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The TAL Programmer’s Guide gives guidelines for using TAL.  This edition incorporates
new features introduced in the D20 release and corrects text in response to reader
comment forms.

This edition includes the following new features:

For INT, REAL, and UNSIGNED data types and parameter types, a width
argument can consist of any constant expression, including LITERALs and
DEFINEs.

FIXED(*) is now a data type and a parameter type.

A variable can have the same identifier as the encompassing BLOCK declaration.

In addition to the implicit block named #GLOBAL, TAL creates an implicit block
for each template structure declared outside a BLOCK declaration.

The compiler ignores extra commas in, or adjacent to, procedure attribute lists.

In CALL statements, the CALL keyword is optional.

The RETURN statement lets you specify a condition-code value and a return
expression.

$OPTIONAL, a new standard function, lets you conditionally pass parameters to
VARIABLE and EXTENSIBLE procedures.

DEFINETOG, a new directive, lets you create named and numeric toggles.  It
leaves new toggles turned off but does not change the settings of existing toggles.

The IF, IFNOT, and ENDIF directives now support named toggles.

The operating system for Tandem NonStop systems, formerly called the Guardian
operating system, is now called the Tandem NonStop Kernel.  This change reflects
Tandem's current and future operating system enhancements that further enable open
systems and application portability.
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The Transaction Application Language (TAL) is a high-level, block-structured
language used to write systems software and transaction-oriented applications.

The TAL compiler compiles TAL source programs into executable object programs.
The compiler and the object programs it generates execute under control of the
Tandem NonStop Kernel.

This manual gives guidelines for using TAL and the TAL compiler.  General topics
described in this manual include:

How to create, structure, compile, and run a program

The process environment, addressing modes, and storage allocation

How to declare and access procedures and variables

Audience This manual is intended for system programmers and application programmers
familiar with Tandem systems and the operating system.
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How to Use This
Manual Set

The TAL manual set consists of the manuals listed in Table 1:

Table 1.  TAL Manual Set

Manual Description

TAL Programmer’s
Guide

Helps you get started in creating, structuring, compiling, running and
debugging programs.  Describes how to declare and access procedures and
variables and how the TAL compiler allocates storage for variables.

TAL Reference
Manual

Describes the syntax for declaring variables and procedures and for specifying
expressions, statements, standard functions, and compiler directives;
describes error and warning messages.

TAL Reference
Summary

Presents a summary of syntax diagrams.

The TAL Programmer’s Guide is a prerequisite to the TAL Reference Manual:

TAL 
Reference 
Summary

TAL 
Reference 
Manual

329

TAL 
Programmer's 
Guide

If you are not familiar with TAL, first read the TAL Programmer’s Guide.

If you are familiar with TAL and the process environment, consult the TAL Reference
Manual for the syntax for declarations, statements, and directives and for information
about error messages.

If you are are writing a program that mixes TAL modules with modules written in
other languages, see Section 17, “Mixed-Language Programming,” in the TAL
Programmer’s Guide.
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Organization of Manual The TAL Programmer’s Guide  is organized as follows:

Section 1, “Introducing TAL,” summarizes the features of TAL.

Section 2, “Getting Started,” explains how to create, compile, and run a program.

Section 3, “Structuring Programs,” describes how to structure source programs.

Section 4, “Introducing the Environment,” describes the process environment,
addressing modes, and storage allocation.

Section 5, “Using Expressions,” describes arithmetic and conditional expressions.

Section 6, “Using Simple Variables,” explains how to declare and access simple
variables and how the compiler allocates storage for them.

Section 7, “Using Arrays,” explains how to declare and access arrays and how the
compiler allocates storage for them.

Section 8, “Using Structures,” explains how to declare and access structures and how
the compiler allocates storage for them.

Section 9, “Using Pointers,” explains how to declare and access simple pointers and
structure pointers and how the compiler allocates storage for them.

Section 10, “Using Equivalenced Variables,” explains how to declare and access
equivalenced variables.

Section 11, “Using Procedures,” gives information about procedures and
subprocedures.

Section 12, “Controlling Program Flow,” explains control statements.

Section 13, “Using Special Expressions,” describes assignment, CASE, IF, and group
comparison expressions.

Section 14, “Compiling Programs,” describes some of the compilation options.

Section 15, “Compiler Listing,” describes the output generated by the compiler.

Section 16, “Running and Debugging Programs,” shows how to run and debug
programs.

Section 17, “Mixed-Language Programming,” describes TAL mixed-language features,
TAL and C guidelines, and Common Run-Time Environment (CRE) guidelines for
TAL.

Appendix A, “Sample Programs,” shows sample programs.

Appendix B, “Managing Addressing,” gives guidelines for managing addressing,
particularly in explicit (user-allocated) extended data segments.

Appendix C, “Improving Performance,” gives guidelines for improving execution
performance.

Appendix D, “ASCII Character Set,” describes the ASCII character set.
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Appendix E, “File Names and TACL Commands,” describes D-series file-naming
conventions and TACL ASSIGN, DEFINE, and PARAM commands.

Appendix F, “Data Type Correspondence,” lists the data types of Tandem languages.

System Dependencies The features mentioned in this manual are supported on all currently supported
systems except where noted.  Table 2 lists the systems that TAL supports:

Table 2.  Tandem Systems

System Name Description Operating System

Tandem NonStop
Series (TNS)
system

Based on complex instruction set computing (CISC)
technology—a large instruction set, numerous addressing
modes, multicycle machine instructions, and special-
purpose instructions

C-series and
D-series versions

Tandem NonStop
Series/RISC
(TNS/R) system

Based on reduced instruction set computing (RISC)
technology—a small, simple instruction set, general-
purpose registers, and high-performance instruction
execution

C30 and D20
versions and later

Programs That Run on the TNS System

All programs written for the C-series TNS system can run on a D-series TNS system
without modification.  You can modify C-series application programs to take
advantage of D-series features, as described in the Guardian Application Conversion
Guide.

Programs That Run on a TNS/R System

Most programs written for TNS systems can run on a TNS/R system without
modification.  Low-level programs, however, might need modification as described in
the Guardian Application Conversion Guide.

The Accelerator Manual tells how to accelerate a TNS program to make it run faster on a
TNS/R system.  An accelerated object file contains:

The original TNS object code and related Binder and symbol information
The accelerated (RISC) object code and related address map tables

Future Software Platforms

The storage allocation conventions described in this manual apply only to current
software platforms.  For portability to future software platforms, do not write
programs that rely on the spatial relationships shown for variables and parameters
stored in memory.   More specific areas of nonportability are noted in this manual
where applicable.
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Compiler Dependencies The TAL compiler is a disk-resident program on each Tandem system.  In general, a
particular version of the compiler runs on the corresponding or later version of the
operating system.  For example, the D20 version of the compiler requires at least the
D20 version of the operating system.

If you need to develop and maintain C-series TAL applications on a D-series system,
the following files must be restored from the C-series system:

C-Series File
to Restore Description

TAL TAL compiler

TALERROR TAL error messages

TALLIB TAL run-time library

TALDECS TAL external declarations

FIXERRS TACL macro for correcting TAL source files

BINSERV Binder server for compilers

SYMSERV Symbol-table server for compilers

The C-series compiler expects a C-series BINSERV and SYMSERV in the same
subvolume (although you can use the PARAM command to specify a BINSERV and
SYMSERV in a different subvolume).  C-series tool files (such as BIND and
CROSSREF) can also be restored.

To compile a C-series compilation unit on a D-series system, you must use the fully
qualified name of the C-series compiler;  for example:

$myvol.mysubvol.TAL / IN mysrc / myobj

Additional Information Table 3 describes manuals that provide information about Tandem systems.

Table 3.  System Manuals

Manual Description

Introduction to Tandem NonStop
Systems

Provides an overview of the system hardware and software.

Introduction to D-Series Systems Provides an overview of D-series enhancements to the
Guardian operating system.

System Description Manual Describes the system hardware and the process-oriented
organization of the operating system.

TACL Reference Manual Describes the syntax for specifying TACL command
interpreter commands.

D-Series System Migration
Planning Guide

Gives guidelines for migrating from a C-series system to a
D-series system.
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Table 4 describes manuals that provide information about programming in the
Tandem environment.

Table 4.  Programming Manuals

Manual Description

Guardian Procedure Calls
Reference Manual

Describes the syntax and programming considerations for
using system procedures.

Guardian Programmer’s Guide Explains how to use the programmatic interface of the
operating system.

Guardian Procedure Errors and
Messages Manual

Describes error codes, error lists, system messages, and trap
numbers for system procedures.

Guardian Application Conversion
Guide

Gives guidelines for converting C-series TNS programs to
D-series TNS programs, and for converting TNS programs to
TNS/R programs.

Accelerator Manual Tells how to accelerate TNS object files for a TNS/R system.

Common Run-Time Environment
(CRE)  Programmer’s Guide

Explains how to use the CRE for running mixed-language
programs written for D-series systems.

NonStop SQL Programming Manual
for TAL

Describes the syntax for embedding SQL statements in TAL
programs.

Table 5 describes manuals that provide information about program development tools.

Table 5.  Program Development Manuals

Manual Description

PS Text Edit Reference Manual Explains how to create and edit a text file using the PS Text
Edit full-screen text editor.

Edit User’s Guide and Reference
Manual

Explains how to create and edit a text file using the Edit line
and virtual-screen text editor.

Binder Manual Explains how to bind compilation units (or modules) using
Binder.

Crossref Manual Explains how to collect cross-reference information using the
stand-alone Crossref product.

Inspect Manual Explains how to debug programs using the Inspect source-
level and machine-level interactive debugger.

Debug Manual Explains how to debug programs using the Debug machine-
level interactive debugger.
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Your Comments
Invited

After you have had a chance to use this manual, please take a moment to fill out the
Reader Comment Card and send it to us.  The Reader Comment Card is located at the
back of the printed manual and as a separate file in the CD Read Document List.  You
can fax the card to us at (408) 285-6660 or mail the card by using the business reply
address on the back of the card in the printed manual.  Many of the improvements you
see in Tandem manuals are a result of suggestions from our customers.  Please take
this opportunity to help us improve future manuals.
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This manual presents terms that represent keywords, information you supply, and
identifiers as follows:

Keywords are shown in uppercase in text and in examples.   For instance, the
keyword SOURCE appears in an example as follows:

?SOURCE . . .

Identifiers are shown in lowercase in examples and in uppercase in example
comments and in text.  For instance, the identifier TOTAL appears in an example
as follows:

INT total;

Terms that represent user-specified information are shown in lowercase italics.
For instance, when you declare a variable, you specify an identifier.

Some of the examples in this manual include diagrams that illustrate memory
allocation.  The diagrams are two bytes wide.   Unless otherwise noted, the diagrams
refer to locations in the primary area of the user data segment.  The following example
shows allocation of an INT(32) array and its initializing values.  In the diagram, solid
lines depict borders of storage units, in this case doublewords.  Short lines depict
words within each doubleword:

INT(32) c[0:4]  := 
  ["abcd", 1D, 3D, "XYZ ", %20D];
 
  !Declare an array and initialize 
  ! the array elements with values 
  ! specified in a constant list
 

"a" "b"

"c" "d"

"X" "Y"

"Z" "   "

C[0]

C[1]

C[2]

C[3]

C[4]

333

1D

3D

%20D
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The Transaction Application Language (TAL) is a high-level, block-structured
language that works efficiently with the system hardware to provide optimal object
program performance.  The TAL compiler compiles TAL source programs into
executable object programs.  The compiler and the object programs it generates
execute under control of the Tandem NonStop Kernel.

Using TAL You use TAL most often for writing systems software or transaction-oriented
applications where optimal performance has high priority.  You can, for example, use
TAL to write the kinds of software listed in Table 1-1.

Table 1-1.  Uses of TAL

Kind of
Software Examples

Systems
software

Operating system components
Compilers and interpreters
Command interpreters
Special subsystems
Special routines that support data communication activities

Applications
software

Server processes used with Tandem data management software
Conversion routines that allow data transfer between Tandem software and other
applications
Procedures that are callable from programs written in other languages
Applications that require optimal performance

Many Tandem software products are written in TAL.

Major Features The major features of TAL are:

Procedures—Each program contains one or more procedures.  A procedure is a
discrete sequence of declarations and statements that performs a specific task.  A
procedure is callable from anywhere in the program.

Each procedure executes in its own environment and can contain local data that is
not affected by the actions of other procedures.  When a procedure calls another
procedure, the operating system saves the caller’s environment and restores the
environment when the called procedure returns control to the caller.

Subprocedures—A procedure can contain subprocedures, callable only from
within the same procedure.  When a subprocedure calls another subprocedure, the
caller’s environment remains in place.  The operating system saves the location in
the caller to which control is to return when the called subprocedure terminates.

Private data area—Each activation of a procedure or subprocedure has its own
data area.   When each activation terminates, it relinquishes its private data area,
thereby keeping the amount of memory used by a program to a minimum.
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Recursion—Because each activation of a procedure or subprocedure has its own
data area, a procedure or subprocedure can call itself or can call other procedures
that in turn calls the original procedure.

Parameters—A procedure or subprocedure can have optional or required
parameters.  The same procedure or subprocedure can process different sets of
variables sent by different calls to it.

Data types—You can declare and reference the following types of data:

Data Type Description

STRING 8-bit integer byte

INT,  INT(16) 16-bit integer word

INT(32) 32-bit integer doubleword

FIXED,  INT(64) 64-bit fixed-point quadrupleword

REAL,  REAL(32) 32-bit floating-point doubleword

REAL(64) 64-bit floating-point quadrupleword

UNSIGNED(n) n-bit field, where 1 <= n <= 31

Data sets—You can declare and use sets of related variables such as arrays and
structures (records).

Pointers—You can declare pointers (variables that can contain byte addresses or
word addresses) and use them to access locations throughout memory.  You can
store addresses in them when you declare them or later in your program.

Data operations—You can copy a contiguous group of words or bytes and
compare one group with another.  You can scan a series of bytes for the first byte
that matches (or fails to match) a given character.

Bit operations—You can perform bit deposits, bit extractions, and bit shifts.

Standard functions—You can use built-in functions, for example, to convert data
types and addresses, test for an ASCII character, or determine the length, offset,
type, or number of occurrences of a variable.

Compiler directives—You can use directives to control a compilation.  You can, for
example, check the syntax in your source code or control the content of compiler
listings.

Modular programming—You can divide a large program into modules, compile
them separately, and then bind the resulting object files into a new object file.

Mixed-language programming—You can use NAME and BLOCK declarations,
procedure declaration options—such as public name, language attribute, and
parameter pairs—and compiler directives in support of mixed-language
programming.

NonStop SQL features—You can use compiler directives to prepare a program in
which you want to embed SQL statements.
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System Services Your program can ignore many things such as the presence of other running programs
and whether your program fits into memory.  For example, programs are loaded into
memory for you and absent pages are brought from disk into memory as needed.

System Procedures The file system treats all devices as files, including disk files, disk packs, terminals,
printers, and programs running on the system.   File-system procedures provide a
file-access method that lets you ignore the peculiarities of devices.  Your program can
refer to a file by the file’s symbolic name without knowing the physical address or
configuration status of the file.

Your program can call system procedures that activate and terminate programs
running in any processor on the system.  Your program can also call system
procedures that monitor the operation of a running program or processor.  If the
monitored program stops or a processor fails, your program can determine this fact.

System procedures are described in the Guardian Procedure Calls Reference Manual and
the Guardian Programmer’s Guide for your system.

