry reply:line([next]):length] - 1]
[#OUTPUT [enquiry reply:line([next]):text(0:[length])]]

== Conpute the position of the next read
#SET next [#COWPUTE [next] + 1]

== Should we wap around to the begi nning yet?
[#I/ F [next] > [last _line] | THEN

#SET next O
]

| UNTIL| [next] = [last]
] == LOCP

| ELSE]
== Nothing to display, the buffer is enpty.
#OUTPUT Buffer is enpty
] == IF

== (ose process.
SI NK [#REQUESTER/ WAl T/ CLCSE r _r ec]

#UNFRAME

107365 Tandem Computers Incorporated 5-37

Initiating and Communicating With Processes

Monitoring Job Status: ENQUIRY

(This page left intentionally blank)

5-38 107365 Tandem Computers Incorporated

6

Running TACL as a Server

Note

Running a TACL
Process as a Server

Starting TACL as a Server
Process

Section 5, “Initiating and Communicating With Processes,” described how to generate
requests and communicate with processes from within a TACL program. This section
discusses a different perspective: how to provide access to a TACL process from other
processes.

There are two types of TACL servers:

[0 A generic TACL process that processes TACL commands and built-in functions
such as WHO, ENV, CREATE, and #TIMESTAMP and returns results.

0 A TACL process that interprets a program (of type TEXT, MACRO, or ROUTINE).
This type of server processes a set of requests defined by the program. To provide
this type of access, you can access a program from your TACLCSTM file or use the
#SERVER built-in function.

The second type of server is a special form of the first type. Both processes are true
servers as defined by requester-server architecture: these processes wait until they
receive a request on $RECEIVE and then process the request and reply with the
results.

Both of these mechanisms support the following type of communication:

~— OPEN

-— SEND
Process such

TACL > REPLY , @ a PATHWAY

TCP

The following subsections describe how to create both types of servers.

When operating as a server, TACL does not act as a fault-tolerant server (it does not check the sync ID).
Therefore, do not use TACL to check correct operation of a fault-tolerant application.

Whenever TACL uses $RECEIVE for input, the TACL process is considered to be a
server. To run TACL as a server, you must do two things:

0 Establish the TACL IN file as $SRECEIVE.
[0 Provide a name for the TACL process so that other processes can access it.

The following paragraphs describe how to start TACL as a server, communicate with
it, and manage output.

To run TACL as a server, use the RUN or #NEWPROCESS function with TACL as the
program file and IN set to $RECEIVE:

23> TACL / NAME $nane, | N $RECEI VE, NOMI T/
24>

107365 Tandem Computers Incorporated 6-1

Running TACL as a Sever

Running a TACL Process as a Server

Sending Requests to a
TACL Server

When operating as a server, TACL starts up, logs on under its process accessor ID, and
processes input in the usual way.

A requesting TACL process sends requests as described in Section 5, “Initiating and
Communicating With Processes.” Table 6-1 lists commands used to communicate
with a server.

Table 6-1. Functions That Support Interprocess Communication

TACL Function Description

#REQUESTER with the WRITE option Opens the background TACL process
#APPEND(V) Sends a WRITEREAD to the TACL process
#EXTRACT(V) Retrieves results

#REQUESTER with the CLOSE option Closes the process

Use the macro in Figure 6-1, r unsr v, to read requests from the home terminal and
send the requests to a background TACL process. The background TACL process
executes each request and returns results to #MYTERM. To invoke this macro, load
the file and enter:

runsrv

Figure 6-1. Starting and Sending Requests to a TACL Server (Page 1 of 2)

?SECTI ON runsrv NMACRO
#FRAMVE
#PUSH err_var wite var tenp_var rslt

== ** The following code starts the server process **
== Start the background TACL process, $nrt, if it is not
== already running. The INfile is $RECEl VE
[#1 F NOT [#PROCESSEXI STS $nrt] | THEN
TACL /1IN $receive, OQUT [#WTERM, NAME $mrt, NOWAI T/
]

== ** The foll owi ng code accesses the TACL server **
== Open the TACL server process ($nrt)
#SET rslt [#REQUESTER /WAI T/ WRITE $nrt err_var wite_var]
[#1F rslt = 0 | THEN
#OUTPUT $nrt opened successfully
| ELSE]
#OUTPUT $nrt not open; file error [filel_err]
#RETURN

107365 Tandem Computers Incorporated

Running TACL as a Server

Running a TACL Process as a Server

Figure 6-1. Starting and Sending Requests to a TACL Server (Page 2 of 2)

[#LOOP | DQ
#SET tenp_var [#| NPUT Enter Command:]
[# F [#MATCH EXI T [#SH FTSTRING /UP/ [tenp_var]]] | THEN
#SET #1 NPUTEOF -1
| ELSE]
== Send a command to the background TACL
#APPENDV write var tenp_var

]
| UNTIL| [#| NPUTEOF]

]
SI NK [#REQUESTER CLOSE write_var]
#UNFRAME

When you run r unsr v, it displays the following:

10> runsrv
Ent er Comand:

You can then enter a TACL command or built-in function. To exit, type Control-Y.

When TACL starts the background process, that TACL process logs on under its
process accessor ID. The background process in Figure 6-1 accepts the standard set of
TACL commands and built-in functions; to create a TACL server that runs your code,
see the next subsection, “Running TACL Code as a Server.”

When TACL is operating as a server, it queues messages if they arrive while TACL is
already working on a message. The depth of this queue is limited solely by the
availability of space in the TACL segment. If the message cannot be queued, TACL
responds with file-system error 45 (file is full).

When the number of processes that have the TACL process open goes from nonzero to
zero, and #INPUT (V) detects that transition, #iNPUTEOF is set to a nonzero value. If
the transition is detected in response to a prompt generated by TACL itself, #EXIT is
set to a nonzero value. This behavior is analogous to that which occurs when end-of-
file (EOF) is reached on the IN file when TACL is not operating as a server.

107365 Tandem Computers Incorporated 6-3

Running TACL as a Sever

Running a TACL Process as a Server

6-4

Directing Output From
TACL

Special Actions of the #INPUT(V) Built-In Function

When TACL acts as a server, it can process statements from $RECEIVE or statements
coded within the TACL process. Action of the #INPUT(V) built-in function depends
on the origin of the #INPUT(V) call:

[0 When aserver TACL process executes an #INPUT(V) built-in function as part of
its own code, it reads from $RECEIVE, executes the text in that message, and
replies with the results.

0 When a requester sends a message that contains an #INPUT(V) built-in function,
TACL behaves differently. Upon recognizing the #INPUT(V) built-in function,
TACL replies immediately with whatever is contained within its reply buffer. It
then reads the next message from $RECEIVE and postpones the processing of any
remaining functions or commands that may have followed the #INPUT(V) call in
the first request. After receiving the second message, TACL processes the text in
that message and the resumes processing the text left over from the first message.
After TACL processes all of the message text, it replies with the results of the
second message and the results from the leftover text in the first message.

The second mechanism is not used frequently; the description is provided to explain
the action of TACL in case such use should occur.

As a server, TACL can issue only one response for each request—a operating system
restriction. Requests and responses are limited to 5000 bytes, although they can span
multiple lines.

Specifying the OUT File

TACL normally sends output to its OUT file. When TACL operates as a server, you
can specify the OUT file as $RECEIVE:

23> TACL / NAME $nane, | N $RECEIVE, OUT $RECEI VE, NOWAI T/

If you specify OUT as $RECEIVE, all normal output (up to 5000 bytes) is included in
the next REPLY. If you specify OUT fi | enane, TACL writes all its output to
fil enane, as usual, and does not include it in the next REPLY.

If you supply OUT without a file name, TACL discards its normal output.

This flexibility allows you to construct TACL environments that function properly
whether TACL is operating as a requester or as a server.

107365 Tandem Computers Incorporated

Running TACL as a Server

Running TACL Code as a Server

Running TACL Code
as a Server

Constructing a TACL
Server

To provide TACL code for use by a TACL server process, you must provide a link to a
TACL process that is running your code. There are several ways to accomplish this,
including:

[0 ASSIGN the TACLCSTM file to a TACL macro or routine that contains the code.

[Include access to the code from your TACLCSTM file. (When you start a TACL
process, the process accesses your TACLCSTM file.) Your TACLCSTM file can
check #TACLOPERATION, which indicates whether a TACL process is receiving
input from an IN file (REQUESTER) or $RECEIVE (SERVER).

0 Process the input through a server path defined by the #SERVER built-in function,
described in Section 5, “Initiating and Communicating With Processes.”

Open the TACL process as described in Section 5.

One way to accept requests and reply with messages in a specified format is to build a
loop using #INPUTYV and #REPLYV and protect it with an exception handler. Figure
6-2 shows an example a TACL program that uses an #INPUTV and #REPLYV loop.

Using #REPLYPREFIX

Pathway programs can use TACL as a server. You can use #REPLYPREFIX to prefix
each reply with a 16-bit binary code. The #REPLYPREFIX built-in variable can be
empty or it can contain any numeric value in the range 0 through 65535. If
#REPLYPREFIX is not empty, its value precedes each response; if #fREPLYPREFIX is
set, replies can be up to 5002 bytes long.

Using #REPLY and #REPLYV

Normally, if the OUT file is not set to SRECEIVE, then all output is excluded from the
reply. However, #REPLY (V) forces text to be included in the reply buffer, regardless
of the setting of the OUT file.

Requests and replies (except the part generated by #REPLYPREFIX) consist of ASCII
characters with internal line breaks encoded as null bytes.

When functioning as a server, TACL stores #REPLY (V) text and, if OUT is set to
$RECEIVE, its normal output as well. TACL replies with the buffer contents when it
has processed all of the text that was included in the request. If the accumulated
response exceeds 5000 bytes, TACL discards the excess without notification.

TACL can have as many as 100 openers. All openers of a given TACL process can
never have more than one message outstanding to TACL at a time, unless the
processes have opened TACL without a #SERVER name.

107365 Tandem Computers Incorporated 6-5

Running TACL as a Sever

Using TACL as a Pathway Server

Using TACL as a
Pathway Server

Note

The code in this subsection creates a Pathway environment that includes one TCP and
one TACL server. The TACL routine processes three types of requests:

[0 CREATE file

[l PRINT file

0 PURGE file

This example uses the following files:

[0 TACLIN—The TACL routine in Figure 6-2

[0 SCOBSRC—The Screen COBOL source for the requester in Figure 6-3

0 PWYOBEY—The obey file that starts the Pathway environment, listed after
Figure 6-3

0 PATHCNFG—The Pathway configuration file in Figure 6-4

In addition, the Pathway configuration file uses a file named LOGL1 for logging; create
this file before starting the Pathway environment.

When the application runs, it presents a screen that lists the three functions. If you
type a request, TACL processes the request and returns a response. The application
displays this response on your screen. To clear the screen, type F1. You can then enter
another request or exit the application.

If you use these files on your system, change the volume and subvolume names to reflect storage
locations on your system.

107365 Tandem Computers Incorporated

Running TACL as a Server

Using TACL as a Pathway Server

Use the code in Figure 6-2 as a sample Pathway server. This file is known as TACLIN
in the Pathway configuration file; if you use a different file name, modify the
configuration file.

Figure 6-2. Running a TACL Program as a Server (Page 1 of 2)

?TACL ROUTI NE
#FRAME

[#DEF process routine | BODY|
#FRAME
#PUSH par am st at us
[#CASE [#ARGUMENT KEYWORD / WORDLI ST cr eat e/
KEYWORD / WORDLI ST print /
KEYWORD / WORDLI ST purge /
OTHERW SE
]
| 1| {CREATE file}
[#CASE [#ARGUMENT / VALUE param FlI LENAME TEMPLATE END
TEXT]
| 1| #RESULT File [paran already exists !
| 2| CREATE [parani
#RESULT File [param created
3 | #RESULT No file name supplied!
4 | #RESULT Invalid file name: [parani

|
|
]
| 2| {PRINT file}
[#CASE [#ARGUMENT / VALUE paranm’ FI LENAME END TEXT]
| 1| fup /NOMIT,QUT $null/copy [param, $s. #prt
#RESULT Printing of file [paran] started
2
3

| #RESULT No file name supplied!
| #RESULT Invalid file name or file does not exist:&

[parani

]
| 3| {PURGE file}
[#CASE [#ARGUMENT / VALUE paranm’ FI LENAME END TEXT]
| 1| #SET status [#PURCE [paran]
[#] F status | THEN
#RESULT Error [status] during purge of file &
[par anj
| ELSE]
#RESULT File [param purged
]
| 2| #RESULT No file nane supplied!
| 3 | #RESULT Invalid file nane or file does not exist:&

[parani
]

107365 Tandem Computers Incorporated 6-7

Running TACL as a Sever

Using TACL as a Pathway Server

Figure 6-2. Running a TACL Program as a Server (Page 2 of 2)

| 4| {invalid request}
#RESULT Invalid request !
#UNFRAME
#RETURN

]
#UNFRAVE

]

[#DEF reply ROUTI NE | BODY]| == Reply to Screen COBCL
#FRAME
#PUSH t ext
[#DEF answer 80 STRUCT == 80-character text response
BEG N
CHAR byt e(0: 79);
END;

]
#| F [#ARGUMENT / VALUE text/ TEXT]

#SET #REPLYPREFI X 0 == constant reply code
#SET answer 80 [#CHARCET text 1 to 80]
[#1 F [#] NTERACTI VE] | THEN
#OUTPUT [answer 80] == Display the result
| ELSE] == or
#REPLYV answer 80 == Reply
]
#UNFRANME
]
==mai n | oop

#PUSH r equest pronpt outcone end fl ag
#SET end_flag O

[#LOCP | DQ

== Read a record

#1 NPUTV / NOECHO / request pronpt

[#1 F [#] NPUTECF] | THEN

#SET end_flag O

| ELSE
#SET out cone [process [request]]
reply [outcone]

]
| UNTIL] end_fI ag

]

#UNFRAME

6-8 107365 Tandem Computers Incorporated

Running TACL as a Server

Using TACL as a Pathway Server

Figure 6-3 contains the Screen COBOL source code for the requester. This requester
displays a screen and waits until the user presses the F1 key to send a request to TACL
or SF16 to exit the program. If the user sends a request, the requester displays the
response from TACL and waits until the user presses the F1 key to clear the message.
The requester then prompts for input again.

To compile this program, type a statement, such as the following, with appropriate file
and spooler names for your system:

SCOBOLX/ I N SCOBSRC, QUT $S. #TCP/

When you compile the requester, Screen COBOL produces two files: POBJCOD and
POBJDIR.

Figure 6-3. Screen COBOL Code That Accesses a TACL Server (Page 1 of 2)

I dentification Division.
Program 1d.

TEST- TACL.
Envi ronnent Di vi si on.
Configuration Section.

Sour ce- Conput er .

EXT.

nj ect - Conput er .

EXT, Terminal |s T16-6530.

Speci al - Names.

REVERSE Reverse

F1 F1

SF16 Sf 16.
Dat a Di vi si on.
Wor ki ng- St or age Secti on.

1 TOTACL Pic X(80).

1 TACL Pic X(80).

1 REPCCD Pic 9(4) Conp.

1 FEQJ Pic 9 Val ue 0.

88 EXI Val ue 1.

Screen Section.

1 FRAME.
Filler At 1, 31 Value "**** TACL SERVER ****" REVERSE".
Filler At 7, 1 Value "ENTER REQUEST: ".
Filler At 8 1 Value "CREATE file, PRINT file, or ".
Filler At 9, 1 Value "PURGE file, then press F1".
Filler At 10, 1 Value "-- or -- press SF16 to exit:".
Filler At 11, 1 Pic X(80) To TOTACL.
Filler At 15, 1 Value "TACL Response; Fl1 to continue:".
RESPONSE At 16, 1 Pic X(80) From TACL.

NNDNNNNNDN

107365 Tandem Computers Incorporated 6-9

Running TACL as a Sever

Using TACL as a Pathway Server

Figure 6-3. Screen COBOL Code That Accesses a TACL Server (Page 2 of 2)

Procedure Divi sion.
0- DEBUT.
Di spl ay Base FRANVE
Perform 1-LOOP Until EXI
Stop Run.
1- LOOP.
Accept FRAME Until F1 Escape SF16
If Termi nation-Status =1
* Then
Send TOTACL To "TACL"
Reply Code O Yields REPCOD TACL
Di spl ay RESPONSE
Accept Escape F1
Reset RESPONSE
G ear |nput
El se
Move 1 To FEQJ.
* End- | f

The following commands start the Pathway environment. You can store these
commands in an OBEY file:

PATHVON / NAME $tst, NOMI T/
PATHCOM / I N pat henf g/ $t st

6-10 107365 Tandem Computers Incorporated

Running TACL as a Server

Using TACL as a Pathway Server

The commands in Figure 6-4 configure the sample Pathway environment. This file is
used as input when you start the Pathway environment. Note that the server program
file is $SYSTEM.SYS01.TACL and the commands assign the TACLCSTM file to the
TACLIN file.

This example uses $DATA for the volume and TEST for subvolume; modify these
entries to reflect appropriate volume and subvolume names on your system.

Figure 6-4. Configuring the Pathway Environment

SET PATHMON BACKUPCPU 1

SET PATHWAY MAXASSI G\S 1

SET PATHWAY NMAXDEFI NES 1

SET PATHVWAY NMAXPARAMS 1

SET PATHWAY MAXPATHCOVS 1

SET PATHWAY MAXPROGRAMS 1

SET PATHWAY MAXSERVERCLASSES 1
SET PATHWAY MAXSERVERPROCESSES 5
SET PATHWAY NMAXSTARTUPS 1

SET PATHWAY MAXTCPS 1

SET PATHWAY MAXTERMS 10

START PATHWAY COLD !

RESET TCP

SET TCP MAXREPLY 100

SET TCP MAXTERMS 10

SET TCP PROGRAM $SYSTEM SYSTEM PATHTCP2
SET TCP TCLPROG $DATA. TEST. POBJ

SET TCP CPUS 2:1

ADD TCP TCP-1

RESET PROGRAM
SET PROGRAM TMF ON
SET PROGRAM TYPE T16- 6530 (I NI TI AL TEST- TACL)
SET PROGRAM TCP TCP-1

ADD PROGRAM TEST- TACL

RESET SERVER
SET SERVER CPUS (1:2)
SET SERVER MAXSERVERS 2
SET SERVER NUMBTATI C 1
SET SERVER PROGRAM $SYSTEM SYSO1. TACL
SET SERVER TMF OFF
SET SERVER ASSI GN TACLCSTM $DATA. TEST. TACLI N
SET SERVER | N $RECEI VE
SET SERVER OUT $NULL
ADD SERVER TACL
START TCP *
START SERVER *
LOGL $DATA. TEST. LOGL

107365 Tandem Computers Incorporated 6-11

Running TACL as a Sever

Using TACL as a Pathway Server

To run this application, type the following:

12> O PWYOBEY
(Pathway displays startup information here)

13> PATHCOM $TST

=RUN TEST- TACL

(Pathway displays the application screen. When finished,
press SF16 instead of entering a request.)

=SHUTDOWN, VAI T
TCP TCP-1, STOPPED
=EXIT

14>

Press F1 after each response to return to input mode.

6-12 107365 Tandem Computers Incorporated

7

Using Programmatic Interfaces

Overview of SPI and
EMS

Previous sections have described how to send textual commands to processes and
retrieve textual results. This section describes how to access two facilities, the
Subsystem Programmatic Interface (SP1) and the Event Management Service (EMS),
that provide a programmatic interface for managing:

[0 Operating system utilities

[0 Tandem products such as Pathway, the TMF subsystem, and SNAX (also known
as subsystems)

[0 Other applications that support these interfaces

SPI and EMS are considered to be programmatic interfaces because information is
represented by coded values, called tokens, which are easier for programs to
manipulate than textual commands and results.

This section does not provide detailed information about SPI or EMS; it does, however,
show how to use TACL to communicate with SPl and EMS. For additional
information, see the Introduction to Distributed Systems Management (DSM), the
Distributed Systems Management (DSM) Programming Manual, and the Event
Management Service (EMS) Manual.

SP1 and EMS are two components of the Distributed System Management (DSM)
product group, a set of software applications, tools, and services that facilitates
management of systems and networks:

[0 SPlis a set of procedures, associated definition files, and programming
conventions used for building, sending, retrieving, and decoding messages sent
between management applications and the Tandem subsystems or business
applications they manage. SPI makes possible the programmatic equivalent of an
interactive command interface, allowing you to automate management tasks. The
following diagram shows how applications interact with SPI:

Operations Environment SPI Subsystem Environment
y ~ Objects
|:| — Tokenized
Management Messages Subsystems
Applications or
Applications
322

0 EMS s a set of processes, associated definition files, tools, and programming
conventions that provides event-message collection, logging, and distribution for
the operating system. (An event is a significant change in some condition in the
system or network, such as a device failure, a notification of limits exceeded, or a

107365 Tandem Computers Incorporated 7-1

Using Programmatic Interfaces

Overview of SPI and EMS

request for action.) EMS allows you to monitor the status of system and
application components. EMS messages are a type of SPI message; to
communicate with EMS, you use SPI and EMS procedures.

The following diagram shows a sample flow of EMS messages from subsystems to
management applications. An application can also retrieve messages without
involvement of distributor processes.

Operations Environment Subsystem Environment

il

1 . Objects
— Tokenized
Management Messages Subsystems
Applications or
Applications
Tokenized Messages EMS Tokenized Messages

Collectors

EMS
Distributors
Fitr

ilter

323

To transport messages between management applications and subsystems, you place

tokens into a buffer. Each token consists of a token type and a token number—known
collectively as a token code—and a token value. For example, a buffer that contains a

Pathway PATHCOM START TCP command would contain the following tokens:

0 Token code ZSPI-TKN-COMMAND, which signifies an SPI command, with a
token value of ZPWY-CMD-START, indicating a request for a Pathway START
command.

[0 Token code ZSPI-TKN-OBJECT-TYPE, which signifies an object type, with a token
value of ZPWY-OBJ-TCP.

0 Token code ZPWY-MAP-SEL-TCP, which signifies information about a TCP, with
a token value of ZPWY-DDL-SEL-TCP. The program would assign the TCP name
to the ZTCP field in the ZPWY-DDL-SEL-TCP structure.

107365 Tandem Computers Incorporated

Using Programmatic Interfaces

Overview of SPI and EMS

The buffer transports the tokens to and from the target subsystem. The following is a
simplified diagram of an SPI message. Again, each token contains a token code and a
token value:

Header Data Portion

A A
- Y N

Token Token Token cee § § cee

SSID
Command #
Obj-Type #

and so on

324 7

The ZSPI-TKN-COMMAND code and others listed previously are defined in files
provided by Tandem (stored in ZSPIDEF and ZSPISEGF subvolumes). When you use
SPI or EMS, you include definition files for the language you are using and subsystem-
specific definition files for each subsystem you want to manage. To retrieve event
messages, you also need the EMS definition file for the subsystem.

TACL provides built-in functions that initialize and manipulate the contents of
message buffers. To establish communication with a subsystem, you use
#REQUESTER or #SERVER with IN set to $RECEIVE to establish communication and
#APPEND(V) and #EXTRACT(V) to send and receive a buffer, respectively.

SPI and EMS are based on the same message format, but the two interfaces differ in
their purposes and uses; used together, they can provide a wide range of management
services. For example, you can use EMS to monitor a large array of subsystems. If a
significant situation arises, you can use SPI to initiate a dialog with the appropriate
subsystem. You can also use TACL to learn about SPI and EMS interactively.

107365 Tandem Computers Incorporated 7-3

Using Programmatic Interfaces

Using SPI
Using SPI The Subsystem Programmatic Interface (SPI) allows you to store tokenized commands
in buffers, send them to Tandem subsystems (such as Pathway), and receive a buffer
containing tokenized replies. TACL uses standard SPI type names and supports
standard SPI data types. Before sending or receiving an SPI message, you must:

0 Know the subsystem ID for the desired subsystem.

0 Know the names of individual tokens of interest.

You can find the necessary files in the ZSPIDEF subvolume supplied by Tandem; load

them from within your TACL code or attach segment files (in the ZSPISEGF

subvolume) that contain the information.

The functions in Table 7-1 provide access to SPI formats and protocols.

Table 7-1. TACL Functions That Support SPI

Function Description

#SSINIT Initializes a STRUCT as an SPI message buffer.

#SSGET Retrieves token values from an SPI buffer, converts the values to external
representation, and makes the results available.

#SSGETV Retrieves token values from an SPI buffer, converts the values to external
representation, and makes the results available. #SSGETV must be used for
extensible structured tokens and tokens of type ZSPI"TYPEASTRUCT.

#SSPUT Converts token values from external representation to binary form and puts them into
an SPI buffer.

#SSPUTV Converts token values in extensible structured tokens and tokens of type
ZSPINTYPASTRUCT.

#SSNULL Initializes a structured token and sets the values to null.

#SSMOVE Copies tokens from one message buffer to another by performing a sequence of
#SSGETV and #SSPUTV operations.

To use SPI, follow these steps:

1. Define a message buffer (#DEF).

2. Initialize any structured tokens you plan to use (#SSNULL).

3. Initialize the buffer (#SSINIT).

4. Store requests in the buffer (#SSPUT, #SSPUTV).

5. Send the buffer (#APPENDV).

6. Retrieve results from the buffer (#SSGET, #SSGETV).

To copy tokens from one buffer to another, use #SSMOVE, which performs a sequence

of #SSGETV and #SSPUTYV operations.

-4 107365 Tandem Computers Incorporated

Using Programmatic Interfaces

Defining an SPI Buffer

Note

Using SPI

TACL interacts with other processes as a server (through $RECEIVE) and as a
requester (through the use of the #REQUESTER, #APPEND(V), and #EXTRACT(V)
built-in functions). When using $RECEIVE, the IN and OUT files do not automatically
provide an SPI interface, but can be made into an SPI interface by using an #iINPUTV
and #REPLYV loop protected by an exception handler.

SPI works with binary values. You declare an SPI buffer as a variable of type
STRUCT. TACL allows you to refer to SPI values as text and translates them to and
from binary as necessary.

Each Tandem subsystem includes an SPI definition file, named ZSPIDEF.subsysTACL.
This definition file includes a buffer declaration named subsys*"DDL"MSG"BUFFER.
Allocate a buffer variable of at least the size of subsys*"VAL"BUFLEN. Some
subsystems use different buffer-size values for different commands; see the individual
subsystem manuals for details. Using these definitions, your STRUCT definition
might look like this:

[#DEF spi _buf STRUCT
BEG N
BYTE buffer (1:ZTAC'VALABUFLEN);
END;

]

When you use the definitions supplied by Tandem, your code retains compatibility
with future changes in length.

TACL sends the length of the STRUCT to the SSINIT procedure and ignores the rest of
the definition.

TACL has a maximum 1/O buffer size of 5000 bytes and STRUCT variables are also limited to 5000 hytes.
In addition, TACL cannot perform nowaited 1/0 to files opened by #REQUESTER for buffers larger than
239 bytes.

Subsystem ID

After you define a buffer, specify a subsystem ID—generally for the target
subsystem—and a command. Include these items in a call to #SSINIT. The following
statement initializes a buffer that contains a status command for the EMS subsystem:

#SET status [#SSIN T spi _buf [ZEMS*"VALMEXTERNALASSI O]
[ZEMSA"CVDNSTATUS]]

The subsystem ID in TACL is specified as one to eight alphanumeric characters or
hyphens that specify the subsystem owner, followed by a period separator, a
subsystem number or a subsystem name, a period, and a version number. All three
information fields are required. You must enter the subsystem owner exactly as
specified for the subsystem; TACL does not case-shift it up or down. The first
character must be alphabetic. TACL supports a special data type, ZSPINTDTASSID,
for subsystem ID information.

107365 Tandem Computers Incorporated 7-5

Using Programmatic Interfaces

Using SPI

7-6

TANDEM.EMS.0 and TANDEM.43.1245 are examples of valid subsystem IDs for

Tandem subsystems.

The following considerations apply to the use of subsystem IDs in TACL:

0 The null subsystem ID (all binary zeroes) is expressed as 0.0.0 in TACL.

0 TACL performs automatic conversion between text and the internal format used
by SPI for subsystem IDs.

O Your TACL function must specify the subsystem ID for each subsystem with
which your application communicates.

Token Data Types

TACL supports the token data types listed in Table 7-2.

Table 7-2. SPI Token Data Types (Page 1 of 2)

Token Data Type Name

ZSPI"TDTABOOL
ZSPI"TDT"BYTE
ZSPI"TDTACHAR
ZSPI"TDT"CRTPID

ZSPI"TDT DEVICE

ZSPI"TDT"ENDLIST
ZSPI"TDTAENUM
ZSPI"TDT"ERROR

ZSPI"TDTAFNAME

ZSPI"TDTAFNAME32
ZSPINTDTAINT
ZSPI"TDTAINT2
ZSPI"TDTMINT4
ZSPINTDTALIST
ZSPI"TDT"MAP

Value Type and Range

-32768 — +32767
0-255
Characters

Any valid process name or cpu,pi n. Systems whose numbers
cannot be found are given number 255 on input; system number 255
is shown as \?? on output. The creation time of any unnamed process
or the cpu,pi n of a named process can be accessed only by
redefining the fields appropriately.

Any valid device name. Systems whose numbers cannot be found are
given number 255 on input; system number 255 is shown as \?? on
output.

Not applicable.
-32768 to +32767

A subsystem ID, a period, and a number in the range -32768 to
+32767.

Any valid file name; missing fields are not defaulted. Systems whose
numbers cannot be found are given number 255 on input; system
number 255 is shown as \?? on output.

A 32-bit file name of the form used by Distributed Name Service.
-32768 to +32767

-2147483648 to +2147483647

-(2**63) to +(2**63)-1

Not applicable

Must be put into, or obtained from, a STRUCT. Definition of the
STRUCT provides rules for conversion between internal and external
formats.

107365 Tandem Computers Incorporated

Using Programmatic Interfaces

Using SPI

Table 7-2. SPI Token Data Types (Page 2 of 2)

Token Data Type Name Value Type and Range

ZSPI"TDTASSCTL 0to 255

ZSPI"TDTASSID Subsystem owner, period, subsystem number, period, and version
number.

ZSPINTDTASTRUCT Must be put into, or obtained from, a STRUCT. Definition of the
STRUCT provides rules for conversion between internal and external
formats.

ZSPINTDTASUBVOL Any valid subvolume name; missing fields are not defaulted. Systems
whose numbers cannot be found are given number 255 on input;
system number 255 is shown as \?? on output.

ZSPI"TDTATIMESTAMP -(2**63) to +(2**63)-1

ZSPI"TDTATOKENCODE -2147483648 to +2147483647. On input, a 32-bit STRUCT can be
used.

ZSPI"TDTATRANSID A TMF transaction identifier formatted as follows:

\ syst em nane(cr ash- count).cpu.sequence
If the internal-format ¢ r ans- i d contains a crash count of zero, the
transaction ID is formatted as follows:
\ syst em nane.cpu.sequence
In either case, if the system is not named, the transaction ID is
formatted as follows:
cpu.sequence
If the name of a system cannot be found on output, syst ent nane
is replaced by sy st em nunber .
ZSPINTDTAUINT 0to 65535
ZSPI"TDTMUSERNAME Any valid user name; a user number cannot be used.

TACL interprets an unknown token data type as if the data type were ZSPI"TDT/INT.

Variable-Length Data Items

In TACL, the byte length appears before the data, separated from it by a space.

107365 Tandem Computers Incorporated

Using Programmatic Interfaces

Using SPI

7-8

Token Codes

In TACL, a token code is an integer, a numeric variable, or a two-word STRUCT.
Token code definitions, as generated by DDL, are included in the TACL versions of the
SPI and subsystem definition files. You can refer to the individual fields of a token
code by using a STRUCT that is defined as follows:

[#DEF t oken STRUCT

BEG N

| NT2 code;

STRUCT fi el ds REDEFI NES i nt 32;
BEG N

BYTE dat at ype;
BYTE byt el engt h;
| NT numnber ;
END;
END;
]

Token codes cannot be composed or decomposed by simple arithmetic, because the
token number is signed and simple arithmetic would extend the sign.

Token Maps

In TACL, a token map is stored in a STRUCT variable. The definition of the STRUCT
isirrelevant to TACL.

Token map definitions, as generated by DDL, are included in the TACL definition files
for subsystems that define extensible structured tokens.

When using a token map, TACL verifies that the contents of the token map are
consistent with the size of the STRUCT in which it is stored.

External Representation of Token Values

Use text (instead of binary bits) when storing and retrieving token values. Legal text
characters come from the ISO 8859.1 character set. The following lists conditions of
data representation:

LI If the token-length of a token is 255, the token value is of variable length. TACL
represents such a token value as a number indicating the one-word byte length of
the token, followed by a space, followed by the token value or values.

I If the data type of a token is ZSPI"TDTACHAR, its token value is represented by a
number of contiguous characters; that number is equal to the actual length of the
token. (This is the value of the token-length field if that value is less than 255, or
the actual length in bytes if the token-length field is 255.)

I If the data type of a token is ZSPI"TDT/ASTRUCT or ZSPI"TDT~MAP, you must
handle the token with #SSGETV and #SSPUTYV so that the binary data can be
moved to and from STRUCT variables whose definitions provide the appropriate
conversions to and from external representations.

107365 Tandem Computers Incorporated

Using Programmatic Interfaces

Using SPI Functions

Using SPI

If the data type of a token is any other than those already listed, the token value is
represented by a space-separated list m/n items, where m is the actual length of the
token and n is the basic length of the token data type. If the actual token length is not
evenly divisible by the basic data-type length, the last bytes cannot be set or seen.
TACL shows each item in its usual external representation.

All elements pertaining to the Subsystem Programmatic Interface are described in
detail in the Distributed Systems Management (DSM) Programming Manual.