TAL Run-Time Library  The TAL run-time library provides routines that:

Initialize the Common Run-Time Environment (CRE) when you use D-series
compilers (as described later in this manual)

Prepare a program for SQL statements (as described in the NonStop SQL
Programming Manual for TAL)

CRE Services The CRE provides services that support mixed-language programs compiled on
D-series compilers.  A mixed-language program can consist of C, COBOL85,
FORTRAN, Pascal, and TAL routines.

A routine is a program unit that is callable from anywhere in your program.  The term
routine can represent:

A C function
A COBOL85 program
A FORTRAN program or subprogram
A Pascal procedure or function
A TAL procedure or function procedure
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When you use the CRE, each routine in your program, regardless of language, can:

Use the routine’s run-time library without overwriting the data of another run-
time library

Share data in the CRE user heap

Share access to the standard files—standard input, standard output, and standard
log

Call math and string functions provided in the CRELIB file

Call Saved Messages Utility (SMU) functions provided in the Common Language
Utility Library (CLULIB file)

Without the CRE, only routines written in the language of the MAIN routine can fully
access their run-time library.  For example, if the MAIN routine is written in TAL, a
routine written in another language might not be able to use its own run-time library.

Section 17, “Mixed-Language Programming,” gives CRE guidelines for TAL programs.

The CRE Programmer’s Guide describes the services provided by the CRE, including the
math, string, and SMU functions.
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To get you started quickly, this section presents a sample program and describes the
basic commands for developing and running a program.

Sample Source File The sample program adds two numbers together.  The source code for the sample
program is in a source file named MYSRC.  Figure 2-1 shows the content of the sample
source file.

Figure 2-1.  Sample Source File

!This is a source file named MYSRC.

?SOURCE $SYSTEM.SYSTEM.EXTDECS (INITIALIZER)
                              !Include system procedure

PROC myproc MAIN;             !Declare procedure MYPROC
  BEGIN
  INT var1;                   !Declare variables
  INT var2;
  INT total;

  CALL initializer;           !Handle start-up message
  var1 := 5;                  !Assign value to VAR1
  var2 := 10;                 !Assign value to VAR2
  total := var1 + var2;       !Assign sum to TOTAL
  END;                        !End MYPROC

This section describes how to:

1. Create the source file
2. Compile the source file into an object file
3. Run the object file
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Creating Source Files A source file contains source code for your program.  The source code can include
declarations, statements, compiler directives, and comments.

You can use a text editor to create a file and to type source code into the file.  The
PS Text Edit Reference Manual and the Edit User’s Guide and Reference Manual describe
how to use an editor.

When you enter the source code into the source file, you can use lowercase or
uppercase letters.  The compiler does not distinguish between lowercase and
uppercase.

The sample source file shows keywords in uppercase and identifiers in lowercase to
make it easy to see which is which.  Keywords are terms that have predefined
meanings to the compiler.  Identifiers are names you supply.

The sample source file contains the following kinds of items:

Compiler directives
System procedures
Procedures
Data declarations
Statements
Comments

Compiler Directives Compiler directives let you select compilation options that control various aspects of
the compilation.  For example, you can use compiler directives to:

Include source code from other source files
Control the listing
Perform conditional compilation
Check the syntax without generating object code

You can include compiler directives in the source file or in the command to run the
compiler.  In the source file, you specify compiler directives in directive lines.  Each
directive line begins with a question mark in the leftmost column.

In the sample source file, the SOURCE directive reads the INITIALIZER system
procedure, which handles the startup message (a system message sent to a process
when it starts).
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System Procedures System procedures are procedures provided by the operating system.  Declarations for
system procedures are located in the EXTDECS files.  You can, for instance, use system
procedures when your program needs to:

Perform input/output operations
Manage processes
Communicate with other processes
Interface with the command interpreter (TACL)
Interface with terminals, printers, magnetic tapes, and card readers
Send operator messages
Provide fault tolerance
Handle traps

Appendixes A and B contain examples that include input/output and other system
procedures.  For information on how to use the system procedures, however, see the
Guardian Programmer’s Guide and the Guardian Procedure Calls Reference Manual.

The sample source file includes one system procedure, INITIALIZER, which processes
the startup message.

Procedures Procedures contain the executable parts of a TAL program.  Procedures can contain
data declarations, statements, and subprocedures.

A TAL program consists of one or more procedures.  The program must include a
MAIN procedure (a procedure that has the MAIN attribute).  The MAIN procedure
executes first when you run the program.

The sample source file consists of one procedure, named MYPROC.  This procedure
has the MAIN attribute and contains data declarations and statements.

Data Declarations Data declarations associate identifiers with memory locations and allocate storage
space for variables.  Variables contain data that can change during program execution.
You can initialize variables with values when you declare the variables, or you can
assign values to them later in assignment statements.

The sample source file includes data declarations for variables named VAR1, VAR2,
and TOTAL.  These variables are not initialized when they are declared;  they are
assigned values later in the source file.
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Statements Statements let you specify the actions you want a program to perform.  All statements
are executable.  For example, you use statements to:

Call procedures
Return from called procedures
Assign values to variables
Copy data from one location to another
Scan data for a character
Select statements to execute based on a condition

The sample source file includes statements that call a procedure and assign values to
variables.  The following statements appear in the sample source file:

A CALL statement that calls the INITIALIZER system procedure
An assignment statement that assigns a value to VAR1
An assignment statement that assigns a value to VAR2
An assignment statement that assigns the sum of VAR1 and VAR2 to TOTAL

Comments Comments are notes you include in the source file to explain the source code.  For
example, you can use a comment to explain a construct or describe an operation.
Comments in a source file can either:

Start with two hyphens (--) and terminate with the end of the line

Start with an exclamation point (!) and terminate with either another exclamation
point or the end of the line

In the sample source file, each comment begins with an exclamation point  and ends
with the end of the line.

Compiling
Source Files

When you compile a source file, the compiler produces an object file and a compiler
listing.  The compiler listing consists of source code and summary information.  You
can execute the object file if it contains a procedure that has the MAIN attribute.

To compile the sample source file MYSRC, issue the following compilation command
at the TACL prompt:

TAL /IN mysrc/ myprog

The preceding command sends the compiler listing to your terminal and the object
code to an object file named MYPROG.  You can include compiler directives and
additional run options in the compilation command.  Section 14, “Compiling
Programs,” gives an overview of run options and compiler directives.
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Running Programs After the compiler generates an object file for your program, you can run the program
by issuing a TACL RUN command.

To run the sample program MYPROG, issue the following command at the TACL
prompt:

RUN myprog

You can include run options in the TACL RUN command.  Section 16, “Running and
Debugging Programs,” gives an overview of some commonly used run options.  For
more information on run options, see the TACL Reference Manual.

The remainder of this manual describes the structure of a TAL source file, variable
declarations, expressions, statements, procedure declarations, and other language- and
compiler-specific information.
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This section describes how you can structure and format a TAL source program.  The
structure is the order and level at which major components appear in a program.  The
format is the spacing and alignment you use to make the program readable.

Source Files A program consists of one or more source files.  A source file can be a complete
program or a part of a modular program.  In modular programming, for instance, you
can:

Divide a large program into smaller, more manageable source files

Work independently on a source file while other programmers work on other
source files

Compile and debug each source file separately.

Bind new object code to existing debugged object code, including general-purpose
library routines

Use other languages, such as C or COBOL, for some of the source files

Group procedures into source files by the kinds of tasks the procedures perform;
for example, a source file can provide input/output (I/O) processing and another
can provide error processing

Compilation Units The input to the compiler is a single source file.  The source file, however, can contain
SOURCE directives that read in code from other source files.  The source file together
with code from other source files that are read in by SOURCE directives compose a
compilation unit.

When you compile a compilation unit, the output is an object file that you can bind
with other object files into a new object file, as described in the Binder Manual.

Structuring
Compilation Units

The structure of a compilation unit is the order and level at which major components
appear.  Figure 3-1 shows the structure of a sample compilation unit.

Not all of the components shown in the figure need to appear in a compilation unit.
For example, if your compilation unit is a complete program, instead of a part of a
modular program, the NAME declaration need not appear.
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Figure 3-1.  Structure of a Sample Compilation Unit

Main Procedure Declaration

Unblocked global data declarations

Blocked global data declarations

NAME declaration

Procedure declaration

Main procedure declaration

Local statements

Procedure declaration
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Figure 3-1 shows three procedures and a subprocedure.  You can declare any number
of procedures in a compilation unit.  You can declare any number of subprocedures
within any procedure.  You cannot, however, declare a subprocedure within another
subprocedure.

The shading in Figure 3-1 represents the scope of identifiers—that is, the set of levels at
which you can access identifiers:

Identifiers in the unshaded areas have global scope.  You can usually access global
identifiers from all compilation units in the program and from within the current
compilation unit.

Identifiers in the light gray areas have local scope.  You can access local identifiers
only from within the encompassing procedure.

Identifiers in the dark gray area have sublocal scope.  You can access sublocal
identifiers only from within the encompassing subprocedure.

Order of Components To structure a compilation unit, place declarations and statements in the following
order:

1. The NAME declaration, if present

2. Any unblocked global data declarations

3. Any blocked global data declarations

4. Procedure declarations.  Within each procedure:

a. Any local data declarations

b. Any subprocedure declarations.  Within each subprocedure:

1) Any sublocal data declarations

2) Any sublocal statements

c. Any local statements

The TAL compiler is a single-pass compiler.  The prescribed ordering enables the
compiler to recognize the scope and other characteristics of your data.  For example,
you must declare variables before you use their identifiers in statements.

The following subsections give more information on how to specify program
components.
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Naming
Compilation Units

You can assign an identifier to the compilation unit by using the NAME declaration.  If
present, the NAME declaration must be the first declaration in the compilation unit.
For example, you can assign the identifier INPUT_MODULE to a compilation unit as
follows:

NAME input_module;

Normally, you include the NAME declaration in compilation units that you compile
separately and then bind together by using Binder.  You must include the NAME
declaration in a compilation unit that contains blocked global data (those declared
within BLOCK declarations).

Declaring Data You declare data to associate identifiers with memory locations.  Table 3-1 lists the
data items you must declare before you access them.

Table 3-1.  Data Declarations

Data Item Description

LITERAL A named constant

DEFINE A named sequence of text

Simple variable A variable that contains one element of a specified data type

Array A variable that contains multiple elements of the same data type

Structure A variable that contains variables of different data types

Simple pointer A variable that contains a memory address, usually of a simple variable or
an array element, which you can access with this simple pointer

Structure pointer A variable that contains the memory address of a structure, which you can
access with this structure pointer

Equivalenced variable An alternate identifier and description for a previously declared variable

When you declare a variable, you specify at least a data type and an identifier.  For
example, you can declare a simple variable named TOTAL of data type INT as follows:

INT total;
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Declaring Global Data Global data is data that can be accessed by all compilation units in the program.
Global data can be any data item listed in Table 3-1 earlier in this section.

All global data declarations except LITERALs and DEFINEs must appear before any
procedure declarations.  Global LITERAL and DEFINE declarations can appear
between procedures as well.

You can declare unblocked or blocked data.

Declaring Unblocked
Global Data

Unblocked global data are those you declare outside of BLOCK declarations
(described next).  Place all unblocked data declarations after the NAME declaration, if
present, and before any BLOCK declarations.  Identifiers of unblocked global data are
accessible to all compilation units in the program.

Declaring Blocked
Global Data

Blocked global data are those you declare within BLOCK declarations.  The BLOCK
declaration lets you group global data into named or private data blocks.  All BLOCK
declarations must appear after the NAME declaration and any unblocked data
declarations and before the first procedure declaration.

Declaring Named Data Blocks

Use a named data block for global data you want to share with other compilation units
in the program.  You can include any number of named data blocks in a compilation
unit.  The data declarations in a data block can be any data type:

BLOCK shared_data;
  INT flag := True;
  INT(32) index := 0;
  STRING count := 0;
  END BLOCK;

Declaring Private Data Blocks

Use a private data block for global data you want to share only with procedures within
the current compilation unit.  You can declare only one private data block in a
compilation unit.  The private data block inherits the identifier you specify in the
NAME declaration.

BLOCK PRIVATE;
  INT average;
  INT total;
  END BLOCK;

For more information about global data blocks, see Section 14, “Compiling Programs.”
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Declaring Procedures You declare procedures to define routines that are callable from routines in any
compilation unit in the program.  You can declare procedures that perform discrete
operations such as I/O or error handling.  Normally, a procedure declaration includes
a procedure heading and a procedure body.

Procedure Heading For the procedure heading, include the following:

The keyword PROC
The procedure identifier
Identifiers of formal parameters, if any
Procedure attributes, if any
Declarations of formal parameters, if any

A procedure heading that has no formal parameters or attributes looks like this:

PROC my_heading;

The following procedure heading has one parameter (named PARAM) and the MAIN
attribute.  MAIN means execute this procedure first.  The second line declares the
formal parameter as being of data type INT:

PROC my_proc (param) MAIN;
    INT param;

A function is a procedure that returns a value to the caller.  You declare a function as
you do any other procedure except that in the function heading you specify a data
type for the return value.  Here is a function heading that specifies a return data type
of INT:

INT PROC my_function (param);
    INT param;

Procedure Body The procedure body is a BEGIN-END construct that can contain local data
declarations, subprocedure declarations, and local statements.  Here is an example:

PROC myproc;
  BEGIN
  INT var1;                      !Local data declarations
  INT var2;
  !Some code here
  var1 := var1 - var2;           !Local assignment statement
  END;

FORWARD Procedures If you need to call a procedure before you declare the procedure body, first declare a
procedure heading that includes the FORWARD keyword.  Once you declare a
FORWARD procedure, you can call the procedure from anywhere in the current
compilation unit.  For example, you can declare a FORWARD procedure named
TO_COME like this:

PROC to_come;
  FORWARD;
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EXTERNAL Procedures If you want to call a procedure that is compiled in another compilation unit, first
declare a procedure heading that includes the EXTERNAL keyword.  Once you
declare an EXTERNAL procedure, you can call the procedure from anywhere in the
current compilation unit.  For example, you can declare an EXTERNAL procedure
named FARAWAY like this:

PROC faraway;
  EXTERNAL;

Procedure Entry Points A procedure entry point is an identifier by which callers can call a procedure.  The
primary entry point is the procedure identifier.

Secondary entry points are entry-point identifiers declared within the procedure and
then placed at statements where the procedure can begin executing.  The following
example declares entry-point identifier ENTRY1 and places the identifier at a
statement:

PROC myproc (param);            !Declare the procedure
    INT param;
  BEGIN
  ENTRY entry1;                 !Declare entry-point
                                ! identifier
  INT var;
  !Some code here
entry1:                         !Apply entry-point
  var := var - param;           ! identifier to statement
  !More code
  END;

Any procedure or subprocedure in the compilation unit can call an entry-point
identifier.  The caller must pass parameters as if the procedure identifier were being
called.  The called procedure begins executing at the location of the entry-point
identifier.  At each activation of an entry-point identifier, all local variables receive
their initial values.

The FORWARD declaration for the preceding ENTRY1 entry point is:

PROC entry1 (param);
    INT param;
   FORWARD;

The EXTERNAL declaration for the ENTRY1 entry point is:

PROC entry1 (param);
    INT param;
   EXTERNAL;
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Local Data Local data is data you declare inside a procedure and can access only from within that
procedure.  Local data can be any data item described in Table 3-1 earlier in this
section.  Within a procedure, all local data declarations must appear before any
subprocedure declarations or local statements.  Following is an example of how you
declare local data:

PROC p;
  BEGIN
  INT total;                     !Declare local data
  INT num;

   !Subprocedures go here, if any

   !Local statements go here

  END;

Local Labels You can declare labels to reserve identifiers for later use as identifiers of locations in
the procedure.  For example, you can declare a label named LABEL_ONE and place it
at a statement.  Here is an example:

PROC x;
  BEGIN
  INT var;
  LABEL label_one;               !Declare a local label

  !Lots of statements
label_one :                      !Place the label at this
  var := 5;                      ! assignment statement
  !More statements
  END;

You can place the label identifier at the beginning of any statement, and then access
the label identifier from within the encompassing procedure.  (You can apply label
identifiers without declaring them, but declaring them reserves their identifiers.)

Local Statements Statements perform specific operations.  Local statements are those you include in a
procedure but outside a subprocedure.  For example, to store a value in a variable, you
can use an assignment statement as follows:

PROC nonsense;
  BEGIN
  INT local_var;

  local_var := 1000;             !Local assignment statement

  END;
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Table 3-2 lists the statements you can include in a TAL program.  (Statement names in
uppercase reflect a keyword.  The assignment and move statements have no keywords
in them; their names are in lowercase.)

Table 3-2.  TAL Statements

Statement Operation

ASSERT Conditionally calls an error-handling procedure

Assignment Stores a value in a variable

CALL Invokes a procedure or a subprocedure

CASE Selects a set of statements based on a selector value

CODE * Specifies machine codes or constants for inclusion in the object code

DO Executes a posttest loop until a true condition occurs

DROP Frees an index register or removes a label from the symbol table

FOR Executes a pretest loop for n times

GOTO Unconditionally branches to a label within a procedure or subprocedure

IF Conditionally selects one of two possible statements

Move Copies a contiguous group of items from one location to another

RETURN Returns from a procedure or a subprocedure to the caller;  returns a value from a
function.  As of the D20 release, it also can return a condition code value

RSCAN Scans a sequence of bytes, right to left, for a test character

SCAN Scans a sequence of bytes, left to right, for a test character

STACK * Loads a value onto the register stack

STORE * Stores a register stack value in a variable

USE Reserves an index register

WHILE Executes a pretest loop while a condition is true

*  Not portable to future software platforms.

Local statements can refer to:

Global identifiers, including procedure identifiers, anywhere in the program
Local identifiers, including subprocedure identifiers, in the encompassing
procedure
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Declaring
Subprocedures

You declare subprocedures to specify discrete portions of source code within a
procedure.  You can call subprocedures only from within the encompassing
procedure.  You can declare any number of subprocedures within a procedure, but
you cannot declare subprocedures within subprocedures.

Place any subprocedure declarations following the procedure’s local declarations.  In a
subprocedure declaration, you normally specify a heading and a body.

Subprocedure Heading In the subprocedure heading, include:

The keyword SUBPROC
The subprocedure identifier
Identifiers of formal parameters, if any
The attribute VARIABLE, if needed
Declarations of formal parameters, if any

For example, a subprocedure heading with no formal parameters or attributes looks
like this:

SUBPROC my_heading;

A subprocedure heading with one parameter (named PARAM) and the VARIABLE
attribute looks like this:

SUBPROC my_heading (param) VARIABLE;
    INT param;

Subprocedure Body For the subprocedure body, specify a BEGIN-END construct that can contain sublocal
data declarations and statements.  For example, within the procedure named
MYPROC you can declare a subprocedure named MYSUB, declare sublocal data
VAR1 and VAR2, and assign a value to VAR1 in a sublocal assignment statement:

PROC myproc;              !Declare MYPROC
  BEGIN
  !Local data declarations

  SUBPROC mysub;          !Declare MYSUB
    BEGIN
    INT var1;
    INT var2;

    var1 := var1 - var2;
    END;                  !End MYSUB

  !Local statements
  END;                    !End MYPROC

FORWARD Subprocedures If you need to call a subprocedure before you declare its body, declare a FORWARD
subprocedure.  You can then call it from anywhere in the encompassing procedure.

SUBPROC to_come;
  FORWARD;
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Subprocedure Entry Points A subprocedure entry point is an identifier by which callers can call a subprocedure.
The primary entry point is the subprocedure identifier.

Secondary entry points are entry-point identifiers declared within the subprocedure
and then placed at statements where the subprocedure can begin executing.  The
following example declares entry-point identifier SUB_ENTRY and places the
identifier at a statement:

PROC myproc;
  BEGIN
  !Local data declarations

  SUBPROC some_sub (param);     !Declare subprocedure
      INT param;
    ENTRY sub_entry;            !Declare entry-point
                                ! identifier
    INT var;
    !Some code here
  sub_entry:                    !Apply entry-point
    var := var - param;         ! identifier to statement
    !More code
    END;                        !End subprocedure

  !More subprocedures

  !Local statements
  CALL sub_entry (1);           !Call entry-point SUB_ENTRY
  END;

A subprocedure can call an entry-point identifier of any subprocedure within the same
procedure.  The caller must pass parameters to the entry-point identifier as if it were
calling the subprocedure identifier.  The called subprocedure begins executing at the
location of the entry-point identifier.  All the sublocal variables of the called
subprocedure receive their initial values each time the subprocedure is activated.

If you need to reference a subprocedure entry-point identifier before you declare the
subprocedure, a FORWARD declaration is required:

SUBPROC sub_entry (param);
    INT param;
   FORWARD;
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Sublocal Data Sublocal data is data you declare inside a subprocedure and can access only from
within the same subprocedure.  Sublocal data can be any data item described in
Table 3-1 earlier in this section.  Within a subprocedure, all sublocal data declarations
must appear before any sublocal statements.  Also, sublocal arrays and structures must
be directly addressed.  (Addressing is explained in Section 4, “Introducing the
Environment.”)  Following is an example of how you declare sublocal data:

PROC myproc;
  BEGIN
  !Local data declarations

  SUBPROC mysub;
    BEGIN
    INT var1;               !Sublocal data declarations
    INT var2;

    var1 := var1 - var2;    !Sublocal statement
    END;

  !Local statements
  END;

Sublocal Labels You declare sublocal labels as you do local labels, except that you declare sublocal
labels within a subprocedure.  You can access sublocal labels from anywhere within
the encompassing subprocedure.

Sublocal Statements Within a subprocedure, you can specify any statement described in Table 3-2 earlier in
this section.  Sublocal statements can access:

Global identifiers, including procedures, anywhere in the program
Local identifiers, including subprocedures, in the encompassing procedure
Sublocal identifiers in the encompassing subprocedure
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Formatting Programs You can format a program to make it easier to understand and maintain.  The TAL
compiler allows almost a free format for source code.  You can use any format that
serves your purposes.  The only limitation is that the maximum line length for source
code is 132 characters.

Here is an example of a format that is difficult to read:

INT num1;INT num2;INT num3;STRING char1;STRING char2;STRING
char3;PROC format_example MAIN; BEGIN num1 := 8; num2 := 5;
num3 := num1 + num2; char1 := "A"; char2 := "B"; char3 :=
"C"; END;

Here is an example of a format that is easy to read:

INT num1;
INT num2;
INT num3;
STRING char1;
STRING char2;
STRING char3;

PROC format_example MAIN;
  BEGIN
  num1 := 8;
  num2 := 5;
  num3 := num1 + num2;
  char1 := "A";
  char2 := "B";
  char3 := "C";
  END;

In the second format, you can readily see each declaration.  You can tell where the
global declarations end and the procedure begins.  You can quickly see what the
procedure body contains.  You have space to add comments to clarify what is going on
in the program.
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Formatting With Comments You can insert comments anywhere in the source code to make the code easier to
understand and maintain.  For instance, you can explain the purpose of certain
constructs or variables.  During compilation, the compiler ignores comments.

You can specify comments using either of two forms or can use both forms in the same
compilation unit:

Beginning Delimiter Ending Delimiter Example

Two hyphens End of line --One form of comments

Exclamation point Exclamation point or end of line !Another form of comments

Explaining the Purpose of Variables

Comments can explain the purpose of variables:

INT num1;                    --16-bit simple variables
INT num2;                    -- to use for processing
INT num3;                    -- integer values

STRING char1;                --8-bit simple variables
STRING char2;                -- to use for processing
STRING char3;                -- ASCII characters

PROC format_proc MAIN;       --Declare FORMAT_PROC
  BEGIN
  --Assign values to variables
  num1 := 8;
  num2 := 5;
  num3 := num1 + num2;
  char1 := "A";
  char2 := "B";
  char3 := "C";
  --Code to process the variables
  END;                       --End FORMAT_PROC

Documenting Omitted Parameters

Comments within a CALL statement can help identify omitted parameters:

PROC some_proc (index, num, length, limit, total)
  EXTENSIBLE;
    INT index, num, length, limit, .total;
  BEGIN
  !Lots of code
  END;

PROC caller_proc;
  BEGIN
  INT total;
  !Some code
  CALL some_proc (0, !num!, !length!, 40, total);
  END;
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Skipping Parts of Code

When you want the compiler to ignore a portion of the code, you can either:

Comment it out
Use conditional compilation

For example, when your code contains ! comments, you can use -- to comment
out the portion you want the compiler to ignore:

PROC my_proc;
  BEGIN
  !Lots of code
  END;

--Comment out the following portion of code:
--PROC no_proc;
--  BEGIN
--  !Lots of code
--  END;
--End of commented-out portion of code

PROC your_proc;
  BEGIN
  !Lots of code
  END;

Alternatively, you can use conditional compilation for the portion you want the
compiler to ignore.  Here is the preceding example shown with the DEFINETOG , IF,
and ENDIF conditional compilation directives:

PROC my_proc;
  BEGIN
  !Lots of code
  END;

?DEFINETOG omit              !Define toggle OMIT without
                             ! changing its off state
?IF omit                     !If OMIT is off,
PROC this_proc;              ! skip THIS_PROC
 BEGIN
  !Lots of code
  END;
?ENDIF omit                  !End of skipped portion

PROC your_proc;
  BEGIN
  !Lots of code
  END;

In the preceding example, DEFINETOG and named toggles are D20 or later features.
For pre-D20 systems, you can use RESETTOG with numeric toggles instead.  For more
information on these directives, see the TAL Reference Manual.
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Formatting With
BEGIN-END Constructs

You use BEGIN-END constructs to group various items into a single entity.  If you
align the BEGIN and END keywords vertically, the program is easier to understand.
Following are some uses for BEGIN-END constructs.

Procedure or Subprocedure Body

Within a procedure (or subprocedure) declaration, enclose the procedure (or
subprocedure) body in a BEGIN-END construct:

PROC add;
  BEGIN
  !Procedure body
  END;

Structure Layout

Within a structure declaration, enclose the structure layout in a BEGIN-END construct:

STRUCT inventory;
  BEGIN
  !Structure item
  !Structure item
  !Structure item
  END;

Compound Statements

Place a compound statement in a BEGIN-END construct.  A compound statement
consists of multiple statements you want treated as a single logical statement:

BEGIN
!Statement
!Statement
!Statement
END;

For example, you can specify a choice of compound statements in an IF statement as
follows:

IF a < b THEN
  BEGIN                 !Begin compound statement
  a := 1;
  b := 2;
  c := a + b;
  END                   !End compound statement
ELSE
  BEGIN                 !Begin compound statement
  a := 5;
  b := 6;
  c := a + b;
  END;                  !End compound statement
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Using Semicolons Use semicolons to end each data declaration and to separate successive statements.

Ending Data Declarations

Here is an example of using semicolons to end data declarations:

INT    num1;
INT    num2;
INT    num3;
STRING char1;
STRING char2;

The following example is equivalent to the preceding example:

INT    num1, num2, num3;
STRING char1, char2;

Separating Successive Statements

You must use a semicolon between successive statements.  A semicolon before the last
END keyword of a procedure or subprocedure is optional.

PROC myproc;
  BEGIN
  INT num1;
  INT num2 := 8;
  INT total;

  num1 := 9;              !Required semicolon
  total := num1 + num2;   !Optional semicolon
  END;

Using Semicolons Within Statements

Within a statement:

You can use a semicolon before the END keyword that terminates a compound
statement.

You cannot use a semicolon just before an ELSE or UNTIL keyword.

IF a < b THEN
  BEGIN
  a := 1;
  b := 2;                 !Optional semicolon
  END                     !No semicolon here
ELSE
  a := 0;

DO
  a := a + b              !No semicolon here
UNTIL
  a < b;
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Null Statements

You can use a semicolon without a statement to create a null statement, which means
do nothing.  The compiler generates no code for null statements.  You can use a null
statement anywhere you can use a statement, except immediately before an ELSE or
UNTIL keyword.

Here is an example of a null statement embedded in a labeled CASE statement:

CASE var OF
  BEGIN
  0 ->
      ;                   !Null statement
  1 ->
      CALL fixit;         !CALL statement
  END;

Using Compiler
Directives

Compiler directives are options provided by the TAL compiler so you can control the
compilation.  For example, compiler directives let you:

Specify files from which to read in source code
Specify the content of compiler listings and object files
Conditionally compile portions of source code

You can specify most compiler directives either in the compilation command (that
runs the compiler) or in your source code.

In the compilation command, you can specify directives following the semicolon.   For
example, to compile the source file MYSRC, send the object code to object file MYOBJ,
and specify the NOLIST directive to suppress the compiler listing, issue the following
command at the TACL prompt:

TAL /IN mysrc/ myobj; NOLIST

In your source file, you specify directives in directive lines.  Start each directive line
with a question mark (?) in column 1 as follows:

?LIST
!Some code here
?NOLIST, NOCODE, INSPECT, SYMBOLS, NOMAP, NOLMAP, GMAP
?CROSSREF, INNERLIST

The following directive line has a continuation line for the argument list of the
SEARCH directive:

?SEARCH (file1, file2, file3, file4,
?        file5, file6)
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When the argument list of a directive continues on a subsequent line, you must specify
at least the leading parenthesis of the argument list on the same line as the directive
name:

?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
?                         PROCESS_GETINFO_, PROCESS_STOP_)
?POPLIST
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This section introduces you to:

The process environment in which your program runs
Addressing modes you can use in this environment
Allocation of data storage by the compiler
System dependencies

Process Environment Your object programs execute as individual processes on a Tandem system.  A
program is a static group of machine instructions and initialized data that reside in a
file.  The same program can execute concurrently many times, and each execution
comprises a separate process.

A process is a dynamically running program.  Each process has its own user data
space in memory and process information maintained by the operating system.  The
instruction codes of a process reside in the code space; they manipulate variable data
that reside in the data space.

The environment for your process includes:

Code space (user and library)
Data space (user and extended)
System code space
System library space
Registers

Code Space The code space of your process consists of:

An optional library code space
A user code space

If your process does not include library space, the user code space can contain 1 to 32
code segments.  If your process includes library space, the user code space can contain
1 to 16 user code segments and 1 to 16 library code segments.

During program execution, the operating system automatically allocates memory for
code segments as needed, keeps track of which code segment is current, and performs
segment switching when necessary.

A code segment contains instruction codes and some program constants.  During
execution, processes can read, but not modify, the content of a code segment.