The following definition, when used with #EXTRACT(V), allows you to extract fields
from a subsystem ID:

?SECTI ON tenpl at e STRUCT

BEG N
SSID ss;
STRUCT z_ssid REDEFI NES ss;
BEG N
CHAR z_owner (1:8);
| NT Z_number;
U NT z_version;
END;
END;

#DEF ss1 STRUCT LI KE tenpl ate;

Use the code in Figure 7-1, same_ssi d, to compare two subsystem IDs returned by
#SSGETV with ZSPI"TKNANEXTCODE or ZSPI"TKN~ANEXTTOKEN. The code uses
the t enpl at e STRUCT defined under “Defining an SPI Buffer,” earlier in this section,
and ignores the version field. To invoke this routine, load the file and type:

SAME SSID ssidl ssid2

Figure 7-1. Comparing Two Subsystem IDs

?SECTI ON sane_ssi d ROUTI NE

#FRAMVE

#PUSH sst ext

#DEF ss1 STRUCT LI KE tenpl ate;

#DEF ss2 STRUCT LI KE tenpl ate;

#1F {SI NK} [#ARGUVMENT / VALUE sstext/ SUBSYSTEM

#SET ssl1 [sstext]

#1 F {SI NK} [#ARGUVMENT / VALUE sstext/ SUBSYSTEM

#SET ss2 [sstext]

#RESULT [#COWUTE [#COVWPAREV ssl:z_ssid:z_owner(1:8)
ss2:z _ssid:z_owner(1:8)]

AND [#COVWPAREV ssl:z_ssid: z_nunber

ss2:z_ssid: z_nunber]]

#UNFRAME

107365 Tandem Computers Incorporated 7-9

Using Programmatic Interfaces

Using SPI

7-10

Use the routine in Figure 7-2, dunpl og, to retrieve the name of the current EMS log
file using SP1. The example then calls EMSDIST to read the current log and display the
message on the home terminal. To invoke this routine, load the associated file and
enter:

dunpl og [t/ ne]

Figure 7-2. Displaying the EMS Log (Page 1 of 2)

?SECTI ON dunpl og ROUTI NE

#FRAMVE

[#PUSH
err == Error return val ue
io_err == 1/O Error return val ue
reply == Reply I/O variable
request == Request 1/O variable
ret code == Return code from server
ZENSMN CVDN STATUS == ZEMS status conmand
ZENBNVALNEXTERNALANSSI D == ZEMS subsystem | D
zspi def == zspi def subvol une
arg
rslt
def s

]
== I nclude SPI and EMS definitions

#LOAD / LOADED defs, KEEP 1/ $system zspi def. zenst acl
#LOAD / LOADED defs, KEEP 1/ $system zspi def. zspitacl
#LOAD / LOADED defs, KEEP 1/ $system zspi def. ztact acl

== Define the SPI buffer
[#DEF spi _buf STRUCT
BEG N
BYTE b(1:1024);
END;
]
== |nitialize the SPI buffer; EMS subsystem STATUS command
#SET err [#SSIN T spi _buf [ZEMSNVALMNEXTERNALASSI D]
[ZEMSNCVDNSTATUS]]
[#I F err | THEN
#OUTPUT *** Error [err] from #SSIN T]

== Retrieve the nane of the EM5 log file
#SET err [#REQUESTER /WAI T/
READ $0. #ZSPl io_err reply request]
[#I F err | THEN
#OUTPUT *** Error [err] opening $0.#ZSPI
#UNFRAME
#RETURN

107365 Tandem Computers Incorporated

Using Programmatic Interfaces

Using SPI

Figure 7-2. Displaying the EMS Log (Page 2 of 2)

== Send the request (the open was waited, so we do not need
== to wait for the variable to becone enpty.)
#APPENDV request spi _buf

== Retrieve the results

#EXTRACTV reply spi_buf

[#I F NOT [#EMPTYV io_err] | THEN
#OUTPUT *** Error [io_err] sending to $0.#ZSPI
#UNFRAME
#RETURN

]

== Cl ose SPI

#SET err [#REQUESTER CLOSE request]

[#I F err | THEN
#OUTPUT *** Error [err] closing $0.#ZSPI
#UNFRAME
#RETURN

]

== Retrieve the return code and place it into the SPI buffer
#SETMANY err _ retcode , [#SSGET /I NDEX 1/ spi _buf
ZSPI "TKN* RETCODE]
[#I F err | THEN
#OUTPUT *** Error [err] from #SSGET ZSP| "TKN*RETCODE
#UNFRAME
#RETURN
]

== Retrieve EMS status information and place it into the SPI

== buffer

#SETMANY err _ , [#SSGETV /I NDEX 1/ spi _buf
ZENBN MAPM COLN STATUS
ZENMSMDDLANCOLASTATUS]

[#I F err | THEN
#OUTPUT *** Error [err] from #SSGETV ZEMS"MAPACOLNSTATUS
#UNFRAME
#RETURN
| ELSE
== Retrieve the time argunent (w thout checking contents)
#SET rslt [#ARGUMENT / TEXT arg/ WORD ENDJ
== Call EMSDI ST
ensdi st logfile &
[ZEMS"DDLMN COLNSTATUS: ZCOLANCURRENTFI LENAMVE] , &
[# F NOT [#EMPTY [arg]] |THEN time [arg],] &
type printing, textout [#MYTERM

]
#UNFRAVE

107365 Tandem Computers Incorporated 7-11

Using Programmatic Interfaces

Using EMS

The following session shows sample output:

17>dunpl og 16: 50
92-05-28 16:51:22 \ SYS. 003, 000 TANDEM MSGSYS. C20 000104
Recei ve Queue for CPU 3,
PIN 50 Greater Than 10 LCBs
92-05-28 17:00: 34 \ SYS. 004, 013 TANDEM EMs. C20 000165 LDEV
0056 CU 9420 CSS SUBDEVI CE ERROR,
Cl U SUBDEV #000003 F, M-9©43200
STATUS %©00005

To generate a request for EMS, see the following subsection, “Using EMS.”

Using EMS

Communicating With EMS

7-12

EMS provides a centralized event collection, logging, and distribution facility for
Tandem networks. Subsystems within the NonStop kernel environment can define
and generate tokenized event messages. For additional information about EMS, see
the Event Management Service (EMS) Manual.

The built-in functions in Table 7-3 provide access to EMS.

Table 7-3. Functions That Support EMS

Function Description

#EMSINIT(V) Builds the header and initializes a STRUCT as an event message buffer,
so that you can use the STRUCT in calls to other #EMSxxx and #SSxxx
functions.

#EMSGET(V) Retrieves token values from a buffer, converts them to external

representation, and returns the external representation as its result. This
function is similar to #SSGET.

#SSGET(V) Retrieves token values from an SPI buffer, converts them to external
representation, and makes the results available. Use #SSGETYV (instead
of #SSGET) for extensible structured tokens and tokens of type

ZSPI"TYPEASTRUCT.

#SSPUT Converts token values from external representation to binary form and
puts them into an SPI buffer.

#SSPUTV Converts token values in extensible structured tokens and tokens of type
ZSPI"TYPASTRUCT.

#SSNULL Initializes a STRUCT and sets the values to null.

#SSMOVE Copies tokens from one message buffer to another by performing a
sequence of #SSGETV and #SSPUTV operations.

HEMSTEXT(V) Obtains information from an event buffer and makes it available in
printable text form.

#EMSADDSUBJECT(V) Adds a subject token to an event message buffer.

Before communicating with EMS, you must:
O Know the subsystem ID for EMS

O Know the names of individual tokens of interest

107365 Tandem Computers Incorporated

Using Programmatic Interfaces

Generating an EMS Event

Using EMS

You can find the necessary definitions in the ZSPIDEF subvolume; load them from
within your TACL code or create and attach segment files (in the ZEMSSEGF
subvolume) that contain the information.

Follow these steps to generate an EMS event:

1. Define a message buffer (#DEF)

2. Initialize the buffer (#EMSINIT)

3. Store requests in the buffer and send the buffer (#SSPUT, #SSPUTV)

Use the macro in Figure 7-3, t acl event , to generate an event from EMS and,
optionally, set the action flag or critical flag. The syntax is:.

tacl event urgency
where ur gency is 1 for no flag, 2 for an action flag, and 3 for a critical flag.

You can use the dunpl og routine (n Figure 7-2) to display the event log and check
your results.

Figure 7-3. Generating an EMS Event (Page 1 of 3)

?SECTI ON t acl event MACRO
#FRANVE

#PUSH evt _x evt_error reqg_error req_read reqg_pronpt
#PUSH action_id coll ector

== Load the files. (If the files do not exist, TACL
== returns an error and exits.)

#LOAD / LOADED evt _x/ $system zspi def . zenst acl

#LOAD / LOADED evt _x/ $system zspi def. zspitacl

#LOAD / LOADED evt _x/ $system zspi def. zt act acl

[#DEF evt buf STRUCT
BEG N
BYTE b(1: 3000) ;
END;

]

[#DEF bui |l d_evt ROUTI NE | BODY]|
#FRANME
#PUSH evt _num acti on enphasis evt_text text_len

SI NK [#ARGUMENT / TEXT evt _numl NUMBER]
SI NK [#ARGUMENT / TEXT acti on/ NUVBER]
SI NK [#ARGUMENT / TEXT enphasis/ NUMBER]
SI NK [#ARGUMENT / TEXT evt _text/ TEXT]

107365 Tandem Computers Incorporated 7-13

Using Programmatic Interfaces

Using EMS

Figure 7-3. Generating an EMS Event (Page 2 of 3)

== Build the event and initialize the EM5 buffer
[#SET evt _error [#EMSINI T evt_buf [ZEMSMVALMEXTERNALASSI D]
[evt _nunm] ZEMBA"TKN'TEXT [#charcount evt text]
[evt text]]
]
[#| F [evt _error] | THEN|
#OUTPUT *ERROR* EMSINIT error [evt_error]
#RETURN

]

== |f enphasis is TRUE, set the CRITICAL flag
[#| F [enphasis] | THEN
#SET evt_error [#SSPUT evt_buf ZEVMSATKN*EMPHASI S &
[ZSPI AVALATRUE]]
[#I F [evt _error] | THEN
#OUTPUT *ERROR* SSPUT error [evt_error] on &
Enphasi s token
#RETURN
] == End IF
] == End IF

== |f action is TRUE, set the ACTI ON- NEEDED fl ag
[#I F [action] | THEN
#SET evt _error [#SSPUT evt buf ZEMSATKN'ACTI ON*NEEDED &
[ZSPI AVALATRUE]]
[#IF [evt _error] | THEN
#OUTPUT *ERROR* SSPUT error [evt_error] on &
Act i on- Needed t oken
] == End IF

== SET the action-ID token to a unique val ue

#SET evt _error [#SSPUT evt buf ZEMSATKN'ACTI ONMI D
[action_id]]

[#I F [evt _error] | THEN
#OUTPUT *ERROR* SSPUT error [evt_error] on Action-1D
#RETURN

| ELSE| #SET action_id [#COWUTE action_id + 1]

]

]

== Send the event buffer to the Collector
#APPENDV req_pronpt evt_buf
#UNFRANME

] == End of build_evt

7-14 107365 Tandem Computers Incorporated

Using Programmatic Interfaces

Using EMS

Figure 7-3. Generating an EMS Event (Page 3 of 3)

== Main |logic

#SET col | ector $0
#SET action_id O

== Qpen the Collector for WRI TEREADs; $0 expects a WRI TEREAD
#SET evt _error [#REQUESTER /WAI T/ READ [col lector] &
req_error req_read req_pronpt]

== |f open fails, display an error nessage. O herw se send
== an event nessage.
[#I F [evt _error] | THEN

#OUTPUT * ERROR* #REQUESTER OPEN error [evt_error]

| ELSE |
[#CASE %%
| 1]
build evt 9997 0 O Test: Calmevent
| 2|
build evt 9998 -1 0 Test: Action event
| 3
build evt 9997 0 -1 Test: Critical event
| OTHERW SE

#OUTPUT Invalid argunment. Muist be:
#OUTPUT 1 (event),
#OUTPUT 2 (action event), or
#OUTPUT 3 (critical event).
]
]

== Close the Collector
#SET evt _error [#REQUESTER /WAI T/ cl ose req_read]
[#I F [evt _error] | THEN

#OUTPUT * ERROR* #REQUESTER CLOSE error [evt_error]

]
#UNFRAVE

107365 Tandem Computers Incorporated 7-15

Using Programmatic Interfaces

Using EMS

(This page left intentionally blank)

7-16 107365 Tandem Computers Incorporated

8

Example of a System
Management Program

The use of TACL for system management purposes combines several tasks:
Starting, stopping, and monitoring processes

Communicating with processes

Acting on responses

Generating commands

O O0o0ooaod

Handling errors and other exceptions

This section contains an example of a system management program that checks the
status of several system elements.

Monitoring System
Operation

The macro in Figure 8-1, ckup, illustrates one way to check the status of the following
system elements:

0 CPUs
Disk space
The spooler

TMF

OO oo

Device problems: bad sectors and other device errors

The macro, ckup, uses #CHARxxx routines to retrieve information. To run this
macro, load the associated file and enter:

ckup

Portions of ckup require a version of TACL released at C20 or later. In addition, your
TACL process must be named.

The macro runs as a batch file; you start it and it runs through several tests, displaying
results. Rather than placing defines at the start of the program, the program defines
procedural variables near the code that calls them.

Other ways to structure system management programs include:
0 A menu interface, providing selections for various subsystems.

0 An interactive interface that asks questions and performs more detailed checking,
depending on your responses.

I The use of SPI and EMS facilities, as described in Section 7, “Using Programmatic
Interfaces.”

107365 Tandem Computers Incorporated 8-1

Example of a System Management Program

Monitoring System Operation

Figure 8-1. Monitoring System Status (Page 1 of 12)

?SECTI ON ckup MACRO
#FRANVE

== Definitions for termnal |1/0O

[#DEF esc STRUCT
BEG N
BYTE byte_escape VALUE 27,
CHAR char _escape REDEFI NES byt e _escape;
END;
] == end def

== The foll owi ng #DEFs nust be on single lines for

== later replacenment in #OUTPUT calls

#PUSH rev end ternout

#SET rev [Esc: Char _Escape] 6$ == Termi nal Control reverse
#SET end [Esc: Char _Escape] 6 == Terminal Control end

[#DEF Tcr text |BODY| [#IF [ternmout] | THEN [rev]]]
[#DEF Tce text |BODY| [#IF [ternout] | THEN [end]]]

#PUSH #PVMSG == turn off #PMSG fl ag
#SET #PNMSG 0

[#] F NOT [#EMPTY 949 | THEN|
#PUSH #0OUT
#SET ternmout O
[#| F [#MATCH p %4% | THEN|
#SET #QUT $s. #hum

| ELSE|
#SET #OQUT %%
] ==end if
| ELSE|
#SET ternmout -1
] ==end if

Note If the result of an expansion must fit on one line, the related definition must fit onto one line. The
definitions of t cr and t ce in Figure 8-1 follow this rule.

8-2 107365 Tandem Computers Incorporated

Example of a System Management Program

Monitoring System Operation

Figure 8-1. Monitoring System Status (Page 2 of 12)

== Di splay general systeminformation

#PUSH r el ease version
#OUTPUT
#OUTPUT status for [#MYSYSTEM
#OUTPUT [_CONTI ME_TO TEXT_DATE [#CONTI NVE [#TI MESTAMP]]]
#SETMANY r el ease version , [#TOSVERSI ON|
[#| F [#MATCH [release] L] | THEN] #SET rel ease B]
[#| F [#MATCH [release] M] | THEN] #SET rel ease C]
#OUTPUT OPSYS: [rel ease][version]
#OUTPUT SYSnn: &

[#F1 LEI NFQ' SUBVOL/ [#PROCESSI NFQ' PROGRAMFI LE/ 0, 0]]
#POP rel ease
#OUTPUT

== Display whether configured processors
== are up or down, generalized to run on all systens.

[#DEF cpuupor down ROUTI NE | BODY]|
#FRANVE
#PUSH cpucount er cpustatus nmaxcpus type
#SET cpucounter O
SINK [#ARGUMENT / TEXT maxcpus/ NUMBER] == cpu count
[#LOOP | WHI LE| cpucounter < maxcpus | DQ
SINK [#ARGUMENT / TEXT cpust at us/ NUMBER]
[#CASE [#PROCESSORTYPE [cpucount er]]
| -2 | #SET type Unknown type
-1 | #SET type Nonexi stent
| #SET type TNS1
| #SET type TNS2
| #SET type TXP
| #SET type VLX
| #SET type CLX
| #SET type CYCLONE
] == end of CASE

107365 Tandem Computers Incorporated 8-3

Example of a System Management Program

Monitoring System Operation

Figure 8-1. Monitoring System Status (Page 3 of 12)

== For CPU status, -1 = up and 0 = down
[#] F cpustatus | THEN
#OUTPUT [type] Processor [cpucounter] is up
| ELSE]
#OUTPUT [Tcr][type] Processor [cpucounter] &
is down.[Tce]
] ==end if
#SET cpucounter [#COWPUTE cpucounter + 1]
] == end | oop
#UNFRAME
] == end define

cpuupor down [#PROCESSORSTATUS]
#OUTPUT

== Display the file size of OPRLOG and ESLOG

#PUSH fil enane maxext size ternout eof pri sec

#SET fil ename $SYSTEM SYSTEM OPRLOG
[#1 F [#FI LEI NFO EXI STENCE/ [fi |l enane]] | THEN
#SETMANY eof pri sec, [#FILEl NFQ EOF, PRI MARY, SECONDARY/ &
[fil enane]]
#SET maxext [#COWPUTE [#FI LEI NFO' MAXEXTENTS/ [fil enane]] &
- 1]
#SET size [#COWPUTE (eof*100) / ((pri + &
(maxext*sec)) * 2048)]
[#| F ternmout AND (size = 100) | THEN
#OUTPUT [rev] OPRLOG is [size] percent full.[end]
| ELSE]
#OUTPUT OPRLOG is [size] percent full.
] == end if
| ELSE| == oprlog does not exist.
] == end if

#SET fil ename $SYSTEM SYSTEM ESLOG
[#1 F [#FI LEI NFO EXI STENCE/ [fi |l enane]] | THEN
#SETMANY eof pri sec, [#FILEl NFQ EOF, PRI MARY, SECONDARY/ &
[fil enane]]
#SET maxext [#COWPUTE [#FI LEI NFO' MAXEXTENTS/ [fil enane]] &
- 1]
#SET size [#COWPUTE (eof*100) / ((pri + &
(maxext*sec)) * 2048)]
#OUTPUT ESLOG i s [size] percent full.
| ELSE| == esl og does not exi st.
] == end if

8-4 107365 Tandem Computers Incorporated

Example of a System Management Program

Monitoring System Operation

Figure 8-1. Monitoring System Status (Page 4 of 12)

#POP fil enane maxext size ternout eof pri sec
#OUTPUT

== Di splay an anal ysis of disk space

#PUSH maxfragnents m nfreespace addr dsapout dsapout?2
#PUSH di sk pfree Iine fragments

== Set the nunber to flag for nmaxi num fragnents:
#SET maxfragnments 100

== Set the percent nininmumfree space to flag
#SET m nf reespace 10

#OUTPUT Di sk space anal ysi s:

#OUTPUT / HOLD/ disks > [#COMPUTE 100 - [m nfreespace]] &
percent ful

#OUTPUT ~ and > [naxfragnents] fragments ..