A code segment consists of up to 65,536 words, which have consecutive addresses
from C[0] through C[65535].  (C represents the code space.)
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Data Space The current data space of your process consists of:

A user data segment
An automatic extended data segment if needed
Any user-defined (explicit) extended data segments

(The term segment refers a nonextended segment except where the word extended is
specifically used.)

User Data Segment

The user data segment provides a private storage area for the variables of your
process.  Your process can modify the content of the user data segment.

The system provides the user data segment automatically.  This segment contains up
to 65,536 words, addressed consecutively from G[0] through G[65535].  (G represents
the global storage area.)

The lower half of the user data segment contains the global storage area and the data
stack.  During the execution of your process, the system stores the process’ global data
in the global area.  During activation of a procedure, the system stores the procedure’s
data in the local area of the data stack.  During activation of a subprocedure, the
system stores the subprocedure’s data in the sublocal area of the data stack.

The upper half of the user data segment provides memory that you can allocate for
your data if you do not use the CRE.  Appendix B, “Managing Addressing,” gives
information on using the upper half of the user data segment without the CRE.
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Figure 4-1 shows the organization of the user data segment.

Figure 4-1.  User Data Segment
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Extended Data Segments

Extended data segments provide indirect data storage in addition to storage in the
user data segment.  References to extended data segments are not as fast as those to
the user data segment.  An extended data segment can be as large as 127.5 megabytes.

When you declare arrays and structures by specifying the extended indirection symbol
(.EXT), the compiler automatically allocates and deallocates an appropriately sized
extended segment.  The segment size is fixed during compilation, and the full segment
is allocated in one step.  If you need a larger extended segment, use the LARGESTACK
directive (described in the TAL Reference Manual).

As shown in Figure 4-2, the automatic extended segment contains:

A global area—for global extended indirect arrays and structures
An extended stack—for local extended indirect arrays and structures

Figure 4-2.  Automatic Extended Data Segment
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It is recommended that you use only the automatic extended data segment if possible.
If you must also allocate explicit extended data segments, follow the instructions in
Appendix B, “Managing Addressing.”
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System Code Space The current system code space available to your process contains one segment of
system code.

System Library Space The current system library space contains up to 31 segments of system library code,
available to your process one at a time.

Registers Table 4-1 lists the registers that describe your process in the current process
environment:

Table 4-1.   Registers in Current Process Environment

Register Content

Program (P) register Contains the address of the next instruction to execute in the current
code segment

Instruction (I) register Contains the instruction currently executing in the current code segment

Local (L) register Contains the address of the beginning of the local data area for the
current procedure

Stack (S) register Contains the address of the last allocated word in the data stack for the
current procedure or subprocedure

Register stack Contains registers (R0 through R7) that the compiler uses for arithmetic
and other operations.  The compiler also uses R5, R6, and R7 as index
registers.

Environment (E) register Contains information about the current process, such as the current RP
value and whether traps are enabled

Register pointer (RP) A field of the environment register that points to the current top of the
register stack

Addressing Modes When you declare a variable, you specify its addressing mode and an identifier and a
data type.  You can specify these addressing modes:

Direct addressing
Standard indirect addressing
Extended indirect addressing

The addressing mode and scope of a variable determines:

The storage area in which the compiler allocates space for the variable
The kind of instructions the compiler generates to access the variable

The data type of a variable determines the byte or word addressing mode of the
variable.  Figure 4-3 shows byte and word addresses in the user data segment.
(Extended segments are always byte addressed.)
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Figure 4-3.  Byte and Word Addressing in User Data Segment
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Direct Addressing Direct addressing uses 16-bit addresses and requires only one memory reference.
Direct addressing is not absolute; it is relative to the base of the global, local, or
sublocal area of the user data segment.

You can use direct addressing only in the lower 32K-word area of the user data
segment.  To access data in any other area, use standard indirect addressing or
extended indirect addressing, described next.

Indirect Addressing Indirect addressing requires two memory references, first to a location that contains an
address and then to the data located at the address.  You can use indirect addressing to
save space in limited storage areas, as described in “Storage Allocation” later in this
section.

You specify indirect addressing by using an indirection symbol when you declare
indirect arrays, indirect structures, or pointers (including simple pointers and
structure pointers).  Simple variables are always direct.

When you declare an indirect array or structure, the compiler automatically
provides an implicit pointer, stores a memory address in it, and then allocates the
data at that address.

When you declare a pointer, you must store the memory address of data in the
pointer and must manage allocation of the data itself.

You can specify standard indirect addressing or extended indirect addressing.
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Standard  Indirect Addressing

Standard indirect addressing is 16-bit indirect addressing in the user data segment,
including:

Byte or word addresses in the lower 32K-word area
Word addresses in the upper 32K-word area

If you use the CRE, however, the upper 32K-word area is not available for your data.

Extended Indirect Addressing

Extended indirect addressing is relocatable 32-bit indirect addressing anywhere in
virtual memory, usually in an extended data segment.

(Absolute extended indirect addressing is described in the System Description Manual
for your system.)

Indexing Indexing can be thought of as being an addressing mode.  You can access variables by
appending an index to a variable identifier.  The index represents an offset, for
example, as follows:

For an array, the index is an element offset from the location of the zeroth element
of the array.  The element size—byte, word, doubleword, or quadrupleword—
depends on the data type of the array.

For a simple pointer, the index is an element offset from the address contained in
the pointer.  The element size depends on the data type of the simple pointer.

For a structure or substructure, the index is an occurrence offset from the location
of the zeroth occurrence of the structure or substructure.  The occurrence size is
the total number of bytes in one occurrence of the structure or substructure,
including pad bytes.

In the following example, the index [1] lets you access the second element of
MY_ARRAY:

INT my_array[0:2];   !Declare MY_ARRAY, a three-element array

my_array[1] := 5;    !Assign 5 to second element of MY_ARRAY

The specifics of indexing arrays, structures, pointers, and equivalenced variables are
discussed in Sections 7 through 10, respectively.
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Storage Allocation The compiler generates code during compilation to allocate storage for variables.  The
compiler allocates storage as follows:

For global variables—when compilation begins

For local or sublocal variables—when the encompassing procedure or
subprocedure is invoked

The compiler allocates each variable either in the user data segment or in the
automatic extended segment, depending on how you declared the variable.

Allocation in the
User Data Segment

In general, the compiler allocates storage for pointers and other variables in the lower
32K-word area of the user data segment.  Figure 4-4 shows the primary and secondary
areas of the lower 32K-word area and the variables each of these areas can contain.

Figure 4-4.  Primary and Secondary Storage in the User Data Segment
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Global Primary Area

The global primary area can store up to 256 words of the following kinds of global
variables:

Direct variables—simple variables (which are always direct), direct arrays, and
direct structures

Pointers—simple pointers and structure pointers—that you declare

Implicit pointers—pointers that the compiler provides when you declare indirect
arrays or indirect structures

Two implicit extended-stack pointers (described in “Extended Stack” later in this
section)

The compiler allocates storage for each global pointer and each direct global variable
at an increasingly higher offset from the beginning of the encompassing global data
block.  Global data blocks are relocatable during binding.

Local Primary Area

The local primary area for each procedure can store up to 127 words of the following
kinds of local variables:

Direct variables—simple variables (which are always direct), direct arrays, and
direct structures

Pointers—simple pointers and structure pointers—that you declare

Implicit pointers—pointers that the compiler provides when you declare indirect
arrays and indirect structures

When a call to the encompassing procedure occurs, the compiler allocates storage at
the current top of the data stack for each local pointer and each direct local variable.
The addresses of the variables are pushed to an increasingly higher offset from L[1].
(L represents the local storage area.)

Sublocal Primary Area

The sublocal primary area for each subprocedure can store up to 32 words of the
following kinds of sublocal variables:

Direct variables—simple variables (which are always direct), direct arrays, and
direct structures

Pointers—simple pointers and structure pointers—that you declare

When a call to the encompassing subprocedure occurs, the compiler allocates storage
at the current top of the data stack for each sublocal pointer and each direct sublocal
variable.  The addresses of previously allocated variables are pushed to increasingly
negative offsets from S[0].  (S represents the sublocal storage area.)

When all sublocal variables are allocated, the compiler adjusts the top-of-data-stack
pointer to point immediately below the last variable allocated.  The top of the data
stack is illustrated in Figure 4-4 earlier in this section.
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Secondary Storage Areas

The secondary storage areas are:

A global secondary area, which begins following the location of the last global
variable allocated in the global primary area

A local secondary area, which begins following the location of the last local
variable allocated in the local primary area

The secondary areas have no explicit size, but the total of all primary and secondary
areas cannot exceed the lower 32K-word area of the user data segment.

For each standard indirect array or structure that you declare:

1. The compiler provides an implicit standard pointer and allocates a word of
storage for the pointer in the global or local primary area.

2. The compiler allocates storage for the array or structure in the global or local
secondary area, which begins immediately following the last direct item.

If you declare indirect arrays and structures within BLOCK declarations, however,
the compiler allocates such data blocks as described in Section 14, “Compiling
Programs.”

3. The compiler initializes the implicit pointer (provided in step 1) with the allocated
address of the array or structure in the secondary area, as follows:

For a STRING array, the pointer contains the byte address of the array.
For any other array, the pointer contains the word address of the array.
For a structure, the pointer contains the word address of the structure.

Allocation in the Automatic
Extended Segment

Extended indirect allocation is limited to the size of an extended segment, which can
be as large as 127.5 megabytes.

If you declare any extended indirect array or structure, the compiler automatically
allocates and manages an extended data segment.  (You can also allocate and manage
explicit extended segments as described in Appendix B, “Managing Addressing.”)

For each extended indirect array or structure that you declare:

1. The compiler provides an implicit extended pointer and allocates a doubleword of
storage for the pointer in the global or local primary area of the user data segment.
(Because the local primary area is limited to 127 words, you can declare at most 63
extended local variables in any procedure.)

2. The compiler allocates storage for the array or structure in the automatic extended
data segment.

3. The compiler initializes the implicit pointer (provided in step 1)  with the byte
address of the array or structure in the extended data segment.

The compiler also allocates and manages:

An extended stack
Two extended stack pointers
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Extended Stack

The compiler allocates the extended stack in the automatic extended data segment in a
data block named $EXTENDED#STACK.  The default size of the extended stack is 64K
bytes or the maximum space required by a procedure, whichever is greater.

When you use recursion or compile compilation units separately, the compiler cannot
calculate the size requirements of the extended stack precisely.  You can increase its
size by using the LARGESTACK directive, described in the TAL Reference Manual.

Extended Stack Pointers

The compiler allocates two implicit extended stack pointers in a data block named
EXTENDED#STACK#POINTERS in the global primary area of the user data segment.
These pointers are as follows:

Extended
Stack Pointer Content

#SX Contains the address of the first free location in the current activation record in the
extended stack.  The current activation record contains all the information needed
to execute the current procedure.

#MX Contains the maximum value allowed for #SX, less eight bytes.

When the value of #SX is greater than or equal to the value of #MX, the extended stack
overflows.  The end of the compilation listing reports the memory position of the two
stack pointers.
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This section describes how you use arithmetic and conditional expressions.  It gives
information about operands (identifiers, data types, variables, constants) and about
arithmetic and conditional operators and their effect on operands.

For information about assignment, CASE, IF, and group comparison expressions, see
Section 13, “Using Special Expressions.”

About Expressions An expression is a sequence of operands and operators that, when evaluated,
produces a single value.  Operands in an expression include variables, constants, and
function identifiers.  Operators in an expression perform arithmetic or conditional
operations on the operands.

Expressions, for example, can appear in:

LITERAL declarations
Variable initializations and assignments
Array and structure bounds
Indexes to variables
Conditional program execution
Parameters to procedures or subprocedures

Complexity An expression can be:

A single operand, such as 5
A unary plus or minus operator applied to a single operand, such as –5
A binary operator applied to two operands, such as 5 * 8
A complex sequence, such as:

(((alpha + beta) / chi) * (delta — 145.9)) / zeta

Functionality The compiler at times requires arithmetic or conditional expressions.  Where indicated,
specify one of the following kinds of expressions:

Expression Description Examples

Arithmetic
expression

An expression that computes a single numeric value
and that consists of operands and arithmetic
operators.

398 + num / 84

10 LOR 12

Constant
expression

An arithmetic expression that contains only
constants, LITERALs, and DEFINEs as operands.

398 + 46 / 84

Conditional
expression

An expression that establishes the relationship
between values and that results in a true or false
value.  It consists of relational or Boolean conditions
and conditional operators.

Relational:  a < c

Boolean:        a OR b
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Operands Operands in expressions can be items such as variables, constants, LITERALs, and
function invocations.

The following subsections describe identifiers, data types, variables, constants,
LITERALs, and functions, followed by arithmetic expressions and conditional
expressions.

Identifiers Identifiers are names you declare for objects such as variables, LITERALs, and
procedures (including functions).  You can form identifiers that:

Are up to 31 characters long

Begin with an alphabetic character, an underscore (_), or a circumflex (^)

Contain alphabetic characters, numeric characters, underscores, or circumflexes

Contain lowercase and uppercase characters (the compiler treats them all as
uppercase)

Are not reserved keywords, which are listed in Table 5-1.

Can be nonreserved keywords, except as noted in Table 5-2.

To separate words in identifiers, use underscores rather than circumflexes.
International character-set standards allow the character printed for the circumflex to
vary with each country.

Do not end identifiers with an underscore.  The trailing underscore is reserved for
identifiers supplied by the operating system.

The following identifiers are correct:

a2
myprog
_23456789012_00
name_with_exactly_31_characters

The following identifiers are incorrect:

2abc                                      !Begins with number
ab%99                                     !Illegal symbol
Variable                                  !Reserved word
This_name_is_too_long_so_it_is_invalid    !Too long

Though allowed as TAL identifiers, avoid identifiers such as:

Name^Using^Circumflexes
Name_Using_Trailing_Underscore_
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Keywords

Keywords have predefined meanings to the compiler when used as described in this
manual.  Table 5-1 lists reserved keywords, which you cannot use as identifiers.

Table 5-1.  Reserved Keywords

AND DO FORWARD MAIN RETURN TO

ASSERT DOWNTO GOTO NOT RSCAN UNSIGNED

BEGIN DROP IF OF SCAN UNTIL

BY ELSE INT OR STACK USE

CALL END INTERRUPT OTHERWISE STORE VARIABLE

CALLABLE ENTRY LABEL PRIV STRING WHILE

CASE EXTERNAL LAND PROC STRUCT XOR

CODE FIXED LITERAL REAL SUBPROC

DEFINE FOR LOR RESIDENT THEN

Table 5-2 lists nonreserved keywords, which you can use as identifiers anywhere
identifiers are allowed, except as noted under Restrictions.

Table 5-2.  Nonreserved Keywords

Keyword Restrictions

AT

BELOW

BIT_FILLER Do not use as an identifier within a structure.

BLOCK Do not use as an identifier in a source file that contains the NAME declaration.

BYTES Do not use as an identifier of a LITERAL or DEFINE.

C

COBOL

ELEMENTS Do not use as an identifier of a LITERAL or DEFINE.

EXT

EXTENSIBLE

FILLER Do not use as an identifier within a structure.

FORTRAN

LANGUAGE

NAME

PASCAL

PRIVATE Do not use as an identifier in a source file that contains the NAME declaration.

UNSPECIFIED

WORDS Do not use as an identifier of a LITERAL or DEFINE.
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Data Types When you declare most kinds of variables, you specify a data type, which dictates:

The kind of values the variable can store
The amount of storage the compiler allocates for the variable
The operations you can perform on the variable
The byte or word addressing mode of the variable

Table 5-3 gives information about each data type.