DSAP / QUTV dsapout/ *, SHORT

== Renpve banner |ines from out put

#EXTRACTV dsapout |ine

[#LOOP | WHI LE] NOT [#MATCH vol ume* [line]] | DO
#EXTRACTV dsapout |ine

] == end | oop

== Renpve lines with "unavail abl e" di sks
#SET addr [#CHARFI ND dsapout 1 unavail abl e]
[#LOOP | WHI LE] [addr] |DdO
#LI NEDEL dsapout [#LI NEADDR dsapout [addr]]
#SET addr [#CHARFI ND dsapout [addr] unavail abl e]
] == end | oop

== Copy for fragment count
COPYVAR dsapout dsapout 2
[#LOOP | WHI LE| NOT [#EMPTYV dsapout] | DO
#EXTRACTV dsapout |ine == data line
#SET di sk [#CHARGET line 1 FOR 8] == di sk nane
#SET pfree [#CHARGET |ine 38 FOR 2] == percent
[#I F [pfree] < [minfreespace] | THEN
#OUTPUT /[HOLD/ [Ter] [di sk]
#OUTPUT / COLUWN 13/ is [#COWPUTE 100 - [pfree]] &
percent full.[Tce]
] ==end if
] == end | oop

107365 Tandem Computers Incorporated 8-5

Example of a System Management Program

Monitoring System Operation

Figure 8-1. Monitoring System Status (Page 5 of 12)

[#LOOP | WHI LE] NOT [#EMPTYV dsapout2] | DO

#EXTRACTV dsapout2 |ine == data line
#SET di sk [#CHARGET line 1 FOR 8] == di sk nane
#SET fragnents [#CHARGET |ine 45 FOR 4] == fragnment count

[#I F fragments > [maxfragments] | THEN|
#OUTPUT/ hol d/ [Tcr] [di sk]
#OUTPUT / COLUWN 13/ has [fragnents] fragnents.[Tce]
] ==end if
] == end | oop

#POP maxfragnments m nfreespace addr dsapout dsapout 2
#POP di sk pfree line fragnents
#OUTPUT

== Check specified files for index |evel growh and
== for file > 90% full

[#DEF | vl MACRO | BODY]

#FRANVE
== Check for index level increase growth
== Synt ax: LVL fil enane acceptabl e_i ndex_| evel nunber

== Exanpl e: LVL DATABASE 3

#PUSH stats line |l evel eof maxbytes percent
#OUTPUT Checki ng %%
SQLCI/ QUTV st at s/ FI LEI NFO %% STAT,;
[#LOOP | WHI LE| NOT [#MATCH LEVEL* [line] OR
[#EMPTY [stats]]] | DO
#EXTRACTV stats line
] == end | oop
#EXTRACTV stats line
#SETMANY | evel, [line]
[#1 F NOT [#MATCH ERROR [l evel]] | THEN
[#IF [l evel] > %% | THEN
#OUTPUT %1% has grown from %2% i ndex levels to &
evel].
]
]

#SETMANY eof naxbytes, [#FILEI NFO /ECF, MAXBYTES/ %1%
#SET percent [#COVMPUTE [eof]*100/[maxbyt es]]
[#I F [percent] > 90 | THEN
#OUTPUT %1% is [percent] percent full
] ==end if
#UNFRAME

[

8-6 107365 Tandem Computers Incorporated

Example of a System Management Program

Monitoring System Operation

Figure 8-1. Monitoring System Status (Page 6 of 12)

] == end def
#OUTPUT

== Report on dat abases.

== (Insert database files that you want to nonitor.)
== The format is: filenane Acceptabl el ndexl evel Nunber
== Exanple: LVL $SYSTEM SYSTEM USERI D 1

== Di splay Spool com i nfornation
#PUSH deverror spoolout line collector state size device
#PUSH error num
#SET deverror O
#OUTPUT
#OUTPUT SPOOLCOM i nf ormati on
SPOCOLCOM / QUTV spool out/ ; COLLECT ; DEV
#EXTRACTV spool out |ine == banner
#EXTRACTV spool out line == blank Iine
#EXTRACTV spool out line == first collector
[#LOOP | WHI LE| NOT [#EMPTY [line]] |DQ
#SETMANY col | ector state, [line]
#SET size [#CHARCET |line 74 FOR 2]
[#I F (size > 90) | THEN
#OUTPUT /hold/ [Tcr]collector [collector] is [state]
#OUTPUT ~_AND is [size] percent full.[Tce]

] ==end if
#EXTRACTV spool out line == get next collector
] == end | oop

#QUTPUT Checki ng devices ..
#EXTRACTV spool out |ine == banner with device state etc.
#EXTRACTV spool out Iine == first device
[#LOOP | WHI LE] NOT [#EMPTYV line] | DO
#SETMANY devi ce state errornum [#CHARCGET line 1 FOR &
50]
[#] F NOT [#MATCH WAI TING [state]] AND NOT [#MATCH JOB* &
[state]] | THEN
#OUTPUT / HOLD/ [Tcr]device [device]
#OUTPUT / COLUWN 25/ is [state] [errornuni[Tce]
#SET deverror -1

] ==end if
#EXTRACTV spool out |ine == get next device
] == end | oop

107365 Tandem Computers Incorporated 8-7

Example of a System Management Program

Monitoring System Operation

Figure 8-1. Monitoring System Status (Page 7 of 12)

[#I F NOT deverror | THEN
#OUTPUT
#OUTPUT All Spool er devices K
] ==end if
#POP deverror spoolout line collector state size device
#POP errornum
#OUTPUT

#PUSH vol ok stat |ine volune vol status file code
#PUSH eof prinmary secondary code ful
#SET vol ok -1

#OUTPUT TMF i nfornation:
#OUTPUT Col | ecting TMF status...
TMFCOM / QUTV stat/ STATUS TMF; STATUS VOLUMVES
#EXTRACTV stat line == get first status line
[#LOOP | WHI LE] NOT [#MATCH volune [line]] |DQ
#OUTPUTV | i ne
#EXTRACTV stat line
] == end | oop
#EXTRACTV stat |ine == underscore
#EXTRACTV stat line == first valid status volune line
[#LOOP | WHI LE| NOT [#EMPTYV stat] | DQ
#SETMANY vol _ status, [line]
[#1 F [#MATCH DI SABLED [status]] | THEN
#OUTPUT
#OUTPUT [vol] is [status]
#SET vol ok O
] ==end if
#EXTRACTV stat line
] ==end if
[#I F vol ok | THEN
#OUTPUT
#OUTPUT All TMF vol umes OK
] ==end if

107365 Tandem Computers Incorporated

Example of a System Management Program

Monitoring System Operation

Figure 8-1. Monitoring System Status (Page 8 of 12)

== Cet the percent full for TMF audit trail files
#OUTPUT
[#LOOP | DQ
#SET file [#FI LENAMES/ MAXI MUM 1, PREVI QUS
[file]l/$*. AUDIT. *]
[#I F (NOT [#EMPTYV file]) | THEN
[#SETMANY eof primary secondary code
[#F1 LEI NFQ' ECF, PRI MARY, SECONDARY, CODE /[fil e]]
] == end set many
[#I F ([code] = 134) | THEN
#SET full [#COWUTE (eof *100) / &
((primary +(15*secondary)) * 2048)]
[#IF [termout] AND ([full] = 100) | THEN
#OUTPUT [rev][file] is 100 percent full.[end]

| ELSE
#OUTPUT [file] is [full] percent full
] == end if ternout
] == end if code

] == end if not enptyv
| UNTIL] ([#EMPTYV file])
] == end | oop
#POP vol ok stat |ine volunme vol status file code
#POP eof primary secondary code ful
#OUTPUT

== Di splay disk status.

== Use PUP to get the status.

== Save output in pup_out.

== Loop, ignoring blank lines, and tokenize each |ine.

== Display paths in the "H', "D', "R', and "S" states.

== Display paths that are not "P' or "M,the preferred paths.

== Due to the format change of PUP output, this portion
== will work for C20 or later versions of PUP only.

#PUSH scanl i ne badsectorflag puplistdev pupcomrand
[#I F [version] >= 20 | THEN
#OUTPUT PUP i nfornmation:
#SET badsectorflag O
PUP / QUTV puplistdev/ LISTDEV DI SC == col |l ect data
#EXTRACTV pupl i stdev scanline == renove banner
#EXTRACTV pupl i stdev scanline == copy right
[#LOOP | WHI LE| NOT [#EMPTYV puplistdev] | DO
#EXTRACTV pupl i stdev scanline == get one |ine

107365 Tandem Computers Incorporated 8-9

Example of a System Management Program

Monitoring System Operation

Figure 8-1. Monitoring System Status (Page 9 of 12)

[#1 F NOT [#CHARFINDV scanline 6 "?"] | THEN
[#1 F NOT [#CHARFINDV scanline 8 "-P'] AND
NOT [#CHARFI NDV scanline 8 "-M"] AND
[#CHARFI NDV scanline 18 " *"]
| THEN] #OUTPUT [#CHARGET scanline 6 FOR 10] using &
backup pat h.
] ==end if
[#CASE [#CHARGET scanline 18 FOR 1]
| O #OUTPUT [Tcr] [#CHARGET scanline 6 FOR 10] &
di sk down[Tce]
| H #OUTPUT [Tcr][#CHARGET scanline 6 FOR 10] &
Hard down[Tce]
| Rl #OUTPUT [Tcr] [#CHARGET scanline 6 FOR 10] &
revivi ng[Tce]
| S| #OUTPUT [Tcr] [#CHARGET scanline 6 FOR 10] &
Speci al state[Tce]
| 1] #OUTPUT [Tcr] [#CHARGET scanline 6 FOR 10] &
I naccessi bl e[Tce]
| OTHERW SE| [#] F ([#CHARFINDV scanline 8 "-P'] OR
[#CHARFI NDV scanline 8 "-M"]) == accept -p or -m
| THEN|
== send a pup listbad comand
#APPEND pupconmand |istbad [#CHARGET scanline 6
FOR 10]
] ==end if
] == end case
] == end if charfind
] == end | oop
#POP version scanline badsectorflag puplistdev
#OUTPUT

== Check for bad disk sectors
#PUSH pupout addr badsectorflag |inecounter
#PUSH maxl i nes

[#DEF nmsg STRUCT
BEG N
CHAR di sk(0:12);
CHAR ok(0:1) VALUE CK;
END;
] == end def

#OUTPUT Checking for bad sectors on all disks ..
PUP /1 NV pupcomand, OUTV pupout/

8-10 107365 Tandem Computers Incorporated

Example of a System Management Program

Monitoring System Operation

Figure 8-1. Monitoring System Status (Page 10 of 12)
#LI NEDEL pupout 1 for 2 == del ete banner

== Renove "#li st bad"
#SET addr [#CHARFI ND pupout 1 #LI STBAD|
[#LOOP | WHILE] [addr] > 0 | DO

#CHARDEL pupout [addr] for 9

#SET addr [#CHARFI ND pupout addr #li st bad]
] == end | oop

#SETMANY badsectorflag |inecounter, 0 1
#SET max!| i nes [#LI NECOUNT pupout]
[#] F [#MATCH #EXI T [#LI NEGET pupout [mexlines] for 1]]

| THEN|
#L1I NEDEL pupout [naxlines] == delete last |ine (#exit)
#SET max!| i nes [#LI NECOUNT pupout]
] ==end if

#SET nsg: di sk(0: 12) [#LI NEGET pupout 1 for 1]
[#LOOP | WHI LE] |inecounter <= maxlines
| DO |
[#I F [#MATCH NO* [#LI NEGET pupout [linecounter] for 1]]
| THEN
#L1 NEDEL pupout [linecounter] ==renpve "NO BAD SECTORS"
#SET | i necounter [#COWPUTE |inecounter -1]
#SET nmaxlines [#COWPUTE naxlines - 1]

#L1 NEDEL pupout |inecounter == renove |ine $vol une-x
#LI NEI' NS pupout [linecounter] [mBg] == insert structure
| ELSE

== Prepare structure for next possible OK disk
[#1 F [#MATCH $* [#LI NEGET pupout [linecounter] for 1]]

| THEN|
#SET nsg: di sk(0: 12) [#LI NEGET pupout [linecounter]
for 1]
| ELSE

#SET badsectorflag -1 == flag to output entire report

]
] ==end if, end if
#SET | i necounter [#COWPUTE |inecounter + 1]
] == end | oop

[#| F [badsectorfl ag]

| THEN] #OUTPUTV pupout

| ELSE|] #OUTPUT

#OUTPUT Al l disk sectors K

] ==end if
#POP pupcomand pupout addr badsectorflag |inecounter
#POP maxl i nes
#OUTPUT

107365 Tandem Computers Incorporated 8-11

Example of a System Management Program

Monitoring System Operation

Figure 8-1. Monitoring System Status (Page 11 of 12)

== Check the status of other devices

#PUSH pupl i stdev scanline state device otherdevs

#OUTPUT Checki ng status of other devices ...
PUP / QUTV puplistdev/ LI STDEV
#EXTRACTV pupl i stdev scanline == headi ngs
#EXTRACTV pupl i stdev scanline == bl ank
#EXTRACTV pupl i stdev scanline == $0
[#I F [#MATCH OFF [#CHARGET scanline 18 FOR 3]]

| THEN] #OUTPUT $0 | ogging is OFF.