Table 5-3.  Data Types

Data Type Storage Unit Kind of Values the Data Type Can Represent

STRING Byte An ASCII character.
An 8-bit integer in the range 0 through 255 unsigned.

INT Word One or two ASCII characters.
A 16-bit integer in the range 0 through 65,535 (unsigned) or

–32,768 through 32,767 (signed).
A standard (16-bit) address (0 through 65,535).

INT(32) Doubleword A 32-bit integer in the range –2,147,483,648 through
+2,147,483,647.

An extended (32-bit) address (0 through 127.5K).

UNSIGNED n-bit field * UNSIGNED(1–15) and UNSIGNED(17–31) can represent a
positive unsigned integer in the range 0 through (2n – 1).

UNSIGNED(16) can represent an integer in the range 0 through
65,535 unsigned or –32,768 through 32,767 signed;  it can
also represent a standard address

FIXED Quadrupleword A 64-bit fixed-point number.  For FIXED(0) and FIXED (*), the
range is –9,223,372,036,854,775,808 through
+9,223,372,036,854,775,807.

REAL Doubleword A 32-bit floating-point number in the range
±8.6361685550944446E–78 through
±1.15792089237316189E77 precise to approximately 7
significant decimal digits.

REAL(64) Quadrupleword A 64-bit floating-point number in the same range as data type
REAL but precise to approximately 17 significant decimal
digits.

* For an UNSIGNED simple variable, the bit field can be 1 to 31 bits wide.
For an UNSIGNED array, the element bit field can be 1, 2, 4, or 8 bits wide.

As shown in Table 5-3, a data type consists of a keyword possibly followed by a value
enclosed in parentheses.  This value is the width or fpoint of the data type.
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Specifying Widths

For INT, REAL, and UNSIGNED data types, the value in parentheses is a constant
expression that specifies the width, in bits, of the variable.   As of the D20 release, the
constant expression can include LITERALs and DEFINEs (previously declared
constants and text).  The result of the constant expression must be one of the following
values:

Data Type Prefix width, in bits

INT 16*, 32, or 64*

REAL 32* or 64

UNSIGNED—simple variable,
parameter, or function result

A value in the range 1 through 31

UNSIGNED—array 1, 2, 4, or 8

* INT(16), INT(64), and REAL(32) are data type aliases, as described in
“Data Type Aliases” later in this section.

Here is an example of a width that includes a LITERAL:

LITERAL dbwd_size = (4 * 8);     !INT_SIZE equals 32
INT(dbwd_size) num;              !Data type is INT(32)

LITERALs are described later in this section.  DEFINEs are described in the TAL
Reference Manual.

Specifying fpoints

For the FIXED data type, fpoint is the implied fixed-point setting.  fpoint is an integer in
the range –19 through 19.  If you omit fpoint, the default fpoint is 0 (no decimal places).

A positive fpoint specifies the number of decimal places to the right of the decimal
point:

FIXED(3)  x := 0.642F;          !Stored as 642

A negative fpoint specifies a number of integer places to the left of the decimal point.
To store a FIXED value, a negative fpoint truncates the value leftward from the decimal
point by the specified number of digits.  When you access the FIXED value, zeros
replace the truncated digits:

FIXED(-3) y := 642945F;         !Stored as 642; accessed
                                ! as 642000

Specifying Asterisks

As of the D20 release, FIXED(*) is a data type notation.  If you declare a FIXED(*)
variable, the value stored in the variable is not scaled.
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Data Type Aliases The compiler accepts the following aliases for the listed data types:
Data Type Alias

INT INT(16)

REAL REAL(32)

FIXED(0) INT(64)

For consistency, the remainder of this manual avoids using data type aliases.  For
example, although the following declarations are equivalent, the manual uses
FIXED(0):

FIXED(0) var;
INT(64) var;

Storage Units Storage units are the containers in which you can access data stored in memory.  The
system fetches and stores all data in 16-bit words, but you can access data as any of the
storage units listed in Table 5-4.

Table 5-4.  Storage Units

Storage Unit Number of Bits Data Type Description

Byte 8 STRING One of two bytes that make up a word

Word* 16 INT Two bytes, with byte 0 (most
significant) on the left and byte 1 (least
significant) on the right

Doubleword 32 INT(32),  REAL Two contiguous words

Quadrupleword 64 REAL(64),  FIXED Four contiguous words

Bit field 1–16 UNSIGNED Contiguous bit fields within a word

Bit field 17–31 UNSIGNED Contiguous bit fields within a
doubleword

* In TAL a word is always 16 bits regardless of the word size used by the system hardware.

Data Types of Expressions The result of an expression can be of any data type except STRING or UNSIGNED.
The compiler determines the data type of the result from the data type of the operands
in the expression.  All operands in an expression must have the same data type, with
the following exceptions:

An INT expression can include STRING, INT, and UNSIGNED(1–16) operands.
The system treats STRING and UNSIGNED(1–16) operands as if they were 16-bit
values.  That is, the system:

Puts a STRING operand in the right byte of a word and sets the left byte to 0.

Puts an UNSIGNED(1–16) operand in the right bits of a word and sets the
unused left bits to 0, with no sign extension.  For example, for an
UNSIGNED(2) operand, the system fills the 14 leftmost bits of the word with
zeros.
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An INT(32) expression can include INT(32) and UNSIGNED(17–31) operands.
The system treats UNSIGNED(17–31) operands as if they were 32-bit values.  It
places an UNSIGNED(17–31) operand in the right bits of a doubleword and sets
the unused left bits to 0, with no sign extension.  For example, for an
UNSIGNED(29) operand, the system fills the three leftmost bits of the doubleword
with zeros.

In all other cases, if the data types do not match, use type transfer functions (described
in the TAL Reference Manual) to make them match.

Variables A variable is a symbolic representation of an item or a group of elements.  You use
variables to store data that can change during program execution. Table 5-5 lists the
kinds of variables you can declare.

Table 5-5.  Variables

Variable Description

Simple variable A variable that contains one element of a specified data type

Array A variable that contains multiple elements of the same data type

Structure A variable that can contain variables of different data types

Substructure A structure nested within a structure or substructure

Structure data item A simple variable, array, simple pointer, substructure, or structure pointer
declared in a structure or substructure; also known as a structure field

Simple pointer A variable that contains the memory address, usually of a simple variable
or array element, which you can access with this simple pointer

Structure pointer A variable that contains the memory address of a structure, which you
can access with this structure pointer

Constants A constant is a value you can store in a variable, declare as a LITERAL, or use as part
of an expression.  Constants can be numbers or character strings.  The kind and size of
constants a variable can accommodate depend on the data type of the variable.
Examples are:

255           !Integer number
1.02E12       !Floating-point number
2.5F          !Fixed-point number
"xyz"         !Character string
2 * 5         !Constant expression

The following subsections describe numeric constants (integer, fixed-point, and
floating-point) and character string constants.

Integer Constants

Integer constants include STRING, INT, INT(32), and FIXED(0) numbers.

Integer constants can be in binary, octal, decimal, or hexadecimal base.  Decimal is the
default number base.  Specify the base as shown in Table 5-6.
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Table 5-6.  Number Base Formats

Number Base Prefix Digits Allowed Example

Decimal None 0 through 9 46

Octal % 0 through 7 %57

Binary %B 0 or 1 %B101111

Hexadecimal %H 0 through 9, A through F %H2F

STRING.  A STRING numeric constant is an unsigned 8-bit integer in the range 0
through 255.  Examples are:

59                              !Decimal base
%12                             !Octal base
%B101                           !Binary base
%h2A                            !Hexadecimal base

INT.  An INT numeric constant is a signed or unsigned 16-bit integer in the range 0
through 65,535 (unsigned) or –32,768 through 32,767 (signed).  Examples are:

45550                           !Decimal base (unsigned)
-8987                           !Decimal base (signed)
%177                            !Octal base (unsigned)
-%5                             !Octal base (signed)
%B1001111000010001              !Binary base
%h2f                            !Hexadecimal

INT(32).  An INT(32) numeric constant is a signed or unsigned 32-bit integer in the
range –2,147,483,648 through 2,147,483,647, suffixed by D for decimal, octal, or binary
integers, and by %D for hexadecimal integers.  Examples are:

0D                              !Decimal base
+14769D
-327895066d

%1707254361d                    !Octal base
-%24700000221D

%B000100101100010001010001001d  !Binary base

%h096228d%d                     !Hexadecimal base
-%H99FF29%D
-%H99FF29 D                     !This form is allowed but not
                                ! recommended; always include
                                ! the % in the %D suffix
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FIXED(0).  FIXED(0) numeric constants are discussed under “Fixed-Point Constants,”
described next.

Fixed-Point Constants

A fixed-point constant is type FIXED and is a signed 64-bit fixed-point number.  The
range of a FIXED constant is determined by its fpoint.  For example, the ranges for
FIXED(0) and FIXED(2) are:

fpoint Range

FIXED(0) –9,223,372,036,854,775,808  through  9,223,372,036,854,775,807

FIXED(2) –92,233,720,368,547,758.08  through  92,233,720,368,547,758.07

Fixed-point numbers except FIXED(0) must be in decimal base.  A decimal fixed-point
number can include a fractional part preceded by a decimal point.  Append F to
decimal, octal, or binary FIXED numbers.  Append %F to hexadecimal numbers.  Here
are examples:

1200.09F                       !Decimal base; FIXED(2)
0.1234567F                     !Decimal base; FIXED(7)
239840984939873494F            !Decimal base; FIXED(0)
-10.09F                        !Decimal base; signed FIXED(2)

%B1010111010101101010110F      !Binary base; FIXED(0)

-%765235512F                   !Octal base; signed FIXED(0)

%H298756%F                     !Hexadecimal base; FIXED(0)

Floating-Point Constants

A REAL or REAL(64) numeric constant is a signed floating-point number in the range
± 8.6361685550944446 * 10-78 through ±1.15792089237316189 * 10+77.

A REAL numeric constant is a 32-bit value that is precise to approximately seven
significant digits.

A REAL(64) numeric constant is a 64-bit value that is precise to approximately 17
significant digits.

The format of a floating-point constant includes an integer part, a fractional part
suffixed by E  for a REAL constant or L  for a REAL(64) constant, and an exponent as
follows:

356

-30.3E-2

Exponent
Fractional part

Integer part
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Here are examples:

Decimal Value REAL REAL(64)

0 0.0E0 0.0L0

2 2.0e0 2.0L0

2 0.2E1 0.2L1

2 20.0E-1 20.0L-1

-17.2 -17.2E0 -17.2L0

-17.2 -1720.0E-2 -1720.0L-2

Character String Constants

A character string constant consists of one or more contiguous ASCII characters
enclosed in quotation mark delimiters, as in:

"Now is the time for good parties."

If a quotation mark is a character within the string, use two quotation marks (in
addition to the quotation mark delimiters), as in:

"The title is ""East of Eden""."

The compiler does not upshift lowercase characters.

When specifying character string constants, you can use any character in the ASCII
character set (shown in Appendix D), including:

Upper and lowercase alphabetic characters
Numerics 0 through 9
Special characters

Each character in a character string requires one byte of contiguous storage.  When
you initialize variables with character strings, follow these guidelines:

You can initialize simple variables or arrays of any data type with character
strings.

When you initialize a simple variable, specify a character string that contains the
same number of bytes as the simple variable or fewer.

When you initialize an array, specify a character string that contains up to 127
characters and that fits on one line.  If a character string is too long for one line, use
a constant list and break the character string into smaller character strings.
(Constant lists are described in Section 7, “Using Arrays.”)

When you assign character strings to variables, follow these guidelines:

You can assign character strings to STRING, INT, and INT(32) variables, but not to
FIXED, REAL, or REAL(64) variables.

In an assignment statement, specify a character string that contains up to four
characters, depending on the data type of the variable.
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LITERALs A LITERAL declaration specifies one or more identifiers and associates each with a
constant expression.  Each identifier in a LITERAL declaration is known as a
LITERAL.  You can define a LITERAL once and then reference it by identifier many
times in the program.  When a you need to change a LITERAL, you only change the
declaration, not every reference to it.

LITERALs also make the source code more meaningful.  For example, identifiers such
as BUFFER_LENGTH and TABLE_SIZE are more meaningful than their respective
constant values of 80 and 128.

When you declare LITERALs, you can specify a constant expression for each identifier
or you can let the compiler supply some or all of the constants.

Declaring LITERALs With Constants

To include constants in a LITERAL declaration, specify the keyword LITERAL and one
or more identifiers, each followed by an equal sign (=) and a constant expression.
Separate consecutive identifier and constant combinations with commas.

The constant expressions in a LITERAL declaration:

Can be numeric constants of any data type except STRING or UNSIGNED
Can be character strings that each contain at most four characters long
Must not be the address of a global variable

Here are examples of LITERAL declarations that include constant expressions:

LITERAL buffer_length = 80;

LITERAL true = -1,
        false = 0,
        chars = "AB";

Declaring LITERALs Without Constants

You can omit constants for one or more identifiers in a LITERAL declaration.  The
compiler computes the omitted constants, using unsigned arithmetic:

If you omit the first constant in the declaration, the compiler supplies a zero.

If you omit a constant that follows an INT constant, the compiler supplies an INT
constant that is one greater than the preceding constant.  If you omit a constant
that follows a constant of any data type except INT, an error message results.

This example shows how the compiler supplies constants in a LITERAL declaration:

LITERAL a,             -- The compiler supplies 0
        b,             -- The compiler supplies 1
        c,             -- The compiler supplies 2
        d = 0,         -- You specify 0
        e,             -- The compiler supplies 1
        f = 17,        -- You specify 17
        g,             -- The compiler supplies 18
        h;             -- The compiler supplies 19
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Using LITERALS

You can use LITERALs in declarations and statements:

LITERAL array_length = 50;               !Length of array
INT .buffer[0:array_length - 1];         !Declare array

You can also use LITERAL identifiers in subsequent LITERAL declarations:

LITERAL number_of_file_extents = 16,
file_extent_size_in_pages = 32,
file_size_in_bytes = (number_of_file_extents '*'
        file_extent_size_in_pages) * 2048D !bytes per page!;

Standard Functions A function is a procedure or subprocedure that returns a value to the calling
procedure or subprocedure.  Table 5-7 summarizes the kinds of operations that
standard (built-in) functions perform.

Table 5-7.  Summary of Standard Functions

Category Operation

Type transfer Converts an expression from one data type to another

Address conversion Converts standard addresses to extended addresses or extended addresses
to standard addresses

Character test Tests for an alphabetic, numeric, or special ASCII character;  returns a true
value if the character passes the test or a false value if the character fails the
test

Minimum-maximum Returns the minimum or maximum of two expressions

Carry and overflow Tests the state of the carry or overflow indicator in the environment register;
returns a true value if the indicator is on or a false value if it is off

FIXED expression Returns the fpoint, or moves the position of the implied decimal point, of a
FIXED expression

Variable Returns the unit length, offset, data type, or number of occurrences of a
variable

Miscellaneous Tests for receipt of actual parameter;  returns the absolute value or one’s
complement from expressions;  returns the setting of the system clock or
internal register pointer

For example, the $DBL standard function converts an expression from any data type to
a signed INT(32) expression.  In the following example, $DBL converts an INT
expression to a signed INT(32) expression:

INT a;                  !Declare an INT variable
INT(32) b;              !Declare an INT(32) variable
!Some code here
b := $DBL (a);          !Convert A to INT(32) expression
                        ! and store it in B

Other examples are shown in various sections of this manual.  Each standard function
is described in the TAL Reference Manual.
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Precedence of
Operators

Operators in expressions can be arithmetic (signed, unsigned, or logical) or conditional
(Boolean or relational, signed or unsigned).