#OUTPUT

] ==end if

#SET ot herdevs -1
[#LOOP | WHI LE| NOT [#EMPTYV puplistdev] | DO |
#EXTRACTV pupl i stdev scanli ne
#SET devi ce [#CHARGET scanline 65 FOR 4]
== the #IF statement will skip:
== |ines with no state (device is OK)
== |ines with no device number (-B backups)
== Jlines with type 3 (disk, handled in above code)
== Jines without a $ in device nanme (page banners)
#SET state [#CHARGET scanline 18 FOR 1]
[#I F NOT [#EMPTYV state] AND
NOT [#EMPTYV devi ce] AND
NOT [#MATCH 3 [device]] AND
[#MATCH $ [#CHARGET scanline 6 FOR 1]]
| THEN|
[#I F ot herdevs | THEN|
#SET ot herdevs 0
#OUTPUT [Tcr] Check the foll owi ng devices: [Tce]
] ==end if

8-12 107365 Tandem Computers Incorporated

Example of a System Management Program

Monitoring System Operation

Figure 8-1. Monitoring System Status (Page 12 of 12)

[#CASE [st at e]

| O #OQUTPUT [#CHARGET scanl i ne
| H #OUTPUT [#CHARGET scanli ne
| R #QUTPUT [#CHARGET scanl i ne
| S| #OUTPUT [#CHARCGET scanl i ne
| 1] #OUTPUT [#CHARGET scanli ne
| OTHERW SE

#OUTPUT [#CHARGET scanline 6 FOR 10] state: &

FOR 10] down

FOR 10] Hard down
FOR 10] reviving

FOR 10] Special state
FOR 10] I naccessible

(o) e>RNe)Mo e}

[state]
] == end case
] ==end if
] == end | oop
] == end if [version] = 20

#POP puplistdev scanline state device ot herdevs
#OUTPUT

TI VE
#UNFRAME

107365 Tandem Computers Incorporated 8-13

Example of a System Management Program

Monitoring System Operation

(This page left intentionally blank)

8-14 107365 Tandem Computers Incorporated

9 Syntax Summary

The syntax diagrams summarized in this appendix are divided into five categories:

0 The command interpreter set of commands and functions, supplied with TACL in
the directory :UTILS:TACL

[0 The built-in functions and variables that constitute the TACL programming
language

[0 The specialized forms of the #DEF function used to create and redefine structured
variables (STRUCT declarations)

[0 The specialized forms of the #SET function used to assign values to TACL built-in
variables

[0 The commands of the #DELTA character processor

‘UTILS:TACL The following summarizes the syntax of the TACL command interpreter commands
Commands and and functions:
Functions
ACTI VATE [[\ node-nane.]{$process-nane | cpu,pin }]

def i ne- nane
(define-nane [, define-nane])}

[, LIKE define-nane | [, attribute-spec]

ADD DEFI NE {

ADDDSTTRANSI TI ON start-date-tine , stop-date-tine , offset

ADDUSER [/ run-option [, run-option] ..Il]
group- nane. user-nane , group-id, user-id

ALARMOFF

. . , attribute-spec
ALTER DEFI NE def i ne- name- | i st { | RESET reset—list}

ALTPRI [\ node- nane.]{$process-nane | cpu,pin} , pri

ASSIGN [logical -unit [, [actual -file-nane]
[, create-open-spec] ...] 1]

PRI VATE . .
ATTACHSEG { SHARED } file-name directory-nane

BACKUPCPU [cpu]
BREAK [variabl e-level]
BU LTINS [/ { FUNCTIONS | VARIABLES } /]

BUSCMD [/ run-option [, run-option] ..I|]
{ X] Y}, { DOMWN| UP} , fromcpu , to-cpu

107365 Tandem Computers Incorporated 9-1

Syntax Summary

:UTILS:TACL Commands and Functions

ALL
ALL ASSI GN E
CLEAR [|ALL PARAM
E ASSI GN / ogi cal -uni t
PARAM par am nane

COLUWNI ZE /i st
COWENT [conmment-text |

_COWPAREV string-1 string-2

COWPUTE expressi on

_CONTI ME_TO TEXT contine-1ist
_CONTI ME_TO _TEXT_DATE conti ne-1i st
_CONTI ME_TO _TEXT_TI ME contine-1li st

COPYDUWP [/ run-option [, run-option] ...l]
source-file , dest-file

COPYVAR vari abl e-1 evel -in vari abl e-1 evel - out
CREATE file-nane [, extent-size]
CREATESEG fi | e- nane

DEBUG [[\ node-nane.]{$process-nane | cpu,pin } |
[, TERM [\ node- nane.] $t ernmi nal - nane |

_DEBUGGER current-trace-val ue reason-for-entry

DEFAULT [/ run-option [, run-option] /]
defaul t-nanes [, "default-security"]
, "default-security"

DELETE DEFI NE defi ne- nane-1i st

DELUSER [/ run-option [, run-option] .. []
group- nanme. user - nane

DETACHSEG di rect or y- nane
ENV [environnent - parameter |
EXIT

num
FC [J-num []
Utext [

FILEINFO[/ OUT list-filel]
[file-nane-tenplate [[,] file-nane-tenplate]

FILENAMES [/ OUT [ist-filel]
[file-name-tenplate [[,] file-nane-tenplate]

9-2 107365 Tandem Computers Incorporated

Syntax Summary

:UTILS:TACL Commands and Functions

FILES [/ QUT list-file [l]
[subvol-tenplate [[,] subvol-tenplate] ...]

FI LETOVAR fil e-nane vari abl e-1 evel
HELP

H STORY [num]

HOVE [directory-nane |

INFO[/ OUT list-file !/] DEFINE define-nane-list [, DETAIL]
I NIl TTERM

| NLECHO { OFF | ON }

I NLEOF

INLOUT { OFF | ON }

I NLPREFI X [prefix]

INLTO [vari abl e-1evel]

JA N vari abl e- 1 evel

KEEP [/ LIST / 1 numvariable [variable]

KEYS

LIGHTS [/ run-option [, run-option] .../]
ON ., sys-option
0 OFF ﬁ S/ op] ..[, BEAT]
[l SMOOTH [num ’

LOAD [/ KEEP num/] file-nanme [file-nane]
LOGOFF [/ option [, option] ..l]

group- nane. user - nane [J
LOGON [] group-id, user-id 0

Llalias U
], password B
[, ol d- passwor d, ° new passwor d
L, ol d- password, ° new passwor d, *new password L]

[; paraneter [, paraneter] ...]
_LONGEST /i st
_MONTH3 num
d BEY] command-file
QUTVAR [/ option [, option] ..l] string

PARAM [par am nane param val ue
[, param nane paramvalue | ...]

PASSWORD [/ run-option [, run-option] ../]
[password]

107365 Tandem Computers Incorporated 9-3

Syntax Summary

:UTILS:TACL Commands and Functions

PAUSE [[\ node-nane.]{$process-nane | cpu,pin } |
PMSEARCH subvol -spec [[,] subvol -spec |

PMSG { ON | OFF }

POP variable [[,] variable]

PPD [/ OQUT list-filel]
[[\node-nane.][{ $process-name | cpu,pin| * } 1]

PURGE / option | file-nane-tenplate [, file-nane-tenplate ...]
PUSH variable [[,] variable]

RCVDUWP [/ run-option [, run-option] ../I|]
dunp-file , cpu, { X| Y} [, param][, param]]

RECEI VEDUMP /| OUT dunp-file | cpu , bus
[, param][, param]]

RELOAD [/ run-option [, run-option] ..[I]
cpu-set [; cpu-set]| ...
[HELP]

REMOTEPASSWORD [\ node-nanme [, password]]
RENAME ol d-file-nanme [,] newfile-nane

RESET DEEI NE { *attr/bute-nan"e [, attribute-nane] }

[RUNND) | programfile [| run-option [, run-option] ../]
[param set]

SEG NFO

attribute-spec

SET DEFI NE { LI KE defi ne-nane

} [, attribute-spec]

SET DEFMODE { ON | OFF }

SET HGHPIN { ON | OFF }

SET INSPECT { OFF | ON | SAVEABEND }
SETPROVPT { SUBVOL | VOLUME | BOTH | NONE }
SET SWAP [$vol une- nane |

nont h da . QM 0
SETTI ME { day n’ont}/;} year , hour: nmn[: sec] %t?} %

SET VARIABLE [/ option [, option]/] variable-level [text]

SET VARI ABLE built-in-variable [built-in-text]
SHOW ([/ OUT list-filel 1 [attribute [, attribute] ...]

9-4 107365 Tandem Computers Incorporated

Syntax Summary

:UTILS:TACL Commands and Functions

SHOW|[/ QUT list-file/] DEFINE [attribute-nane | *]
SINK [text]

STATUS [/ OUT list-filel] [range] [, condition]
[, DETAIL] [, STOP]

STOP [[\ node- nane.]{$process-nane | cpu,pin }]
SUSPEND [[\ node-nane.]{$process-nane | cpu, pin}]
SW TCH

SYSTEM [\ node- nane |

SYSTI MES

[\ node-nanme. 1 TACL [/ run-option [, run-option] ..[]
[backup-cpu-num] [; paranmeter [, paraneter]| |

TI VE

USE [directory-nanme [[,] directory-nane]| ...]
USERS [/ run-option [, run-option] ..l 1 [range]
VARI ABLES [directory-nane |

VARINFO [variable [[,] variable] ...]

VARTCFI LE vari abl e-1 evel file-nane

VCHANGE [/ option [, option] ..l] variable-Ievel
string-1 string-2 [range]

VCOPY [/ option [, option] ..l] source-var range
dest -var dest-1ine

VDELETE [/ option [, option] | ..] variable-Ilevel range

VFIND [/ option [, option] | ..] variable-level string
[range]

VI NSERT vari abl e-1 evel [ine-num
VLIST [/ option[, option] [..] variable-level [range]

VMWWE [/ option [, option] | ...] source-var range
dest-var dest-1line

VOLUME [[\ node-nane.lvolunme | [, "security"]
VTREE [directory-nane]

WAKEUP { ON | OFF }

WHO

{ X| Y }BUSDOMWN from cpu , to-cpu

{ X| Y }BUSUP fromcpu , to-cpu

107365 Tandem Computers Incorporated 9-5

Syntax Summary

Built-In Functions and Variables

Built-In Functions and The following summarizes the syntax of the built-in functions and variables used for
Variables programming in TACL:

#ABEND [/ option [, option] ..l]
[[\ node-nane.]{$process-name | cpu,pin} [text]]

#ABORTTRANSACTI ON
#ACTI VATEPRCCESS [[\ node- nane.]{$process-nane | cpu, pi n}]
#ADDDSTTRANSI TI ON / ow gnt hi gh-gnt of fset

#ALTERPRI ORI TY [[\ node-nane.]{$process-nanme | cpu, pin }]
pri

#APPEND t o-vari abl e-level [text]

#APPENDV t o-variabl e-1evel { fromvariable-level | string }

#ARGUVENT [/ option [, option] .../l]
alternative [alternative]

#ASSIGN [/ option [, option] .../ logical-unit]
#BACKUPCPU [cpu]

#BEG NTRANSACTI ON

#BREAKMODE

#BREAKPO NT vari abl e-| evel state

#BU LTINS [/ { FUNCTIONS | VAR ABLES } /]

#CASE text enclosure
group- nane. user - nane [J

#CHANGEUSER [/ CHANGEDEFAULTS /] [] group-id, user-id O
[lalias W
password
#CHARACTERRULES

#CHARADDR vari abl e-1 evel |ine-addr
#CHARBREAK vari abl e-1 evel char-addr
#CHARCOUNT vari abl e- | evel

: FOR char - count
#CHARDEL vari abl e-| evel char-addr-1 [IO char - addr - 2]

107365 Tandem Computers Incorporated

Syntax Summary

Built-In Functions and Variables

#CHARFIND [/ EXACT /] variabl e-level char-addr text
#CHARFINDR [/ EXACT /] variable-Ilevel char-addr text
#CHARFINDRV [/ EXACT /] variabl e-level char-addr string
#CHARFINDV [/ EXACT /|] string-1 char-addr string-2

, FOR’ char - count
#CHARCET vari abl e-1 evel char-addr-1 [IO char - addr - 2]

FOR’ char - count
#CHARGETV var-1 var-2 char-addr-1 [TO char - addr - 2]

#CHARI NS string char-addr text

#CHARI NSV vari abl e-1 evel char-addr string

#COLDLOADTACL

#COWMPAREV string-1 string-2

#COWPUTE expressi on

#COVPUTEJULI ANDAYNO year nonth day

#COVWPUTETI MESTAMP year nonth day hour nmin sec mlli nmicro
#COVWPUTETRANSI D system cpu sequence crash-count

#CONTI ME ti nest anp
CONVI | PROCESSI D / integer-string
ERTPHANDLE { | I NTEGERS / process-identifier }

#CONVERTPROCESSTI ME process-tine

#CONVERTTI MESTAMP gnt-tinestanp direction [\ node-nane]
#CREATEFI LE [/ EXTENT num/] file-nane
#CREATEPROCESSNAME

#CREATEREMOTENAME \ node- nane

#DEBUGPROCESS [/ NOW/]
[\ node- nane.] {$process-nanme | cpu,pin}
[., TERM [\ node- nane.] $t erm nal - nane |

ALl AS
E E DELTA E
[JmacrO []encl osure

=
#DEF vari abl e D@%‘ NE H]
=

DI RECTORY [segnent-spec]
STRUCT structure-body

#DEFAULTS [/ option [, option] |]
#DEFI NEADD defi ne-nane [flag |

107365 Tandem Computers Incorporated 9-7

Syntax Summary

Built-In Functions and Variables

#DEFI NEDELETE defi ne- nane

#DEFI NEDELETEALL

#DEFI NEI NFO def i ne- nane

#DEFI NEMODE

#DEFI NENAMVES def i ne-tenpl at e
#DEFI NENEXTNAMVE [defi ne-nane |

defi ne- nane attri but e- nane
#DEFI NEREADATTR { i } { P

#DEFI NERESTORE [/ option [, option] ../l] buffer
#DEFI NERESTOREVWORK

#DEFI NESAVE [/ WORK /] define-nane buffer

#DEFI NESAVEWORK

#DEFI NESETATTR attri bute-nanme [attribute-val ue |
#DEFI NESETLI KE defi ne- nane

#DEFI NEVALI DATEWORK

#DELAY csecs

#DELTA [/ COVMANDS variable-level | 1 [text]

#DEVI CEINFO / option [, option] .../
{ $device-nane | file-nane }

#EMPTY [text]
#EMPTYV [/ BLANK /] string

#EMSADDSUBJECT [/ SSID ssid /] buffer-var
token-id [token-val ue]

#EMSADDSUBJECTV [/ SSID ssid !]| buffer-var
token-i d source-var

#EMSGET [/ option [, option] ../]| buffer-var get-op

#EMSGETV [/ option [, option] ..I]| buffer-var get-op
result-var

#EMSINIT [/ option [, option] |] buffer-var ssid
event - nunber token-id [token-value] ..]

#EMSINITV [/ option [, option] |] buffer-var ssid
event - nunber token-id source-var

#EMSTEXT [/ option [, option] ..I 1 buffer-var

#EMSTEXTV [/ option [, option] ...I 1 buffer-var

formatted-var [|engths-var]

9-8 107365 Tandem Computers Incorporated

Syntax Summary

Built-In Functions and Variables

#ENDTRANSACTI ON

#EOF vari abl e- 1 evel

#ERRORNUVBERS

#ERRORTEXT /[option [option] ../

#EXCEPTI ON

H#EXIT

#EXTRACT vari abl e- 1 evel

#EXTRACTV fromvari abl e-1 evel to-variable-|evel

#FI LEGETLOCKINFO [/ option | 1 fvnane control |ockdesc
participants

#FILEINFO / option [, option] ../ file-nanme

#FILENAMES [/ option [, option] ..Il]
[file-nanme-tenplate]

#FILTER [exception [exception] ...]

#FRANVE

#GETCONFI GURATION / option [, option] ../
#GETPROCESSSTATE [/ option [, option] ... |]
#CGETSCAN

#HELPKEY

#H GHPI N

#H STORY [/ option [, option] ..[I]

#HOVE

#IF [NOT]| nuneric-expression [enclosure]

#I N

#1 NFORVAT

N TTERM

#1 NLI NEECHO

#1 NLI NEEOF

#1 NLI NEQUT

#| NLI NEPREFI X

#1 NLI NEPROCESS

#| NLI NETO

#INPUT [/ option [, option] .. 1 [pronpt]

107365 Tandem Computers Incorporated 9-9

Syntax Summary

Built-In Functions and Variables

9-10

#1 NPUTECF

#INPUTV [/ option [, option] ../] variable-Ilevel
pronpt -string

#| NSPECT

#1 NTERACTIVE [/ CURRENT /]

#1 NTERPRETJULI ANDAYNO j ul i an- day- num

#| NTERPRETTI MESTAMP four-word-ti nestanp

#1 NTERPRETTRANSI D transid

#JULI ANTI MESTAMP [type [tuid-request]]
#KEEP num vari abl e

#KEYS

#L1 NEADDR vari abl e- 1 evel char-addr

#L1 NEBREAK vari abl e-1 evel |ine-addr char-offset
#L1 NECOUNT vari abl e-1 evel

#LI NEDEL vari abl e-1evel |ine-addr-1 [FOR /1 ne- count]

TO /i ne-addr-2

#LINEFIND [/ EXACT /] variabl e-level |ine-addr text
#LINEFINDR [/ EXACT /] variable-level |ine-addr text
#LINEFINDRV [/ EXACT /] variable-level Iine-addr string
#LINEFINDV [/ EXACT /] variable-level |ine-addr string

. . FOR [i ne-count
#LI NEGET string |ine-addr-1 [TO /i ne- addr - 2]

TO /i ne-addr-2

#LI NEGETV string variabl e-1evel [|ine-addr-1 [FOR [ne- count]

#LI NEI NS vari abl e-1 evel |ine-addr text

#LI NEI NSV vari abl e-1 evel [ine-addr string

#LI NEJO N vari abl e-1 evel Iine-addr

#LOAD [/ option [, option] |] file-nane

#LOCKI NFO [ock- spec tag buffer

#LOGOFF [/ option [, option] .../l]
#LOOKUPPROCESS / option [, option] ...| specifier
#LOOP encl osure

#MATCH tenplate [text]

107365 Tandem Computers Incorporated

Syntax Summary

Built-In Functions and Variables

#MOM
#MORE
#MYGVOM
#MYPI D
#MYSYSTEM
#MYTERM

#NEWPROCESS programfile [| option [, option]...l]
[param set]

#NEXTFI LENAVE [file-nane]

#OPENINFO / option [, option] | { file-nane | device-nane }
tag

#OUT

#OUTFORVAT

#OUTPUT [/ option [, option] ../] [text]

#OUTPUTV [/ option [, option] ../l] string

#PARAM [par am nane |

#PAUSE [[\ node- nane.]{$process-nane | cpu,pin }]
#PNMSEARCHLI ST

#PMBSG

#POP variable [[,] variable]

#PREFI X

#PROCESS

#PROCESSEXI STS [\ node- nane. | {$process-name | cpu, pin }
#PROCESSFI LESECURI TY

#PROCESSI NFO / option [, option] .../
[[\ node-nane.]{$process-nane | cpu,pin}]

#PROCESSORSTATUS [\ node- nane |

#PROCESSORTYPE [/ BOTH | NAME /]
[\ node- nane. | {$process-nanme | cpu, pin }
cpu- num }
#PROVPT

#PURCE fil e- nane
#PUSH variable [[,] variable]
#RAl SE exception

107365 Tandem Computers Incorporated 9-11

Syntax Summary

Built-In Functions and Variables

#RENAVE ol d-fil e-name new-fil e-nane
#REPLY [text]

#REPLYPREFI X

#REPLYV string

#REQUESTER [/ option [, option] []
CLCSE vari abl e- 1 evel B
[J READ file-nane’error-var‘read-var°pronpt-var []
LUWRITE file-nane’error-var wite-var U

#RESET option [option]
#REST

#RESULT [text]
#RETURN

#ROUTI NENAME

#SEGVENT [/ USED /]

#SEGVENTCONVERT / FORVMAT { a | b '} / old-file-nane
new fil e-nane

#SEGQVENTINFO / option [, option] | [segnent-id]

#SEGVENTVERSI ON fi | e- nane

#SERVER / option [, option] ..l [server-nane |

4SET { [/ op;ion [z option]'/]'variable—level [text]}
built-in-variable [built-in-text]

#SETBYTES desti nati on source

#SETCONFI GURATION / option [, option] ...[/[tacl-inmage-nane]

#SETMANY vari abl e-name-1ist , [text]
#SETPROCESSSTATE
LOGGEDON
TSNLOGON E
#SETPROCESSSTATE / [| STOPONLOGOFF []7 { 0] 1}
PROPAGATEL OGON
PROPAGATESTOPONL OGOFF

#SETSCAN num

#SETSYSTEMCLOCK j ul i an-gnt node [tuid]
#SETV dest - vari abl e-1 evel source-string
#SHI FTDEFAULT

#SH FTSTRING [/ option |] [text]

9-12 107365 Tandem Computers Incorporated

Syntax Summary

Built-In Functions and Variables

#SORT [/ option | 1 [text]
#SPlI FORVATCLOSE
#SSGET [/ option [, option] ..l] buffer-var get-op

#SSGETV [/ option [, option] ../] buffer-var get-op
result-var

#SSINNT [/ TYPE O /]| buffer-var ssid conmand

[/ type-O-option [, type-0O-option] ..l]
#SSMOVE [/ option [, option] ...]] source-var dest-var
t oken-id

#SSNULL t oken-map struct

#SSPUT [/ option [, option] ..l] buffer-var token-id
[token-value [token-value] ...]

#SSPUTV [/ option [, option]..!/] buffer-var token-id
source-var

#STOP [/ option [, option] ..l]
[[\ node-nane.]{$process-name | cpu,pin} [text]]

#SUSPENDPROCESS [[\ node- nane.]{$process-nane | cpu, pi n}]
#SW TCH

#SYSTEM [\ node- nane |

#SYSTEMNAME syst em nunber

#SYSTEMNUMBER \ node- nane

#TACLOPERATI ON

#TACLSECURI TY

#TACLVERSI ON / REVI SI ON /

#T1 MESTAMP

#TOSVERSI ON [\ node- nane]

#TRACE

#UNFRAME

#USELI ST

#USERI D user

#USERNAME user

#VARI ABLEINFO / option [, option] ...I variable-Ievel
#VARI ABLES [/ { BREAKPONT | 10} /]

#VARI ABLESV [/ { BREAKPOINT | 10} /] variable-level

107365 Tandem Computers Incorporated 9-13

Syntax Summary

Built-In Functions and Variables

#WAI T vari abl e-1evel [variable-Ilevel]
#WAKEUP
#W DTH

9-14 107365 Tandem Computers Incorporated

Syntax Summary

STRUCT Declarations

STRUCT Declarations The following summarizes the forms of the #DEF function used to create and redefine
structured variables:

#DEF vari abl e STRUCT
BEA N decl aration [declaration] ...END ;
{ LI KE structure-identifier ; }

type identifier [VALUE initial-value] ;

type identifier (|ower-bound : upper-bound)
[VALUE initial-value] ;

STRUCT identifier [(|ower-bound : upper-bound)] ;
BEA N declaration [declaration] ...END ;
{ LI KE structure-identifier ; }

FI LLER num ;

type identifier [(|ower-bound : upper-bound)]
REDEFI NES previ ous-identifier ;

107365 Tandem Computers Incorporated 9-15

Syntax Summary

#SET Summary

#SET Summary The following summarizes the syntax of the #SET function when it is used to assign
values to built-in variables. SET VARIABLE commands used for the same purpose
have the same syntax.

#SET #ASSIGN [[/ option [, option] ...] logical-unit]
#SET #BREAKMODE { DI SABLE | ENABLE | POSTPONE }
#SET #CHARACTERRULES fi [e- nane

#SET #DEFAULTS subvol une- nane

#SET #DEFI NEMODE { OFF | ON }

#SET #ERRORNUMBERS n n n n

#SET #EXIT num

#SET #HELPKEY [key-nane]

#SET #H GHPIN { OFF | ON }

#SET #HOVE di rectory

#SET #IN fil e-nane

#SET #| NFORVAT { PLAIN | QUOTED | TACL }
#SET #| NLI NEECHO num

#SET #1 NLI NEOUT num

#SET #| NLI NEPREFI X [prefix]

#SET #| NLI NETO [vari abl e-1evel]

#SET #| NPUTEOF num

#SET #| NSPECT { OFF | ON | SAVEABEND }
#SET #MYTERM honme-term

#SET #OUT fil e-nane

#SET #OUTFORMAT { PLAIN | PRETTY | TACL }
#SET #PARAM [param nane [paramval ue |]
#SET #PMSEARCHLI ST searchl i st

#SET #PMSG num

#SET #PREFI X [text]

#SET #PROCESSFI LESECURI TY "security"

#SET #PROVPT num

#SET #REPLYPREFI X [num

#SET #SH FTDEFAULT { DOAN | NOOP | UP }
#SET #TACLSECURI TY "security"

#SET #TRACE num

#SET #USELIST [directory-nane [directory-nane]| ...]

9-16 107365 Tandem Computers Incorporated

Syntax Summary

#DELTA Command Summary

#SET #WAKEUP num
#SET #W DTH num

#DELTA Command
Summary

Table 9-1 summarizes the syntax of the #DELTA character processor commands.

Table 9-1. #DELTA Commands (Page 1 of 2)

Command Description

XA Convert ASCII

Y, XA Convert ASCII with error return
B Beginning

xC Character move

x:C Character move with return code
xD Delete

Elfile$ Open file for input

ECfile$ Open file for output

xXFC Lowercase lines

y,XFC Lowercase characters

X@FC Uppercase lines

yX@FC Uppercase characters

FEvar$ Test variable level for emptiness
FFvar$ Get frame number of variable level
xFGvar$ Compare lines to variable level
y,XFGvar$ Compare range to variable level
FL Get length from last | or S operation
FOvar$ Pop variable

FTvar$ Get variable type

xFTvar$ Set variable type

FUvar$ Push variable

xFUvar$ Push and load variable with x
Gvar$ Get text from variable level

H Whole buffer

ltext$ Insert text

Xl Insert ASCII

yXl Insert y*ASCII

xJ Jump characters

xK Kill lines

yxK Kill characters

xL Move by lines

Mvar$ Invoke macro

107365 Tandem Computers Incorporated 9-17

Syntax Summary

#DELTA Command Summary

Table 9-1. #DELTA Commands (Page 2 of 2)

Command Description

xP Write lines

y.XP Write characters

Qvar$ Get value from variable level
xStext$ Search

x:Stext$ Search with return code

XT Type lines

yXT Type characters

@Tvar$ Type variable level contents
Ttext$ Type text

xUvar$ Unload x into variable level
y,xUvar$ Unload x into variable level
XV View lines

xV View lines and show end
xXvar$ Extract lines to variable level
y,xXvar$ Extract characters to variable level
xY Read lines

z Get buffer size

\ Convert number in text to value in X
X\ Put x in text

N Exit from macro

? Condition

? NOT condition

' End condition

, Move X into Y

$ Clear Xand Y

. Get current position

= Display X or Y,X

< Begin iteration

X< Iterate x times

X Exit iteration

> End iteration

@> End iteration, do not decrement iteration count
! Comment

9-18 107365 Tandem Computers Incorporated

Appendix A Supplemental Information
for D-Series Systems

D-Series Operating
System Features

The D-series operating system supports expanded numbers of processes and devices.
This appendix introduces the features available in D-series software and includes the
following information:

(]
O
O
O

An overview of D-series operating system features
Changes to the SCMON interface
Changes to completion code handling

Changes to the EMS and SPI interfaces

For detailed information about D-series changes to the TACL product, including a list
of required and optional changes, see the TACL Reference Manual.

The following manuals contain additional information about D-series software:

O

O

The Introduction to D-series Systems provides an overview of D-series
enhancements.

The Guardian Application Conversion Guide describes differences between C-series
and D-series applications.

The Guardian Programmer’s Guide provides programming information for a
D-series operating system.

The System Procedure Calls Reference Manual describes syntax and programming
considerations for D-series procedures.

The System Procedure Errors and Messages Manual describes error codes, system
messages, and trap numbers for C-series and D-series procedures.

The D-series System Migration Planning Guide contains planning information for
migration from a C-series operating system to a D-series operating system.

The D-series operating system provides the following features:

O

O

More concurrent processes per CPU.

The D-series operating system allows more than 256 concurrent processes per CPU
(C-series software is limited to 256 concurrent processes per CPU). The actual
usable number of processes depends on available resources such as physical
memory.

More devices per system.
New file name storage format.

The D-series file name is stored as a variable-length string. The new storage format
applies to all file names, including disk files, devices, and processes.

107365 Tandem Computers Incorporated A-1

Supplemental Information for D-Series Systems

Communicating With a $CMON Process

Influence on Examples in

This Manual

Communicating With a

$CMON Process

0 New process identifiers.

The range of values for process identification numbers (PINs) has been expanded.
The D-series process file name, a variable-length string, replaces the C-series
process file name. The process handle is a new ten-word value that replaces the
C-series four-word process identifier. TACL supports a new field type for
STRUCT variables, called PHANDLE.

O New system procedures.

D-series procedures can accept and return longer file names and process hames,
and larger PIN values; new system procedures support these capabilities.

] New system messages.

These messages support the enhanced capability of the D-series operating system.
J New object file attributes.

There is a new RUN attribute, HIGHPIN, available for program files.

In general, D-series changes are available as options.

Examples listed in this manual run on D-series software without modification. Refer
to the guidelines in Section 1, “An Overview of TACL,” for steps to perform before
running the examples.

Section 5, “Initiating and Communicating With Processes,” contains an example that
illustrates communication with a SCMON process. If you communicate with a
$CMON process and run processes at high PINs, note that the format of the
ALTERPRIORITY message has been extended to support process handles.

When a user attempts to alter the priority of a process, the TACL process sends an
ALTERPRIORITY (-56) message to $CMON. This message contains the process
identifier of the target process.

Not all D-series processes can be represented by a C-series process identifier
(CRTPID); therefore, the ALTERPRIORITY (-56) message has been extended to include
the process handle of the target process. If the process handle can be converted to a
process identifier, TACL also includes the process identifier; otherwise, TACL sets the
process identifier field to zero.

107365 Tandem Computers Incorporated

Supplemental Information for D-Series Systems

Processing Completion Information

The ALTERPRIORITY message is defined as follows:
STRUCT al tpri~msg;

BEG N
I NT nsgcode; == -56
INT userid; == user altering the priority
INT cipri; == command interpreter
== initial priority
INT ciinfile [0:11]; == command interpreter INfile
INT cioutfile [0:11]; == command interpreter OUT file
INT crtpid [0:3]; == process identifier of target
== process
INT prognane [O0:11]; == program file of target process
INT priority; == new priority for target process
INT phandle [0:9]; == phandl e of target process
END;

TACL sends the new message to a C-series SCMON if a user on a D-series operating
system attempts to alter the priority of a process running on a C-series system. The
C-series SCMON process can extract a valid process identifier and ignore the extra
words in the message. The process handle for a process running on a C-series system
can always be converted to a process identifier.

Processing
Completion
Information

Section 5, “Initiating and Communicating With Processes,” describes how to use the
variable:_COMPLETION to access completion information.

Because a D-series PIN does not fit into a CRTPID field, D-series TACL uses a hew
structure for completion information. The TACL product provides C-series
compatibility by continuing to support the use of . COMPLETION.

In previous releases, TACL saved STOP (-5) and ABEND (-6) messages in the variable
:_ COMPLETION, if it existed. (TACL defines :_ COMPLETION as a STRUCT when
you log on, and the STRUCT remains unless you pop it.)

D-series TACL receives PROCDEATH (-101) messages instead of STOP and ABEND
messages. TACL saves a PROCDEATH message in the variable

._ COMPLETION”PROCDEATH, if it exists. (TACL defines
:_COMPLETION”PROCDEATH as a STRUCT when you log on, and the STRUCT
remains unless you pop it.)

If the variable :_COMPLETION exists, TACL converts the PROCDEATH system
message to a C-series STOP or ABEND system message and stores the message in

. COMPLETION. Note, however, that if the message represents an unnamed high
PIN process, the message will not fit in :_ COMPLETION. In such a case, TACL fills
. COMPLETION with zeroes.

New D-series TACL applications should use :_ COMPLETION~PROCDEATH.
Existing TACL applications may continue to use :_COMPLETION; however, the PIN
in the process identifier field is set to 255 for any high PIN value.

107365 Tandem Computers Incorporated A-3

Supplemental Information for D-Series Systems

Processing Completion Information

TACLSEGF (supplied by Tandem) defines :_ COMPLETION~PROCDEATH as
follows:

[#DEF : _conpl eti on™procdeath STRUCT
BEG N
I NT z"nmsgnunber ;
STRUCT z”"base
REDEFI NES z"*msgnunber ;

BEG N

CHAR byte(0:1);

END;
PHANDLE z~process handl e;
| NT4 z"cputi ne;
I NT z™j obi n;
| NT z"conpl eti on*code;
| NT z"term nati on“code;
| NT z"kill er~craid;

REDEFI NES z”t erm nati on“code;

SSID z"subsyst em
PHANDLE z~killer
| NT z ternext”l en
STRUCT z"procnane;

BEG N

| NT zof f set;

| NT zl en;

END;
| NT z™f | ags;
| NT z"reserved(0: 2);
STRUCT z~data

BEG N

CHAR byte(0: 111);

END;

STRUCT z"t er nt ext
REDEFI NES z~dat a;
BEG N
CHAR byte(0: 111);
END;
STRUCT z"pr ocname”
REDEFI NES z~dat a;
BEG N
CHAR byt e(82: 193);
END;
END;

]

. _conpl eti on”procdeat h: z"procnane: zof f set is the byte offset of the process
name. The process name will always be within the substructure z”dat a, so the offset
will always be between 82 and 193.

A-4 107365 Tandem Computers Incorporated

Supplemental Information for D-Series Systems

Communicating With Programmatic Interfaces

You can access the process name as follows:

PUSH proc”™of fset proc”len proc”l wa prochane
SET VARI ABLE proc”len &
[: _conpl eti on®procdeat h: z*pr ocnane: zl en]
[#| F proc™l en > 0 | THEN
SET VARI ABLE proc”of fset &
[: _conpl eti on®procdeat h: z*pr ocnane: zof f set]
SET VARI ABLE proc”lwa [#compute proc”offset+proc”l en-1]
SET VARI ABLE procnanme &
[: _conpl eti on®procdeat h: z*pr ocname”: byt e([proc”offset]: &
[proc”liwa])]

]

You can access the termination text as follows:

PUSH terntext~l en terntext”l wa terntext
SET VARI ABLE terntext”™l en &
[: _conpl eti on™procdeat h: z*t er nt ext | en]
[#IF terntext®l en > 0 | THEN
SET VARI ABLE terntext”™l wa [#conpute terntext”len-1]
SET VARI ABLE terntext &
[: _conpl etion”procdeat h: z "t erntext:byte(O:[termext™lwa])]

Communicating With Section 7, “Using Programmatic Interfaces,” describes how to access the SPI and EMS
Programmatic interfaces. To describe a high-PIN process to one of these interfaces, you must use a

Interfaces process handle in place of a process identifier (CRTPID). The D-series TACL product

recognizes a new data type called PHANDLE (process handle) for STRUCT variables.

TACL uses ten unsigned integers, separated by periods, to represent a process handle
in external form (as returned by #SSGET or #OUTVAR). Each integer can range from
0 to 65535. Use this external form whenever you send a process handle to TACL (as
used by #SSPUT and #SET). The following example shows a process handle in TACL
external form:

1.3.5.7.9.11.13.15.17.19

To display a process handle, you can use the OUTVAR command or #OUTPUTV
built-in function. The #VARIABLEINFO built-in function with option TYPE returns
type PHANDLE for a process handle field in a STRUCT.

#SSGET and #SSPUT convert a process handle to and from the external form. Neither
function checks the validity of the handle, but #SSPUT checks to make sure the handle
contains ten unsigned integers, each with a value between zero and 65535.

D-series TACL supports the new token data type ZSPI"TDTPHANDLE, which has
the value type of a process handle. The format of ZSPI"TDT*PHANDLE consists of

107365 Tandem Computers Incorporated A-5

Supplemental Information for D-Series Systems

Communicating With Programmatic Interfaces

ten integers, each ranging from 0 to 65535. A null process handle consists of ten
integers, each of which has the value 65535.

A new built-in function, #CONVERTPHANDLE, converts process file identifiers to
process handles and process handles back to process descriptors.