Within an expression, the compiler evaluates operators in order of precedence.  Within
each level of precedence, the compiler evaluates operators from left to right.  Table 5-8
shows the level of precedence for each operator, from highest (0) to lowest (9).

Table 5-8.  Precedence of Operators (Page 1 of 2)

Operator Operation Precedence

[n] Indexing 0

. Dereferencing * 0

@ Address of identifier 0

+ Unary plus 0

– Unary minus 0

.<...> Bit extraction 1

<< Signed left bit shift 2

>> Signed right bit shift 2

'<<' Unsigned left bit shift 2

'>>' Unsigned right bit shift 2

* Signed multiplication 3

/ Signed division 3

'*' Unsigned multiplication 3

'/' Unsigned division 3

'\' Unsigned modulo division 3

+ Signed addition 4

– Signed subtraction 4

'+' Unsigned addition 4

'–' Unsigned subtraction 4

LOR Bitwise logical OR 4

LAND Bitwise logical AND 4

XOR Bitwise exclusive OR 4

< Signed less than 5

= Signed equal to 5

> Signed greater than 5

<= Signed less than or equal to 5

>= Signed greater than or equal to 5

<> Signed not equal to 5

*   Not portable to future software platforms.
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Table 5-8.  Precedence of Operators (Page 2 of 2)

Operator Operation Precedence

'<' Unsigned less than 5

'=' Unsigned equal to 5

'>' Unsigned greater than 5

'<=' Unsigned less than or equal to 5

'>=' Unsigned greater than or equal to 5

'<>' Unsigned not equal to 5

NOT Boolean negation 6

AND Boolean conjunction 7

OR Boolean disjunction 8

:= Assignment 9

.<...> := Bit deposit ** 9

**    Described in the TAL Reference Manual.

You can use parentheses to override the precedence of operators.  You can nest the
parenthesized operations.  The compiler evaluates nested parenthesized operations
outward starting with the innermost level.  Here are examples:

414

c * (a + b)

Result

c * ((a + b) / d)

Result

(a OR b) AND c

Result
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Arithmetic
Expressions

An arithmetic expression is a sequence of operands and arithmetic operators that
computes a single numeric value of a specific data type.   Following are examples of
arithmetic expressions:

var1                 !operand
var1 / var2          !operand arithmetic-operator operand
var1 * (–var2)       !operand arithmetic-operator operand

You can append a unary plus operator or a unary minus operator to the leftmost
operand in the expression:

+var1 * 2            !unary plus
–var1 / var2         !unary minus

Arithmetic operators can be signed, unsigned, or logical, as described in this section.

Operands  in
Arithmetic Expressions

An operand consists of one or more elements that evaluate to a single value.  Table 5-9
describes the operands that can make up an arithmetic expression.

Table 5-9.  Operands in Arithmetic Expressions

Element Description Example

Variable The identifier of a simple variable, array element, pointer,
structure data item, or equivalenced variable, with or without
@ or an index

var[10]

Constant A character string or numeric constant 103375

LITERAL The identifier of a named constant file_size

Function invocation The invocation of a procedure that returns a value $LEN (x)

(expression) Any expression, enclosed in parentheses (x := y)

Code space item The identifier of a  procedure, subprocedure, or label prefixed
with @ or a read-only array optionally prefixed with @, with or
without an index

@label_a
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Signed Arithmetic
Operators

Signed arithmetic operators and the operand types on which they can operate are
shown in Table 5-10.

Table 5-10.  Signed Arithmetic Operators

Operator Operation Operand Type* Example

+ Unary plus Any data type +5

– Unary minus Any data type –5

+ Binary signed addition Any data type alpha + beta

– Binary signed subtraction Any data type alpha – beta

* Binary signed multiplication Any data type alpha * beta

/ Binary signed division Any data type alpha / beta

* The data type of the operands must match except as noted in “Data Types of Expressions”
earlier in this section.

Table 5-11 shows the combinations of operand types you can use with a binary signed
arithmetic operator and the result type yielded by such operators.  In each
combination, the order of the data types is interchangeable.

Table 5-11.  Signed Arithmetic Operand and Result Types

Operand Type Operand Type Result Type Example

STRING STRING INT byte1 + byte2

INT INT INT word1 – word2

INT(32) INT(32) INT(32) dbl1 * dbl2

REAL REAL REAL real1 + real2

REAL(64) REAL(64) REAL(64) quad1 + quad2

FIXED FIXED FIXED fixed1 * fixed2

INT STRING INT word1 / byte1

INT UNSIGNED(1–16) INT word + unsign12

INT(32) UNSIGNED(17–31) INT(32) double + unsign20

UNSIGNED(1–16) UNSIGNED(1–16) INT unsign6 + unsign9

UNSIGNED(17–31) UNSIGNED(17–31) INT(32) unsign26 + unsign31

The compiler treats a STRING or UNSIGNED(1–16) operand as an INT operand.  If
bit <0> contains a 0, the operand is positive; if bit <0> contains a 1, the operand is
negative.

The compiler treats an UNSIGNED(17–31) operand as a positive INT(32) operand.
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Scaling of FIXED Operands

When you declare a FIXED variable, you can specify an implied fixed-point setting
(fpoint)—an integer in the range –19 through 19, enclosed in parentheses following the
keyword FIXED.  If you do not specify an fpoint, the default fpoint is 0 (no decimal
places).

A positive fpoint specifies the number of decimal places to the right of the decimal
point:

FIXED(3)  x := 0.642F;          !Stored as 642

A negative fpoint specifies a number of integer places to the left of the decimal point.
To store a FIXED value, a negative fpoint truncates the value leftward from the decimal
point by the specified number of digits.  When you access the FIXED value, zeros
replace the truncated digits:

FIXED(-3) y := 642945F;         !Stored as 642; accessed
                                ! as 642000

When FIXED operands in an arithmetic expression have different fpoints, the system
makes adjustments depending on the operator.

In addition or subtraction, the system adjusts the smaller fpoint to match the larger
fpoint.  The result inherits the larger fpoint.  For example, the system adjusts the
smaller fpoint in 3.005F + 6.01F to 6.010F,  and the result is 9.015F.

In multiplication, the fpoint of the result is the sum of the fpoints of the two
operands.  For example, 3.091F * 2.56F results in the FIXED(5) value 7.91296F.

In division, the fpoint of the result is the fpoint of the dividend minus the fpoint of
the divisor.  (Some precision is lost.)  For example, 4.05F / 2.10F results in the
FIXED(0) value 1.

To retain precision when you divide operands that have nonzero fpoints, use the
$SCALE standard function to scale up the fpoint of the dividend by a factor equal
to the fpoint of the divisor; for example:

FIXED(3) result, a, b;      !fpoint of 3

result := $SCALE(a,3) / b;  !Scale A to FIXED(6); result
                            ! is a FIXED(3) value
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The following example shows how the system makes automatic adjustments when
operands in an expression have different fpoints:

The fpoint of C is increased by 3

FIXED a;
FIXED(2) b;
FIXED (-1) c;

a := 2.015F * (b + c);  

415

Data declarations

The final result is truncated by 
5 places to match the fpoint  of A

up 3

0

5

23

Effect on Hardware Indicators

Signed arithmetic operators affect the hardware indicators, as described in “Testing
Hardware Indicators” later in this section.

Unsigned Arithmetic
Operators

You can use binary unsigned arithmetic on operands with values in the range 0
through 65,535.  For example, you can use unsigned arithmetic with pointers that
contain standard addresses.  Table 5-12 lists unsigned arithmetic operators and the
operand types on which they can operate.

Table 5-12.  Unsigned Arithmetic Operators

Operator Operation Operand Type Example

'+' Unsigned addition STRING, INT, or UNSIGNED(1–16) alpha '+' beta

'–' Unsigned subtraction STRING, INT, or UNSIGNED(1–16) alpha '–' beta

'*' Unsigned multiplication STRING, INT, or UNSIGNED(1–16) alpha '*' beta

'/' Unsigned division INT(32) or UNSIGNED (17–31)
dividend and STRING, INT, or
UNSIGNED(1–16) divisor

alpha '/' beta

'\' Unsigned modulo division * INT(32) or UNSIGNED (17–31)
dividend and STRING, INT, or
UNSIGNED(1–16) divisor

alpha '\' beta

* Unsigned modulo operations return the remainder.  If the quotient exceeds 16 bits, an overflow
condition occurs and the results will have unpredictable values.  For example, the modulo
operation 200000D '\' 2 causes an overflow because the quotient exceeds 16 bits.
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Table 5-13 shows the combinations of operand types you can use with binary unsigned
arithmetic operators and the result types yielded by such operators.  The order of the
operand types in each combination is interchangeable except in the last case.

Table 5-13.  Unsigned Arithmetic Operand and Result Types

Operator Operand Type Operand Type
Result
Type Example

'+' '–' STRING STRING INT byte1 '–' byte2

INT INT INT word1 '+' word2

INT STRING INT byte1 '–' word1

INT UNSIGNED (1–16) INT word1 '+' uns8

STRING UNSIGNED (1–16) INT byte1 '–' uns5

UNSIGNED(1–16) UNSIGNED(1–16) INT uns1 '+' uns7

'*' STRING STRING INT(32) byte1 '*' byte2

INT INT INT(32) word1 '*' word2

STRING INT INT(32) byte1 '*' word1

INT UNSIGNED (1–16) INT(32) word1 '*' uns9

STRING UNSIGNED (1–16) INT(32) uns1 '*' uns7

UNSIGNED(1–16) UNSIGNED(1–16) INT(32) uns1 '*' uns7

'/' '\' UNSIGNED(17–31) or
INT(32)  dividend

STRING, INT, or
UNSIGNED(1–16)
divisor

INT dbword '\' word1

Effect on Hardware Indicators

Unsigned add and subtract operators affect the carry and condition code indicator, as
described in “Testing Hardware Indicators” later in this section.
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Bitwise Logical Operators You use logical operators—LOR, LAND, and XOR—to perform bit-by-bit operations
on STRING, INT, and UNSIGNED(1–16) operands only.  Logical operators always
return 16-bit results.  Table 5-14 gives information about these operators.

Table 5-14.  Logical Operators and Result Yielded

Operator Operation Operand Type Bit Operations Example

LOR Bitwise
logical OR

STRING, INT, or
UNSIGNED(1–16)

1 LOR 1 = 1
1 LOR 0 = 1
0 LOR 0 = 0

10 LOR 12 = 14

  10   1 0 1 0
  12   1 1 0 0
  ——   — — — —
  14   1 1 1 0

LAND Bitwise
logical ADD

STRING, INT, or
UNSIGNED(1–16)

1 LAND 1 = 1
1 LAND 0 = 0
0 LAND 0 = 0

10 LAND 12 = 8

  10   1 0 1 0
  12   1 1 0 0
  ——   — — — —
   8   1 0 0 0

XOR Bitwise
exclusive
OR

STRING, INT, or
UNSIGNED(1–16)

1 XOR 1 = 0
1 XOR 0 = 1
0 XOR 0 = 0

10 XOR 12 = 6

  10   1 0 1 0
  12   1 1 0 0
  ——   — — — —
   6   0 1 1 0

The Bit Operations column in the table shows the bit-by-bit operations that occur on
16-bit values.  Each 1-bit operand pair results in a 1-bit result.  The bit operands are
commutative.

Effect on Hardware Indicators

Logical operators set the condition code indicator, as described in “Testing Hardware
Indicators” later in this section.  Logical operators are always unsigned, however, so
condition codes are not meaningful.
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Conditional
Expressions

A conditional expression is a sequence of conditions and Boolean or relational
operators that establishes the relationship between values.  You can use conditional
expressions to direct program flow.

Following are examples of conditional expressions:

a                     !condition
NOT a                 !NOT condition
a OR b                !condition OR condition
a AND b               !condition AND condition
a AND NOT b OR c      !condition AND NOT condition ...

Conditions A condition is an operand in a conditional expression that represents a true or false
state.  A condition can consist of one or more of the elements listed in Table 5-15.

Table 5-15.  Conditions in Conditional Expressions

Element Description Example

Relational
expression

Two conditions connected by a relational operator.  The result
type is INT;  a –1 if true or a 0 if false.  The example is true if A
equals B.

If a = b THEN . . .

Group
comparison
expression

Unsigned comparison of a group of contiguous elements with
another.  The result type is INT;  a –1 if true or a 0 if false.
The example compares 20 words of two INT arrays.

IF a = b FOR 20
WORDS THEN . . .

(conditional
expression)

A conditional expression enclosed in parentheses.  The result
type is INT;  a –1 if true or a 0 if false.  The example is true if
both B and C are false.  The system evaluates the
parenthesized condition first, then applies the NOT operator.

IF NOT (b OR c)
THEN . . .

Arithmetic
expression

An arithmetic, assignment, CASE, or IF expression that has an
INT result*.  The expression is treated as true if its value is
not 0 and false if its value is 0.  The example is true if the
value of X is not 0.

IF x THEN . . .

Relational
operator

A signed or unsigned relational operator that tests a condition
code.  Condition code settings are CCL (negative), CCE (0), or
CCG (positive).  The example is true if the condition code
setting is CCL.

IF < THEN . . .

* If an arithmetic expression has a result other than INT, use a signed relational expression.
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Boolean Operators You use Boolean operators—NOT, OR, and AND—to set the state of a single value or
the relationship between two values.   Table 5-16 describes the Boolean operators, the
operand types you can use with them, and the results that such operators yield.

Table 5-16.  Boolean Operators and Result Yielded

Operator Operation Operand Type Result Example

NOT Boolean negation; tests
condition for false state

STRING, INT, or
UNSIGNED(1–16)

True/False NOT a

OR Boolean disjunction;  produces
true state if either adjacent
condition is true

STRING, INT, or
UNSIGNED(1–16)

True/False a OR b

AND Boolean conjunction; produces
true state if both adjacent
conditions are true

STRING, INT, or
UNSIGNED(1–16)

True/False a AND b

Evaluation of Boolean Operations

Conditions connected by the OR operator are evaluated from left to right only until a
true condition occurs.

Conditions connected by the AND operator are evaluated from left to right until a
false condition occurs.  The next condition is evaluated only if the preceding condition
is true.  In the following example, function F will not be called because A <> 0 is false:

a := 0;

IF a <> 0 AND f(x) THEN ... ;

Effect on Hardware Indicators

Boolean operators set the condition code indicator, as described in “Testing Hardware
Indicators” later in this section.
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Relational Operators Relational operators can be signed or unsigned.

Signed Relational Operators

Signed relational operators perform signed comparison of two operands and return a
true or false state.   Table 5-17 describes signed relational operators, operand data
types, and the results yielded by such operators.

Table 5-17.  Signed Relational Operators and Result Yielded

Operator Operation Operand Type* Result

< Signed less than Any data type True/False

= Signed equal to Any data type True/False

> Signed greater than Any data type True/False

<= Signed less than or equal to Any data type True/False

>= Signed greater than or equal to Any data type True/False

<> Signed not equal to Any data type True/False

* The data type of the operands must match except as noted in “Data Types of Expressions”
earlier in this section.

Unsigned Relational Operators

Unsigned relational operators perform unsigned comparison of two operands and
return a true or false state.  Table 5-18 describes unsigned relational operators,
operand data types, and the results yielded by such operators.

Table 5-18.  Unsigned Relational Operators and Result Yielded

Operator Operation Operand Type Result

'<' Unsigned less than STRING, INT, UNSIGNED (1–16) True/False

'=' Unsigned equal to STRING, INT, UNSIGNED (1–16) True/False

'>' Unsigned greater than STRING, INT, UNSIGNED (1–16) True/False

'<=' Unsigned less than or equal to STRING, INT, UNSIGNED (1–16) True/False

'>=' Unsigned greater than or equal to STRING, INT, UNSIGNED (1–16) True/False

'<>' Unsigned not equal to STRING, INT, UNSIGNED (1–16) True/False

Effect on Hardware Indicators

Relational operators set the condition code indicator, as described in “Testing
Hardware Indicators” later in this section.
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Controlling Program Execution

You use relational expressions in control statements to determine the flow of execution.
This example shows how you can direct program execution based on comparisons
using signed and unsigned operators:

INT a :=  –2,                   !Unsigned value = %177776
    c :=   3,                   !Unsigned value = %000003
    x := 271;

IF  a  '<' c  THEN x := 314;    !False; X still contains 271

IF  a  <   c  THEN x := 313;    !True; X is assigned 313

IF  a  <>  c  THEN              !True; this is an arithmetic
         IF < THEN x := 314;    ! comparison; since –2 < 3,
                                ! CCL is set; x is assigned
                                ! 314

IF  a '<>' c  THEN              !True; this is a logical
         IF > THEN x := 315;    ! comparison; since
                                ! %177776 '>' %3, CCG is set;
                                ! X is assigned 315

Assigning Conditional
Expressions

You can assign the value of a conditional expression to a variable.   The value assigned
is a –1 for the true state or a 0 for the false state.

For example, you can assign the result of a comparison to a variable:

INT neg := –1;           !Value = %177777
INT pos :=  1;           !Value = %000001
INT result;

result := neg  <  pos;   !Signed comparison produces –1
result := neg '<' pos;   !Unsigned comparison produces 0

You can assign a –1 if either X or Y is a nonzero value (true), or a 0 if both X and Y are
zeros (false):

INT x, y, answer;
answer := x OR y;        !Assign –1 or 0 to ANSWER
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Testing Hardware
Indicators

Hardware indicators include condition code, carry, and overflow settings.  Arithmetic
and conditional operations, assignments, and some file-system calls affect the setting
of the hardware indicators.  To check the setting of a hardware indicator, use an IF
statement immediately after the operation that affects the hardware indicator.

Condition Code Indicator The condition code indicator is set by a zero or a negative or positive result:

Result
State of Condition
Code Indicator

Negative CCL

0 CCE

Positive CCG

To check the state of the condition code indicator, use a relational operator (with no
operands) in a conditional expression.  Using a relational operator with no operands is
equivalent to using the relational operator in a signed comparison against zero.  When
used with no operands, signed and unsigned operators are equivalent.  The result
returned by such a relational operator is as follows:

Relational Operator Result Returned

< or '<' True if CCL

> or '>' True if CCG

= or '=' True if CCE

<> or '<>' True if not CCE

<= or '<=' True if CCL or CCE

>= or '>=' True if CCE or CCG

An example is:

IF < THEN ... ;

File-System Errors

File-system procedures signal their success or failure by returning an error number or
a condition code.  Your program can preserve the returned condition code for later
operation as follows:

CALL WRITE( ... );
IF >= THEN
  system_message := -1;            !True
ELSE
  system_message := 0;             !False
IF system_message = -1 THEN ... ;
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Carry Indicator The carry indicator is bit 9 in the environment register (ENV.K).  The carry indicator is
affected as follows:

Operation Carry Indicator

Integer addition On if carry out of bit <0>

Integer subtraction or negation On if no borrow out from bit <0>

INT(32) multiplication and division Always off

Multiplication and division except INT(32) Preserved

SCAN or RSCAN operation On if scan stops on a 0 (zero) byte

Array indexing and extended structure addressing Undefined

Shift operations Preserved

To check the state of the carry indicator, use $CARRY in an IF statement immediately
after the operation that affects the carry bit.  If the carry indicator is on, $CARRY is –1
(true).  If the carry indicator is off, $CARRY is 0 (false).  The following example tests
the state of the carry indicator after addition:

INT i, j, k;              !Declare variable
i := j + k;
IF $CARRY THEN ... ;      !Test state of carry bit from +

The following operations are not portable to future software platforms:

Testing $CARRY after multiplication or division
Passing the carry bit as an implicit parameter into a procedure or subprocedure
Returning the carry bit as an implicit result from a procedure or subprocedure

Overflow Indicator The overflow indicator is bit 8 in the environment register (ENV.V).  The overflow
indicator is affected as follows:

Operation Overflow Indicator

Unsigned INT addition, subtraction, and negation Preserved

Addition, subtraction, and negation except unsigned INT On or off

Division and multiplication On or off

Type conversions On, off, or preserved

Array indexing and extended structure addressing Undefined

Assignment or shift operation Preserved

For example, the following operations turn on the overflow indicator (and interrupt
the system overflow trap handler if the overflow trap is armed through ENV.T):

Division by 0
Floating-point arithmetic result in which the exponent is too large or too small
Signed arithmetic result that exceeds the number of bits allowed by the data type
of the expression

For overflowed integer addition, subtraction, or negation, the result is truncated.  For
overflowed multiplication, division, or floating-point operation, the result is
undefined.
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A program can deal with arithmetic overflows in one of four ways:

Desired Effect Method

Abort on all overflows Use the system’s default trap handler.

Recover globally from overflows Use a user-supplied trap handler.

Recover locally from statement overflows Turn off overflow trapping and use $OVERFLOW.

Ignore all overflows Turn off overflow trapping throughout the program.

For information on turning off overflow trapping and using $OVERFLOW, see the
description of $OVERFLOW in the TAL Reference Manual.

The following operations are not portable to future software platforms:

Passing the overflow bit as an implicit parameter into a procedure or
subprocedure
Returning the overflow bit as an implicit result from a procedure or subprocedure

Accessing Operands The remainder of this section discusses different ways of accessing operands:

Getting the address of a variable
Dereferencing a simple variable
Extracting a bit field
Shifting a bit field

For information on bit deposits, see the TAL Reference Manual.

Getting the Address
of Variables

To get the address of a variable, prefix the variable identifier with @.  For example, you
can assign the address of an array element to a simple variable as follows:

INT .array[0:2];       !Declare array
INT var;               !Declare simple variable

var := @array[2];      !Assign address of ARRAY[2] to VAR

Dereferencing
Simple Variables

You can dereference an INT simple variable in a statement by prefixing the variable
identifier with the dereferencing operator (.).  The content of the INT simple variable
then becomes the standard word address of another data item.  You can use the
dereferencing operator in any INT arithmetic expression.

The dereferencing operator is not portable to future software platforms and is
described here only to explain its use in existing programs.

The following example uses the dereferencing operator to store data at the standard
word address that is saved in A:

INT a := 5;        !Declare A; initialize it with 5

.a := 0;           !The 5 contained in A becomes an address;
                   ! thus 0 is stored at address G[5]
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Using a variable in two different ways can make your program more difficult to
understand and maintain.  The following example:

Changes the data located at the address stored in VAR by using the dereferencing
operator

Changes the address stored in VAR by omitting the dereferencing operator

INT i;             !G[0]; declare I
INT a := 5;        !G[1]; declare A and initialize it with 5
INT var;           !G[2]; declare VAR

var := @a;         !Assign 1 (the address of A) to VAR

i := .var;         !Assign 5 (the content of A to which
                   ! VAR points) to I

i := var;          !Assign 1 (the content of VAR or the
                   ! address of A) to I

Extracting Bit Fields You can access a bit extraction field in an INT expression without altering the
expression.  (Do not use a bit extraction field to compress data.  Instead, declare an
UNSIGNED variable, specifying the appropriate number of bits in the bit field.)

To access a bit extraction field, specify an INT expression followed by a period (.) and
a bit-extraction field enclosed in angle brackets.  For example, to access bit <5> of an
INT variable named VAR, specify the following construct with no intervening spaces:

var.<5>

To access bits <2> through <11> of VAR, specify the following construct with no
intervening spaces:

var.<2:11>

Specify the leftmost and rightmost bits of the field as INT constants.  The constant
specifying the rightmost bit must be equal to or greater than the constant specifying
the leftmost bit.

The INT expression in a bit extraction operation can consist of STRING, INT, or
UNSIGNED(1–16) operands.  The system stores a STRING value in the right byte of a
word and treats it as a 16-bit value, so you can access only bits <8> through <15> of
the STRING value.  For example, to access bits <11> and <12> of a STRING simple
variable named BYTE_VAR, specify:

byte_var.<11:12>

You can assign the bits extracted from an array element as follows:

LITERAL len = 8;
STRING right_byte;
INT array[0:len - 1];

right_byte := array[5].<8:15>;
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You can use bit extraction in conditional expressions:

INT word;
STRING var;

IF word.<0:7> = "A" THEN ... ;  !Check for “A” in 8-bit field
IF var.<15> THEN ... ;          !Check for nonzero value
                                ! in bit <15>

To access bits in the result of an expression, enclose the expression in parentheses:

INT result;
INT num1 := 51;
INT num2 := 28;

result := (num1 + num2).<4:7>;

Shifting Bit Fields You can shift a bit field a specified number of positions to the left or or to the right
within an INT or INT(32) expression.  You can then use the result of the shift as an
operand in an expression.

To shift a bit field, specify an INT or INT(32) expression, a left or right shift operator,
and the number of positions to shift.  For example, to shift the bits in an INT simple
variable named VAR two positions to the left, specify:

var '<<' 2

For an INT expression, the shift occurs within a word.  An INT expression can consist
of STRING, INT, or UNSIGNED(1–16) operands.

For an INT(32) expression, the shift occurs within a doubleword.  An INT(32)
expression can consist of INT(32) and UNSIGNED(17–31) operands.

Bit-Shift Operators

Table 5-19 lists the bit-shift operators you can specify.

Table 5-19.  Bit-Shift Operators

Operator Function Result

'<<' Unsigned left shift through bit <0> Zeros fill vacated bits from the right

'>>' Unsigned right shift Zeros fill vacated bits from the left.

<< Signed left shift through bit <0> or
bit <1>

Zeros fill vacated bits from the right.  In arithmetic
overflow cases, the final value of bit <0> is
undefined (different for TNS/R accelerated mode
than for TNS systems).

>> Signed right shift Sign bit (bit <0>) unchanged; sign bit fills vacated
bits from the left

For signed left shifts (<<), programs that run on TNS/R systems use unsigned left
shifts ('<<').
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Number of Positions to Shift

Specify the number of bit positions to shift as an INT expression.  A value greater than
31 gives undefined results (different on TNS and TNS/R systems).

Effect on Hardware Indicators

The bit-shift operation sets the condition code indicator, described under “Testing
Hardware Indicators” earlier in this section.

Bit-Shift Operations

Bit-shift operations include:

Operation User Action

Multiplication by powers of 2 For each power of 2, shift the field one bit to the left.  (Some
data might be lost.)

Division by powers of 2 For each power of 2, shift the field one bit to the right  (Some
data might be lost.)

Word-to-byte address conversion Shift the word address one bit to the left, using an unsigned
shift operator.

To multiply by powers of two, shift the field one position to the left for each power
of 2  (Some data might be lost.)  Here are examples:

a := b << 1;                 !Multiply by 2
a := b << 2;                 !Multiply by 4
a := b << 5;                 !Multiply by 32

To divide by powers of two, shift the field one position to the right for each power of 2
(Some data might be lost.)  Here are examples:

a := b >> 3;                 !Divide by 8
a := b >> 4;                 !Divide by 16
a := b >> 6;                 !Divide by 64

To convert a word address to a byte address, use an unsigned shift operator.  For
example, you can convert the word address of an INT array to a byte address and
initialize a STRING simple pointer with the byte address.  You can then access the INT
array as bytes and as words:

INT a[0:5];                  !Declare INT array
STRING .p := @a[0] '<<' 1;   !Declare and initialize
                             ! STRING simple pointer with
                             ! array byte address
p[3] := 0;                   !Assign 0 to fourth byte
                             ! of A
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You can shift the right byte of a word into the left byte and set the right byte to zero:

INT b;                       !Declare variable

b := b '<<' 8;               !Shift right byte into left
                             ! byte, leaving zero in
                             ! right byte

The following unsigned left shift shows how zeros fill the vacated bits from the right:

Initial value  =  0 010 111 010 101 000
       '<<' 2  =  1 011 101 010 100 000

The following unsigned right shift shows how zeros fill the vacated bits from the left:

Initial value  =  1 111 111 010 101 000
       '>>' 2  =  0 011 111 110 101 010

The following signed left shift shows how zeros fill the vacated bits from the right,
while the sign bit remains the same (TNS systems only):

Initial value  =  1 011 101 010 100 000
        << 1   =  1 111 010 101 000 000

The following signed right shift shows how the sign bit fills the vacated bits from the
left:

Initial value  =  1 111 010 101 000 000
        >> 3   =  1 111 111 010 101 000
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A simple variable is a single-element data item of a specified data type.  You use
simple variables to store data that can change during program execution.

This section describes:

Declaring simple variables
Initializing simple variables
Allocating storage for simple variables
Assigning data to simple variables
Using simple variables, discussed by data type

Declaring
Simple Variables

Before you access a simple variable, you must declare it.  Declaring a variable
associates an identifier with a memory address and informs the compiler how much
memory storage to allocate for the variable.

You declare a simple variable by specifying a data type and an identifier, using the type
and identifier formats described in Section 5, “Using Expressions.”  For example, you
can declare a simple variable named NUM of data type INT as follows:

INT num;

You can declare more than one variable in the same declaration.  In this format,
separate the variables with commas:

INT num1,
    num2,
    num3;

Simple variables are always directly addressed.

Specifying Data Types When you declare a simple variable, you can specify any of the following data types.
The data type determines the storage unit the compiler allocates for each simple
variable:

Data Type Storage Unit

STRING Word

INT Word

INT(32) or REAL Doubleword

REAL(64) or FIXED Quadrupleword

UNSIGNED(n) Bit sequence of specified width

“Simple Variables by Data Types” in this section gives more information on specific
data types.
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Initializing Simple Variables You can initialize a simple variable of any data type (except UNSIGNED) when you
declare it.  Following the identifier in the declaration, specify an assignment operator
(:=) and an initialization value:

INT var := 45;                  !Declare VAR and initialize
                                ! it with the value 45

You can initialize a simple variable with character strings or numbers.

Initializing With Character Strings

When you initialize with a character string, specify a character string that has the same
number of bytes as the simple variable or fewer.  Each character in a character string
requires one byte of contiguous storage.  The value of any uninitialized bytes are
undefined.  In the following diagram, the question mark denotes an undefined value:

INT(32) chars := "ABC"; "A" "B"

"C" ?

350

Initializing With Numbers

When you initialize with a number, you must specify a value of the same data type as
the variable.  In other words, specify a value that is in the range and format described
for each data type in “Simple Variables by Data Type” in this section.