A new built-in function, #SPIFORMATCLOSE, closes the template file defined in
= EMS_TEMPLATES so that you can open a new template file.

107365 Tandem Computers Incorporated

Glossary

access mode. A file attribute that determines what operations you can perform on the
file, like reading and writing.

alias. An alternative name for a given function.

ancestor. The process that is notified when a named process or process pair is deleted.
The ancestor is usually the process that created the named process or process pair.

argument. A parameter that you specify when you invoke a macro or routine.

array data item. A portion of a STRUCT that is treated as an array; that is, you can refer
to the whole item, or you can refer to individual elements of it.

ASSIGN. An association of a physical file name with a logical file name made by the
TACL ASSIGN command. The physical file name is any valid file name. The logical
file name is used within a program. The ASSIGN is therefore used to pass file names
to programs.

BREAK mode. A mode of process execution where a process gains exclusive access to a
terminal when the BREAK key is pressed. BREAK mode is established using
SETPARAM function 3 or SETMODE function 11.

BREAK owner. The process that receives the break-on-device message when the BREAK
key is pressed. The establishment of BREAK ownership is achieved using SETPARAM
function 3 or SETMODE function 11.

breakpoint. A location (or point) in a program where execution is to be suspended so
that you can then examine and perhaps modify the state of the program. You can set
and clear breakpoints with DEBUGGER commands.

built-in. A function or variable built into TACL; a built-in cannot be modified. Other
variables can be modified by the user.

C-series system. A system that is running a C-series version of the Guardian 90
operating system.

CAID. See creator access ID.
child process. A process created by the current process.

code segment. An area of memory that contains program instructions to be executed,
plus related information. An absolute segment whose logical pages are read from but
never written back to the swap file.

command. A text string that directs the computer to perform a task. Commands are
usually composed of a verb that tells the computer what to do and an object or list of
objects that is acted on by the verb. TACL commands are interpreted by TACL and
are extensible.

command-interpreter monitor (SCMON). A server process that monitors requests made to
the TACL process and affects the way TACL responds.

107365 Tandem Computers Incorporated Glossary—l

Glossary

Glossary-2

completion code. A value used to return information about a process to its ancestor
process when the process is deleted. This value is returned in the process deletion
message, system message -101.

condition code. A status returned by some file-system procedure calls to indicate
whether the call was successful. A condition-code-greater-than (CCG) indicates a
warning, a condition-code-less-than (CCL) indicates an error, and a condition-code-
equal (=) indicates successful execution.

conversational mode. A mode of communication between a terminal and its /0O process
in which each byte is transferred from the terminal to the processor 1/0 buffer as it is
typed. Each file-transfer operation finishes when a line-termination character is typed
at the terminal. Contrast with page mode.

creator. The process that initiates execution of another process. Compare with mom
and ancestor.

creator access ID (CAID). A process attribute that identifies, by user ID, the user who
initiated the process creation. Contrast with process access ID.

data segment. A type of absolute segment whose logical pages contain information to
be processed by the instructions in the related code segment.

deadlock. A situation in which two processes or two transactions cannot continue
because they are each waiting for the other to release a lock.

default process. The process whose name is returned by the #PROCESS function. It is
the process most recently created by a RUN or RUND command, an implied RUN, or
a #NEWPROCESS built-in function, or for which TACL was most recently paused by a
PAUSE proc-spec command or a #PAUSE proc-spec built-in function; if that process is
no longer running, there is no default process.

DEFINE. A named set of attributes and values.

DEFINE name. An identifier preceded by an equal sign that can be used in place of an
actual name to identify a DEFINE in a procedure call. See DEFINE.

Delta. The low-level character editor provided by TACL.

destination control table (DCT). A collection of operating system data structures that
serves as a directory of named processes and logical devices.

device. A peripheral hardware attachment used for input and output; for example, a
printer or a disk.

device subtype. A value that further qualifies a device type. For example, a device type
of 4 indicates a magnetic tape drive; if the same device has a device subtype of 2, then
the magnetic tape drive has a 3206 controller.

disk volume. Also called a disk or a volume; a magnetic storage medium. Disk names
consist of a dollar sign ($) followed by one to seven alphanumeric characters (network)
or one to eight alphanumeric characters (local), the first of which must be alphabetic.

EDIT file. A file in a format defined by the EDIT product.

107365 Tandem Computers Incorporated

Glossary

enclosure. A unit composed of one or more labels, such as [THEN | or | DO], and the
text associated with each label. Enclosures are found only in the TACL built-in
functions #DEF, #IF, #CASE, and #LOOP, which are enclosed in brackets to provide
boundaries for their enclosures. TACL defers execution of text that is associated with
labels until it determines the correct label to use.

Enscribe. A database record management system.

exception. An unusual event that causes TACL to interrupt the normal flow of
invocations and transfer to special code (see exception handler). This unusual event
could be BREAK, a TACL error, or a user-defined exception.

exception handler. A series of TACL statements that perform resource deallocation and
cleanup after an exception.

exclusion mode. The attribute of a lock that determines whether any process except the
lock holder can access the locked data.

expand. A type of invocation (see invoke). To expand a variable, specify the variable
name in brackets; TACL returns the expansion in place of the variable name.

expression. A text, string, or integer constant, a variable, or a value obtained by
combining constants, variables, and other expressions with operators. Expressions are
used as arguments to commands and built-in functions.

extended data segment. One or more consecutive absolute segments that are
dynamically allocated by a process.

extensible data segment. An extended data segment for which swap file extents are not
allocated until needed.

extent. A contiguous area of a disk allocated to the same file.

fault tolerance. The ability of a computer system to continue operating during and after
a fault (the failure of a system component).

file code. An integer value assigned to a file for application-dependent purposes.

file lock. A mechanism that restricts access to a file by all processes except the lock
owner.

file. As used here, a file refers to an organized collection of data stored on a disk. In
general, a file on a Tandem system can be a disk file, a process, or a device.

file name. A unique name for a file. This name is used to open a file and thereby
provides a connection between the opening process and the file. File names consist of
one to eight alphanumeric characters, the first of which must be alphabetic.

file name template. A sequence of characters including the asterisk (*) and question
mark (?) that matches existing file names by expanding each asterisk to zero or more
letters, digits, dollar signs ($), and pound signs (#) and replacing each question mark
with exactly one letter, digit, dollar sign, or pound sign.

107365 Tandem Computers Incorporated Glossary—3

Glossary

Glossary-4

file system. A set of operating system procedures and data structures that provides for
communication between a process and a file, which can be a disk file, a device other
than a disk, or another process.

FILLER byte. A portion of a STRUCT that is used only to maintain the alignment of
adjacent STRUCT items.

frame. A local environment managed by the ##FRAME, #UNFRAME, and #RESET
built-in functions.

fully qualified file name. The complete name of a file, including the node name. For
permanent disk files, this file name consists of a node name, volume name, subvolume
name, and file ID. For temporary disk files, the file name consists of a node name, a
subvolume name, and a temporary file ID. For a device, the file name consists of a
node name and a device name or logical device number. For a named process, the file
name consists of a node name, and a process name. For an unnamed process, the file
name consists of a node name, CPU number, PIN, and sequence humber. Contrast
with partially qualified file name.

function. An operation or set of operations that is invoked by the appearance of the
function name and its arguments at the point where the result of the function is
wanted. A built-in function is hard coded into TACL; users can define other functions.
Variable types for functions include TEXT, MACRO, and ROUTINE.

GMT. See Greenwich mean time.
godmother. See job ancestor.

Greenwich mean time (GMT). The mean solar time for the meridian at Greenwich,
England.

Gregorian date. A date specified according to the common calendar using the month of
the year (January through December), the day of the month, and the year A.D.

home terminal. The terminal whose name is returned by a call to the MYTERM
procedure, or the name returned in the homet er mparameter of the

PROCESS _GETINFO_ procedure. The home terminal is often the terminal from which
the process or process’s ancestor was started.

interprocess communication (IPC). The exchange of messages between processes in a
system or network.

interrupt. The mechanism by which a processor module is notified of an asynchronous
event that requires immediate processing.

invoke. A request to execute TACL code. To invoke a variable, (1) list its name (like an
implied RUN statement) without regard to results or (2) surround the variable name in
square brackets ([]) to replace the name with its expansion (text or macro variable) or
results (routine).

IPC. See interprocess communication.

107365 Tandem Computers Incorporated

Glossary

job ancestor. A process that is notified when a process that is part of a job is deleted.
The job ancestor of a process is the process that created the job to which the process
belongs.

Julian timestamp. The number of microseconds since midnight January 1, 4713 B.C. at
the Greenwich meridian.

LCT. See local civil time.
LDEV. See logical device.
level. One element of the set of values stored in a stack and known as a variable.

local civil time (LCT). Wall-clock time in the current time zone, including any
compensation for daylight-saving time.

local standard time (LST). The time of day in the local time zone excluding any
compensation made for daylight-saving time.

logical device (LDEV). (1) An addressable device, independent of its physical
environment. Portions of the same logical device can be located in different physical
devices, or several logical devices or parts of logical devices can be located in one
physical device. (2) A process that can be accessed as if it were an 1/0 device; for
example, the operator process is logical device LDEVOPR.

logical device number. A number that identifies a configured logical device. A logical
device number can be used instead of a device file name when opening a device file.

LST. See local standard time.

macro. A named sequence of one or more instructions invoked by the appearance of
the macro name. When a macro is invoked, TACL replaces arguments of the form %n%
with actual arguments passed to it and returns, as a result, the instructions that define
the macro, including argument values.

message system. A set of operating system procedures and data structures that handles
the mechanics of exchanging messages between processes.

metacharacter. A character that directs TACL to evaluate subsequent text in a special
way.

mom. A process that is notified when certain other processes are deleted. When a
process is part of a process pair, the mom of the process is the other member of the
pair. When a process is unnamed, its mom is usually the process that created it.

monitor. A process that, among other functions, is responsible for checking that certain
other processes continue to run. If a process should stop, it is the monitor’s
responsibility to restart it.

multibyte character set. A means for identifying written characters for national
languages that require more than one byte to represent a single character.

named process. A process to which a process name was assigned when the process was
created. Contrast with unnamed process.

107365 Tandem Computers Incorporated GIossary—S

Glossary

Glossary-6

node. A system of one or more processor modules. Typically, a node is linked with
other nodes to form a network.

node name. The portion of a file name that identifies the system through which the file
can be accessed.

nonretryable error. An error condition returned by the file system that cannot be
recovered by retrying the operation even after operator intervention. Contrast with
retryable error.

NonStop SQL. A relational database management system that provides efficient online
access to large distributed databases.

nowait /0. An operation with an 1/0 device where the process does not wait for the
I/0 operation to finish. Contrast with waited 170.

one-way communication. A form of interprocess communication where the sender of a
message (the requester) does not expect any data in the reply from the receiver of the
message (the server). Contrast with two-way communication.

operator. Perform mathematical or logical operations on values.
page. In Tandem NonStop systems, 1,024 words of contiguous data.

page mode. A mode of communication between a terminal and its 1/0 process in
which the terminal stores up to a full page of data (1,920 bytes) in its own memory
before sending the page to the 1/0 process. Contrast with conversational mode.

PAID. See process access ID.

PARAM. An association of an ASCII value with a parameter name made by the TACL
PARAM command. You can use PARAMSs to pass parameter values to processes.

partially qualified file name. A file name in which only the right-hand file name parts are
specified. The remaining parts of the file name assume default values. Contrast with
fully qualified file name.

partitioned file. A logical file made up of several partitions that can reside on different
disks. Generic key values determine the partition on which a given record resides.

permanent disk file. A file that remains on disk until it is explicitly purged.
PFS. See process file segment.
PIN. See process identification number.

primary extent. The first contiguous area of disk allocated to a file. See also secondary
extent.

priority. An indication of the precedence with which a process gains access to the
instruction processing unit.

process. A program that has been submitted to the operating system for execution.

107365 Tandem Computers Incorporated

Glossary

process access ID (PAID). A user ID used to determine whether a process can make
requests to the system; for example, to open a file, stop another process, and so on.
The process access ID is usually the same as the creator access 1D, but it can be
different; the owner of the corresponding object file can set the object file security such
that it runs with a process access ID equal to the user ID of the file owner, rather than
the creator of the process. Contrast with creator access ID.

process file name. A file name that identifies a process.

process file segment. (PFS) An extended data segment that is automatically allocated to
every process and contains operating system data structures, file-system data
structures, and memory-management pool data structures.

process ID. A C-series structure that serves as an address of a process.

process identification number (PIN). An unsigned integer that identifies a process in a
processor module.

process name. A name that can be assigned to a process when the process is created. A
process name uniquely identifies a process or process pair in a system. A process
name consists of a dollar sign ($), followed by one to five alphanumeric characters, the
first of which must be alphabetic.

process pair. Two processes created from the same object file running in a way that
makes one process a backup process of the other in case of failure. Periodic
checkpointing ensures that the backup process is always ready to take over from the
primary if the primary process should fail. The process pair has one process name, but
each process has a different process identification number (PIN).

process qualifier. A suffix to a process file name that gets passed to a process when the
process is opened; its use is application-dependent.

process time. The amount of time a process has been active while the processor module
was in the environment of the process.

processor clock. A hardware timer on each processor module that keeps processor
time; the number of microseconds since cold load.

processor time. The time represented by a processor clock.

program. A sequence of instructions and data. In TACL, variables of type TEXT,
MACRO, and ROUTINE can define programs.

real time. See wall-clock time.

record lock. A lock held by a process or a transaction that restricts access to that record
by other processes.

redefinition. A STRUCT declaration that gives a new definition, such as a different data
type or a different alignment, to an existing STRUCT or STRUCT item. All definitions
are valid concurrently, allowing a STRUCT or STRUCT item to be used in a variety of

ways.

reply. A response to a requester process by a server process. Contrast with request.

107365 Tandem Computers Incorporated GIossary—?

Glossary

Glossary-8

request. A message formatted and sent to a server by a requester. Requests also
include status messages such as CPU up and CPU down messages, which are placed
on the intended recipient’s process message queue ($RECEIVE file) by the operating
system. Contrast with reply.

requester. A process that initiates interprocess communication by sending a request to
another process. Contrast with server.

response. See reply.

retryable error. An error condition returned by the file system that can be corrected by
repeating the operation that caused the error. Sometimes operator intervention is
required before the retry; for example, to put paper into an empty printer. Contrast
with nonretryable error.

secondary extent. A contiguous area of disk storage allocated to a file. A file is made up
of one or more extents; the first extent is the primary extent, and other extents are
secondary extents. The secondary extents are all the same size for a specific file; the
primary extent can be a different size. See also primary extent.

segment. A unit of storage consisting of up to 64 pages of 1,024 words each.

segment file. As used by TACL, a file accessible by TACL that can contain TACL code
and data.

server. The process that receives, acts upon, and replies to messages from requesters.
Contrast with requester.

shared data segment. An extended data segment that can be accessed by more than one
process.

simple data item. A STRUCT item that contains a single value of a specific type.

space-separated list. A list whose entries are separated from each other by a space.
Several built-in functions accept space-separated lists of values.

startup sequence. A convention for sending and receiving certain messages while
starting a new process. By convention, the new process receives an Open message,
followed by a startup message, an assign message for each ASSIGN in effect, a param
message if there are any PARAMs in effect, and then a Close message.

string. A type of argument that some commands and functions accept in place of a
variable. A string can be the name of a variable, text enclosed in quotation marks, or a
concatenation of such entities. The concatenation operator is '+' (the single quotes are
part of the operator). Under control of the QUOTED input format, a quoted string can
contain TACL metacharacters.

STRUCT. A variable that is structured into individual components that can be accessed
individually. Items within a STRUCT can be simple data items, arrays (which can be
further broken down into individual elements), or substructures.

STRUCT item. An element of a structure that can be individually accessed by a name of
the form structure-name:item-name.

substructure. A STRUCT item that is itself a STRUCT.

107365 Tandem Computers Incorporated

Glossary

subvolume. A group of files stored on disk. These files all have the same subvolume
name, but each has a different file ID. A subvolume name consist of one to eight
alphanumeric characters, the first of which must be alphabetic. An example of a
subvolume name is SDATA.INFO. An example of a file name in this subvolume is
$DATA.INFO.RESULTS.

swapping. The process of copying information between physical memory and disk
storage.

system process. A process whose primary purpose is to manage system resources
rather than to solve a user’s problem. A system process is essential to a system-
provided service. Failure of a system process often causes the processor module to
fail. Most system processes are automatically created when the processor module is
cold loaded. Contrast with user process.

system time. The time represented by any synchronized processor clock in the system.

template. A string of characters, including the special characters * and ?, used to match
another string of characters. Templates can be used in place of file names and DEFINE
names in some commands and built-in functions.

temporary disk file. A file stored on disk that will be purged automatically as soon as the
process that created it stops.

terminal-simulation process. A process that is made to behave like a terminal file.

text. A set of characters from the ISO 8859.1 character set. The length of text can be
limited by a specific function or command. TACL interprets a text argument as all
remaining text on the line, with leading and trailing spaces and end-of-line characters
removed.

timekeeping. A function performed by the operating system that involves initializing
and maintaining the correct time in a processor module.

timestamp. An item containing a representation of the time. A timestamp can be
applied to an object at a critical point, such as the last modification time of a file.

transaction identifier. A four-word identifier that uniquely identifies a transaction within
the Transaction Monitoring Facility (TMF).

transfer mode. The protocol by which data is transferred between a terminal and the
computer system. See conversational mode and page mode.

two-way communication. A form of interprocess communication in which the sender of a
message (requester process) expects data in the reply from the receiver (server
process). Contrast with one-way communication.

unnamed process. A process to which a process name was not assigned when the
process was created. Contrast with named process.

user ID. A unique pair of numbers that identify a user. A user ID has the form
group-id, user-i d, where the gr oup- i d identifies the user’s group, and user-i d
identifies the user within the group.

107365 Tandem Computers Incorporated Glossary—9

Glossary

Glossary-10

user process. A process whose primary purpose is to solve a user’s problem. A user
process is not essential to the availability of a processor module and is created only
when the user explicitly creates it. Contrast with system process.

variable. A named quantity that can assume any of a given set of values.

variable level. A portion of a variable that can be individually addressed. New levels
can be added to the top of a variable stack, pushing down earlier levels, and can be
popped off the top of the stack. When the last level is popped, the variable ceases to
exist. For simplicity, variable levels are referred to as variables in many descriptions in
this manual.

variable line. A portion of a variable level that ends with a binary zero (an internal end-
of-line character). Lines can be removed from the beginning of a variable level with
the #EXTRACT and #EXTRACTYV functions and can be added to the end of a variable
level with the #APPEND and #APPENDYV function.

variable type. The designation (MACRO, DELTA, STRUCT, TEXT, and so on) of a
variable level that describes its contents and the use for which it is designated.

virtual memory. A range of addresses that processes use to reference real storage, where
real storage consists of physical memory and disk storage.

volume. A disk drive or a pair of disk drives that forms a mirrored disk.

waited /0. An operation with an I/0 device where the process waits until the
operation finishes. Contrast with nowait 1/0.

waiting process. A process that cannot execute until an event occurs, a resource
becomes available, or an interval of time passes.

wall-clock time. The local time of day, including any adjustment for daylight-saving
time.

working set. A collection of DEFINE attributes that have been assigned values.
$CMON. See command-interpreter monitor.

$RECEIVE. A special file name through which a process receives messages from other
processes.

107365 Tandem Computers Incorporated

Index

A

Accessing structured data

Address, character 2-11

ALIAS variables 2-24

Argrec example 3-17

Arguments
alternatives (such as NUMBER and STRING) 3-3
parsing for a caller 3-11
processing a space-separated list 3-8
processing file names 3-7
processing variables 3-8
to routines 3-1

ASSIGN command 5-3

ATTRIBUTENAME argument alternative 3-3

B

BREAK, for debugging 2-32

Bubble example 2-3

Built-in functions
for data manipulation 2-16
for EMS 7-12
for string manipulation 2-10
#APPEND 2-3, 2-17, 4-2, 5-1, 5-5, 5-16, 5-31
#APPEND(V) 7-3
#APPENDV 5-37
#ARGUMENT 3-1
#BREAKMODE 3-30
#CASE 2-4, 2-34, 3-25
#CHANGEUSER 2-28
#CHARCOUNT 2-11, 3-10
#CHARFINDV 2-12, 3-10
#CHARGET 2-12, 2-28, 3-9
#CHARINSV 3-11
#COMPAREV 4-12
#COMPUTE 2-12, 2-22, 4-16
#CONTIME 2-5, 4-16
#DEF 3-5, 3-22, 7-5
#DEFINERESTORE 5-4
#DEFINESAVE 5-4
#EMPTY 2-7, 3-14, 4-16
#EMPTYV 2-7, 2-30, 5-19

107365 Tandem Computers Incorporated

Index-1

Index

Built-in functions (continued)
#EMSADDSUBIECT(V) 7-12
#EMSGET(V) 7-12
#EMSINIT(V) 7-12
HEMSTEXT(V) 7-12
#EOF 5-16, 5-19
#ERRORTEXT 3-22, 3-27
#EXCEPTION 3-19, 3-24, 3-27, 3-32
#EXTRACT 2-15, 4-2,5-1, 5-5, 5-16
#EXTRACT(V) 7-3
#EXTRACTV 2-28, 4-11, 5-31, 5-37
#FILEINFO 2-5, 2-34, 4-16, 8-4, 8-8
#FILENAMES 8-8
#FILTER 3-22, 3-25, 3-32
#FRAME 2-3, 2-8, 5-4
#IF 2-4,2-8
#INFORMAT 2-23
#INLINEECHO 5-7
#INLINEEOF 5-7
#INLINEOUT 5-9, 5-11
#INLINEPREFIX 5-7
#INLINETO 5-9
#INPUT 2-17, 3-22, 3-32
#INPUT(V) 7-5
#INPUTEOF 2-27, 3-28, 6-2, 6-3
#INPUTV 2-5, 2-27, 2-30, 3-28, 6-4, 6-5
#INTERPRETJULIANDAYNO 2-23
#INTERPRETTIMESTAMP 2-23
#JULIANTIMESTAMP 2-18, 2-23
#LINECOUNT 2-11, 2-15
#LINEFINDV 2-11, 5-19
#LOGOFF 2-30
#LOOP 2-3, 2-15, 3-8
#MATCH 2-5, 3-22, 6-2
#MORE 3-5, 3-8, 3-16
#NEWPROCESS 5-2, 5-14, 6-1
#NEXTFILENAME 2-5
#OUTFORMAT 2-23
#OUTPUT 2-7, 2-12, 2-15
#OUTPUTV 2-15
#PREFIX 2-29
#PROCESSEXISTS 6-2

Index-2 107365 Tandem Computers Incorporated

Index

Built-in functions (continued)
#PROCESSINFO 8-3
#PROCESSORSTATUS 8-3
#PROCESSORTYPE 8-3
#PROMPT 2-29
#PURGE 2-5, 4-16
#PUSH 2-3, 2-8
#RAISE 3-29, 3-32
#REPLYPREFIX 6-5, 6-8
#REPLYV 6-5, 7-5
#REQUESTER 2-17, 4-2, 5-1, 5-5, 5-21, 5-25, 5-37, 6-2, 7-3, 7-15
#RESET 3-17, 3-21, 3-27, 3-32
#RESET FRAMES 2-8
#REST 3-5, 3-16
#RESULT 3-8, 3-15
#RETURN 3-17
#ROUTINENAME 2-7, 3-9, 3-16
#SERVER 5-1, 5-31, 6-5, 7-3
#SET 2-3, 2-16
#SETMANY 2-23, 3-27
#SHIFTSTRING 2-5, 3-16, 4-16, 6-2
#SSGET(V) 7-5
#SSINIT 7-5
#SSNULL 7-5
#SSPUT(V) 7-5, 7-13
#SYSTEM 2-29
#SYSTEMNUMBER 3-16
#TACLSECURITY 5-35
#TIMESTAMP 2-18, 2-22
#TOSVERSION 8-3
#UNFRAME 2-8, 5-4
#USERNAME 2-28
#WAIT 4-10, 5-16

Built-in functions, description or example of

Built-in functions:'#OUTPUTV 2-30

Built-in variables
#BREAKMODE 2-28, 3-27
#EXIT 6-3
#INTERACTIVE 6-8
#TRACE 2-32

107365 Tandem Computers Incorporated Index-3

Index

C

Caller example 3-16
Call_getargs example 3-11
Character address 2-11
CHARACTERS argument alternative 3-3, 3-6
Checkfiles example 2-4
Ckup example 8-1
CLOSEPAREN argument alternative 3-3
CMON process 5-25
COMMA argument alternative 3-3, 3-12
Commands
for debugging TACL programs 2-32
ASSIGN 5-3
FILETOVAR 2-16
for data manipulation 2-16
for global editing 2-13
INLPREFIX 5-7
PARAM 5-3
RUN 5-2, 6-1
SETPROMPT 2-29
SINK 2-30
SYSTEM 2-29
TIME 8-13
VCHANGE 2-14
VDELETE 5-19
VFIND 2-14
VINSERT 2-13
VLIST 2-14
_COMPAREV 2-5
_CONTIME_TO_TEXT_DATE 8-3
_MONTH 2-19
Command_processor example 3-21
Completion code 5-33, A-3
Completion information, processing 5-32/34, A-3
Completion variable 5-32, A-3
CONTIME, definition 2-19
Conventions, style 1-2
Copier example 2-2
Copy example 4-10
Creating variables

Index—4 107365 Tandem Computers Incorporated

Index

D

Data types 2-17
determining 3-5
Date, textual 2-17
Dayofweek example 2-22
Debugging
sample session 2-33
_DEBUGGER 2-32/35
Defaultvars example 2-8
DEFINE 5-4
Define Process (DP) facility 5-31
Display example 2-25
Displayinfo example 2-27
Distributed System Management
See DSM
DSM and TACL 7-1
Dumplog example 7-10

E

Editing commands 2-13
Editing variables 2-11
Emptyspool example 5-11
EMS

and TACL 7-1/15

calling EMSDIST 7-12

flags 7-13

generating an event 7-13

log, displaying contents of 7-10
Enquiry example 5-35
ENQUIRY facility 5-35
Escape sequences for terminals, sending 2-25
Event Management Service

See EMS
Example

call_getargs 3-11

getargs 3-11
Examples

and #INFORMAT 1-1

and #PMSEARCHLIST 1-1

argrec 3-17

bubble 2-3

107365 Tandem Computers Incorporated

Index-5

Index

Examples (continued)
caller 3-16
checkfiles 2-4
ckup 8-1
command_processor 3-21
copier 2-2
copy 4-10
dayofweek 2-22
defaultvars 2-8
display 2-25
displayinfo 2-27
dumplog 7-10
emptyspool 5-11
enquiry 5-35
fcomp 4-12
fup2 5-18
fupin 5-17
getdates 2-23
inline_fup 5-7
inline_fup_log 5-10
inline_fup_log2 5-11
lock 2-28
menu 2-30
monitoring a system 8-1
nowaited_read 4-4
nowaited_write 4-9
Pathway 6-6
purgefiles 3-22
report_shell 3-15
restricted_caller 3-30
restricted_cmd_processor 3-24
restrictive_command_shell 3-26
running 1-1
runsrv 6-3
same_ssid 7-9
script 5-8
send 5-22
serv 5-30
show_spooler_jobs 5-19
sglcomp 5-33
strio 5-25
system management 8-1

Index—6 107365 Tandem Computers Incorporated

Index

Examples (continued)

TACL as a Pathway server 6-6

taclevent 7-13

tacllist 4-16

tedsave 2-33

volname 2-12

volnames 2-15

waited_read 4-3

waited_write 4-7
Exception handlers

description of

elements of 3-19

keep type 3-24

release type 3-20

types 3-19
Exception handlers, description of 3-18
Exception, definition of 3-18
EXCLUSION option for #REQUESTER built-in function 4-2

F

Fcomp example 4-12
FILENAME argument alternative 3-3
Files

opening 4-1

reading from 4-2/5

writing to 4-6/9
FILETOVAR command 2-16
Function keys, defining 2-24
Functions, built-in

See Built-in functions
Fup2 example 5-18
Fupin example 5-17

G

Getargs example 3-11
Getdates example 2-23

H

HOLD option for #OUTPUT built-in function 4-16
HOLD option for OUTPUT built-in function

107365 Tandem Computers Incorporated Index-7

Index

|
IN file 5-1, 5-3
setting to $RECEIVE 6-3
INLINE facility
description of 5-1, 5-6/13
handling BREAK exception 5-13
INLINE run option 5-6
limitations 5-13
stopping processes 5-13
Inline_fup example 5-7
Inline_fup_log example 5-10
Inline_fup_log2 example 5-11
INLPREFIX command 5-7
INV option
limitations 5-20
INV option (RUN and NEWPROCESS), NEWPROCESS)
INV variable 5-1

J

Julian day number 2-17
Julian timestamp 2-17

K

KEYWORD argument alternative 3-3
L

Local civil time (LCT) 2-17
Local daylight time (LDT) 2-17
Local standard time (LST) 2-17
Local timestamp 2-17

Lock example 2-28

M

Macros,overview 2-1
Menu example 2-30

N

Nesting code 2-7
Nowaited_read example 4-4
Nowaited write example 4-9
Numeric date 2-17

Index-8 107365 Tandem Computers Incorporated

Index

0

OPENPAREN argument alternative 3-3
OTHERWISE alternative for ARGUMENT built-in function
OTHERWISE argument alternative 3-6
OUT file 5-1,5-3
reading from 5-35
saving 2-8
setting to $RECEIVE 6-4
OUTYV option
limitations 5-20
OUTV option (RUN and NEWPROCESS), NEWPROCESS)
OUTV run option 2-15

P

PARAM command 5-3
Pathway example 6-6
Process handles A-5
Processes
initiating and communicating with 5-1
initiating and communicating with' 5-37
stopping 5-20
PROCESSNAME argument alternative 3-3
Programs
debugging 2-32
defining structure of 2-2
exiting 3-17
style conventions of 1-2
Prompts, setting 2-29
Purgefiles example 3-22

R

Reading from a file

nowaited 4-4

waited 4-2
Recursion, in macros and routines 2-7
Report_shell example 3-15
Restricted_caller example 3-30
Restricted_cmd_processor example 3-24
Restrictive_command_shell example 3-26
Results, returning 3-15

107365 Tandem Computers Incorporated Index-9

Index

Index-10

Routines
exception handlers
combining types 3-30
keep type 3-24
release type 3-20
“keep” type 3-19
“release” type 3-19
exception handlers for 3-18, 3-32
exiting 3-17
overview 2-1
RUN command 5-2, 6-1
INV option 5-14
OUTYV option 5-14
Run options
INLINE 5-6
STATUS 5-16
Runsrv example 6-3

S

Same_ssid example 7-9
Script example 5-8
Send example 5-22
Serv example 5-30
Server programs
testing 5-25
Server, TACL asa 6-1/12
SETPROMPT Command 2-29
Show_spooler_jobs example 5-19
SINK command 2-30
SLASH argument alternative 3-3
SPI
and D-series software A-5
and TACL 7-1/12
buffers 7-5
definition files 7-4
messages 7-3
subsystem ID 7-5
token code 7-8
token data types 7-6, A-5
token map 7-8
Sglcomp example 5-33

107365 Tandem Computers Incorporated

Index

STATUS option (RUN and NEWPROCESS)
STATUS option (RUN) 5-16
STATUS variable 5-20
STRING argument alternative 3-3
String manipulation, built-in functions for 2-10
Strio example 5-25
STRUCT variable
description of 2-9
specifying escape sequences for terminals 2-25
using with D-series software A-5
STRUCT variables
using with SPI 7-5
Structures
accessing structured data 5-25
examples 5-25
SUBSYSTEM argument alternative 3-3
Subsystem ID 7-5
Subsystem Programmatic Interface
See SPI
Syntax summary
built-in functions and variables 9-6/14
STRUCT declarations 9-15
#DELTA commands 9-17
#SET built-in variable 9-16/17
:UTILS:TACL commands and functions 9-1/6
SYSTEM command 2-29

T

TACL
D-series features A-1
programs, nesting 2-7
running as a server
TACL Error
example 3-26
TACL, running as a server 6-1
TACLCSTM file 6-5
Taclevent example 7-13
Tacllist example 4-16
Tedsave example 2-33
TEMPLATE argument alternative 3-24

107365 Tandem Computers Incorporated Index-11

Index

Templates
example 3-22
Terminals
sending escape sequences to 2-25
TIME command 8-13
Timestamps 2-17
TOKEN argument alternative 3-3
Token code 7-3
Token code (SPI) 7-8
Token map (SPI) 7-8

U
USER argument alternative 3-3

\Y

Variable

levels, using 2-3
variable

INV 5-1

OUTV 5-1

: COMPLETION 5-32
VARIABLE argument alternative 3-8
Variables

creating

modifying 2-9

types 2-1
Variables, editing 2-11
VCHANGE command 2-14
VDELETE command 5-19
VFIND command 2-14
VINSERT command 2-13
VLIST command 2-14
Volname example 2-12
Volnames example 2-15

W

WAIT option for #REQUESTER built-in function 4-2
Waited_read example 4-3

Waited_write example 4-7

WORD argument alternative 3-8

Index-12 107365 Tandem Computers Incorporated

Index

WORDLIST argument alternative 3-5
Writing to a file

nowaited 4-8

waited 4-6

YA

ZSPIDEF files 7-4, 7-5
ZSPISEGF files 7-4
Special characters
#built-in funcion

See Built-in functions
#built-in variable

See Built-in variables
$CMON 5-25, A-2
$RECEIVE 5-1, 5-5, 7-3

and TACL as a server 6-1

using for process communication 5-21/29
%0%, using to call a macro recursively 2-7

: COMPLETION?’ variable; 5-32
_COMPAREV command 2-5

_COMPLETION~PROCDEATH variable A-3
_CONTIME_TO_TEXT_DATE command 8-3

_DEBUGGER commands 2-32
_MONTH function 2-19
_PROMPTER 2-29

107365 Tandem Computers Incorporated

Index-13

	TPTITLE
	TPDOCHIS
	TPNEWCHG
	TPCONTNT
	TPABOUT
	TPCONVNT
	TPSEC01
	TPSEC02
	TPSEC03
	TPSEC04
	TPSEC05
	TPSEC06
	TPSEC07
	TPSEC08
	TPSEC09
	TPAPPA
	TPGLOSS
	TPINDEX