For example, to initialize a REAL simple variable, specify a REAL value.  To initialize
an INT(32) simple variable, specify an INT(32) value:

REAL flt_num := 365335.6E-3;
INT(32) dbl_num := 256D;

Specifying Number Bases

When you initialize a STRING, INT, or INT(32) variable with a number, you can
specify integer constants in binary, octal, decimal, or hexadecimal base.  The default
number base in TAL is decimal.  Table 6-1 describes the format of each number base.

Table 6-1.  Number Base Formats

Number Base Prefix Digits Allowed Example

Decimal None 0 through 9 46

Octal % 0 through 7 %57

Binary %B 0 or 1 %B101111

Hexadecimal %H 0 through 9, A through F %H2F
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Global, Local, and Sublocal Initializations

At the global level, initialize variables with expressions that contain only constants or
LITERALs as operands.  At the local or sublocal level, you can use any arithmetic
expression, including previously declared variables:

INT global := 34;               !Only constants allowed in
                                ! global initializations
PROC mymain MAIN;
  BEGIN
  INT local := global + 10;     !Any expression allowed in
  INT local2 := global * local; ! local and sublocal
  FIXED local3 := $FIX(local2); ! initializations
  !Lots of code
  END;                          !End of MYMAIN procedure

Allocating Simple Variables The compiler allocates storage in the global, local, or sublocal storage area based on
the level at which you declare the variable, as shown in Figure 6-1.  The question
marks in the diagram denote undefined bytes.

Figure 6-1.  Simple Variable Storage Allocation

STRING a;    !Global data
STRING b;
INT c;     

PROC proc_a;
  BEGIN
  STRING d;  !Local data
  REAL e;
 
  SUBPROC subproc_a;
    BEGIN
    INT f;   !Sublocal data
    FIXED g;
    !Lots of code
    END;

  !More code
  END;  
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E

Storage allocation specific to each data type is described in “Simple Variables by Data
Type” later in this section.   Storage allocation in programs that include BLOCK
declarations is described in Section 14, “Compiling Programs.”
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Assigning Data to
Simple Variables

After you declare a variable, you can assign a value to it.  In the assignment statement,
specify the identifier of a previously declared simple variable, an assignment operator
(:=), and an expression:

INT var;                     !Declare VAR

var := 345;                  !Assignment statement

Assigning Variables You can assign an arithmetic expression that contains variables:

INT var1 := 5;               !Declare and initialize VAR1
INT var2;                    !Declare VAR2

var2 := var1 + 10;           !Assign result of arithmetic
                             ! expression to VAR2

Matching Data Types Assign values that match the data type of the variable.  The assignment value should
be in the range and format described for each data type in “Simple Variables by Data
Type” in this section.  For example, if you declare a REAL simple variable, specify an
assignment value in the correct range and format for REAL constants:

REAL num;                    !Declare NUM, a REAL variable

num := 36.6E-3;              !Assign REAL value to NUM

Converting Data Types If necessary you can use type transfer functions to convert the data type of the
assignment value to match the variable.    For example, to convert an INT assignment
value to an INT(32) value, use the $DBL standard function:

INT(32) dblwd;

dblwd := $DBL(256);          !Convert assignment value to
                             ! match data type of variable

Assigning
Character Strings

You can assign character strings to STRING, INT, and INT(32) variables in assignment
statements.  In assignments, the character string can contain one to four ASCII
characters, depending on the variable’s data type.  (You can also initialize such
variables with character strings when you declare the variables.)

You cannot, however, assign character strings to FIXED, REAL, or REAL(64) variables,
although you can initialize such variables with character strings when you declare the
variables.
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Multiple Variables You can assign a value to more than one simple variable at a time.  In the following
example, the first assignment statement is equivalent to the three assignment
statements that follow it:

INT int1;
INT int2;
INT int3;                    !Declarations

int1 := int2 := int3 := 16;  !First assignment statement

int1 := 16;                  !These three assignment
int2 := 16;                  ! statements are equivalent to
int3 := 16;                  ! the first assignment statement

Simple Variables
by Data Type

The following subsections present information about simple variables depending on
their data type.

STRING Simple Variables A STRING simple variable can contain an unsigned 8-bit integer in the range 0
through 255 or a one-character character string:

STRING a := 59;                !Decimal number
STRING b := %12;               !Octal number
STRING c := %B101;             !Binary number
STRING d := %h2A;              !Hexadecimal number
STRING e := "A";               !Character string

Storage Allocation

A STRING simple variable represents a byte value, but the compiler allocates a word.
The compiler allocates the initialization value in the left byte of the word.  The right
byte is undefined.  Here are allocation examples of initializations with a character
string and a number:

"A" ?

254 ?
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STRING a_char := "A";

STRING byte_num := 254;
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INT Simple Variables An INT simple variable can contain a signed or unsigned 16-bit integer in the range 0
through 65,535 (unsigned) or –32,768 through 32,767 (signed).  It can also contain a
character string of up to two characters:

INT a := 5;                    !Unsigned decimal number
INT b := -%5;                  !Signed octal number
INT c := %B1001111000010001;   !Binary number
INT d := %h2f;                 !Hexadecimal number
INT e := "AB";                 !Character string

You can initialize INT variables with the standard addresses of simple variables,
arrays, or structures.  The @ operator fetches the address of the variable:

INT var;                       !Declare word-addressed VAR

INT var_addr := @var;          !Declare VAR_ADDR; initialize
                               ! it with word address of VAR

You can convert a word address to a byte address by using a logical left bit-shift
operation ('<<' 1):

INT var;                       !Declare word-addressed VAR

STRING .var_ptr := @var '<<' 1;
                               !Declare VAR_PTR; initialize
                               ! it with converted byte
                               ! address of VAR

You can convert a byte address to a word address by using a logical right bit-shift
operation ('>>' 1):

STRING var;                    !Declare byte-addressed VAR

INT var_addr := @var '>>' 1;   !Declare VAR_ADDR; initialize
                               ! it with converted word
                               ! address of VAR
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Storage Allocation

The compiler allocates a word for each INT simple variable.  Here are examples of
numeric and character string initializations:

INT int_num := %110;

INT two_chars := "AB";

%110

"A" "B"

353

For INT simple variables, a one-byte initialization behaves differently from a one-byte
assignment as follows:

If you initialize an INT variable with a one-byte character string, the compiler
allocates the character in the left byte of the word.  The right byte is undefined.

If you assign a one-byte character string to the variable, at run-time the system
places it in the right byte and sets the left byte to zero.  If you want the character to
be placed in the left byte, assign a two-byte character string that consists of a
character and a blank space.

The following example contrasts how the system stores a byte initialization in INT
simple variables as opposed to how the system stores a byte assignment:

"A" ?

0 "A"

"A" "   "
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INT il, i2;
   
INT i3 := "A";  !Initialize with "A"
i1 := "A";      !Assign "A"
i2 := "A ";     !Assign "A" and a blank
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INT(32) Simple Variables An INT(32) simple variable can contain a signed or unsigned 32-bit integer in the
range –2,147,483,648 through 2,147,483,647, suffixed by D for decimal, octal, or binary
integers or %D for hexadecimal integers.  It also can contain a character string of up to
four characters.

INT(32) a := 0D;                !Decimal number
INT(32) b := -327895066D;       !Decimal number
INT(32) c := %1707254361D;      !Octal number
INT(32) d := %B000100101100010001010001001D;
                                !Binary number
INT(32) e := -%H99FF29%D;       !Hexadecimal number
INT(32) f := "ABCD";            !Character string

You can initialize INT(32) simple variables with the 32-bit addresses of extended
indirect variables:

INT .EXT x_array[0:2];          !Declare X_ARRAY
INT(32) x_addr := @x_array[0];  !Declare X_ADDR; initialize
                                ! it with address of X-ARRAY

Storage Allocation

For an INT(32) simple variable, the compiler allocates a doubleword.   The compiler
allocates numeric and character string initialization values as follows:

INT(32) dbl_num := 256D;

INT(32) dbl_chars := "ABC";
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"A" "B"

"C" ?

256D
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REAL Simple Variables A REAL simple variable can contain a signed 32-bit floating-point number in the range
±8.6361685550944446 * 10-78 through ±1.15792089237316189 * 10+77, precise to
approximately seven significant digits.

The format of a REAL constant includes an integer part, a fractional part suffixed by E,
and an exponent.  Here is an example of a REAL constant value:

356

-30.3E-2

Exponent
Fractional part

Integer part

Here are more examples of REAL constant values:

Decimal Value REAL

0 0.0E0

2 2.0e0

2 0.2E1

2 20.0E-1

-17.2 -17.2E0

-17.2 -1720.0E-2

Storage Allocation

The compiler allocates a doubleword of storage for each REAL simple variable:

REAL num := 2.0E0;
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2.0E0
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REAL(64) Simple Variables A REAL(64) simple variable can contain a signed 64-bit floating-point number in the
same range as REAL numbers, but precise to approximately 17 significant digits.

The format of a REAL(64) constant is the same as for REAL constants, except that the
suffix is L instead of E.  Here are examples of REAL(64) values:

Decimal Value REAL(64)

0 0.0L0

2 2.0L0

2 0.2L1

2 20.0L-1

-17.2 -17.2L0

-17.2 -1720.0L-2

Storage Allocation

The compiler allocates a quadrupleword of storage for each REAL(64) simple variable:

REAL(64) num := 2718.2818284590452L-3;
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%26770

%52130

%121273

%45401
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FIXED Simple Variables A FIXED simple variable can contain a signed 64-bit fixed-point number in the range
–9,223,372,036,854,775,808 through 9,223,372,036,854,775,807, suffixed by F for decimal,
octal, or binary numbers or %F for hexadecimal numbers.  For decimal numbers, you
can also specify a fractional part, preceded by a decimal point:

300.667F                        !FIXED decimal number with
                                ! fractional part

You can initialize a FIXED variable with a character string when you declare the
variable.  You cannot, however, use an assignment statement to assign a character
string to a FIXED variable.

Fixed-Point Settings (fpoints)

When you declare a FIXED variable, you can specify the implied fixed-point setting
(fpoint) for values stored in the variable.  The fpoint is an integer in the range –19
through 19, enclosed in parentheses, following the FIXED keyword.  The default fpoint
is 0.  You can specify a positive or negative fpoint.

Positive fpoints.  A positive fpoint specifies the number of decimal places to the right of
the decimal point:

FIXED(3) x := 0.642F;           !Stored as 642; accessed
                                ! as 0.642

Take care to specify an fpoint that allows enough decimal places for all the data that
you might assign to the variable.  The system truncates any assignment value that
does not fit.  For example, if you declare a FIXED(2) variable and then assign a value
that has three decimal places, the rightmost digit is lost:

FIXED(2) some_num;              !fpoint is 2
some_num := 2.348F;             !Stored as 234; accessed
                                ! as 2.34

Negative fpoints.  A negative fpoint specifies a number of integer places to the left of the
decimal point.  To store a value, a negative fpoint truncates digits leftward from the
decimal point in accordance with the fpoint.  When you access the value, zeros replace
the truncated digits:

FIXED(-3) y := 642913F;         !Stored as 642; accessed
                                ! as 642000

FIXED(*)

If you declare a FIXED(*) simple variable, the value stored in the variable is not scaled.
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Stored  Forms

The following examples compare the stored form of values having various fpoints:

FIXED(-3) a := 643000F;         !Stored as 000000643
FIXED(-3) b := .643F;           !Stored as 000000000
FIXED     c := 643000F;         !Stored as 000643000
FIXED     d := .643F;           !Stored as 000000000
FIXED(3)  e := 643000F;         !Stored as 643000000
FIXED(3)  f := .643F;           !Stored as 000000643

Number Bases

The following initialization examples illustrate different number bases:

FIXED    a := 239840984939873494F;
                                !Decimal number
FIXED(3) b := %B1010111010101101010110F;
                                !Binary number
FIXED(5) c := %765235512F;      !Octal number
FIXED    d := %H298756F;        !Hexadecimal number

Storage Allocation

The compiler allocates a quadrupleword for each FIXED variable.  It allocates
character string and numeric initialization values as follows:

FIXED char := "A";
?

?

?

FIXED num := %H23F;
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%H23F

"A" ?

You can initialize a FIXED variable with a character string when you declare the
variable (as shown in the preceding example), but you cannot assign a character string
to such a variable.
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UNSIGNED
Simple Variables

When you declare an UNSIGNED simple variable, you must specify the width, in bits,
of the simple variable.  Specify the width as a constant expression in the range 1
through 31, enclosed in parentheses, following the UNSIGNED keyword.  The
constant expression can include LITERALs and DEFINEs:

UNSIGNED(5) bit_var;       !Width of BIT_VAR is 5 bits

You cannot initialize UNSIGNED variables when you declare them.

Storage Allocation

The compiler packs consecutive UNSIGNED simple variables where possible.  That is,
the compiler allocates the first UNSIGNED variable starting on a word boundary, and
then allocates each successive UNSIGNED variable in the remaining bits of the same
word as the preceding variable if:

The variable contains 1 to 16 bits and fits in the same word
The variable contains 17 to 31 bits and fits in the same word plus the next word

If an UNSIGNED variable does not fit in the same word or doubleword, the compiler
starts the variable on a word boundary.

A ?

D E

J

STRING a;
UNSIGNED(8) d, e;
UNSIGNED(3) f;
UNSIGNED(5) g;
UNSIGNED(6) h;
UNSIGNED(25) j;
UNSIGNED(2) k;

F G H ?

K ?
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An array is a collectively stored set of elements of the same data type.  You use arrays
to store constants, especially character strings.  You can use the array identifier to
access the elements individually or as a group.

This section describes:

Declaring arrays
Initializing arrays
Allocating storage for arrays
Accessing arrays
Assigning data to arrays
Copying data into arrays
Scanning arrays
Comparing arrays

This section mostly describes arrays located in the user data segment or in an extended
data segment.  “Read-only Arrays” at the end of the section briefly discusses arrays
located in a user code segment.

Section 8, “Using Structures,” shows how structures can simulate multidimensional
arrays, arrays of arrays, or arrays of structures.

Declaring Arrays Before processing an array, you must declare it and store data in it.  The declaration
associates an identifier with a memory address.  It also tells the compiler how much
storage to allocate for the array and the storage area in which to allocate it.

To declare an array, specify:

A data type

An identifier, usually preceded by an indirection symbol (. or .EXT)

Lower and upper bounds—the indexes of the first and last array elements,
specified as INT constant expressions in the range –32,768 through 32,767,
separated by a colon and enclosed in brackets as follows.  The upper bound must
be equal to or larger than the lower bound.

[0:5]                        !Six elements

Here are examples of array bounds you can declare:

STRING a_array[0:2];            !Three-element array
INT b_array[0:19];              !Twenty-element array
UNSIGNED(1) flags[0:15];        !Array of 16 one-bit elements

Specify the data type and identifier using the type and identifier formats described in
Section 5, “Using Expressions.”

The preceding arrays are all direct arrays;  that is, declared without an indirection
symbol.  Arrays of any data type can be direct.  The compiler allocates storage for
direct arrays in the primary areas of the global, local, or sublocal storage areas.
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Using Indirection The global primary storage area is limited to 256 words and the local primary area is
limited to 127 words.  The global and local secondary areas have no explicit size, and
the total of all primary and secondary areas can be as large as the lower 32K-word area
of the user data segment.  You can minimize the impact on the primary areas by
declaring indirect global and local arrays.  Global and local arrays of any data type
except UNSIGNED can be indirectly addressed.

The sublocal storage area has no secondary area, so all sublocal arrays must be directly
addressed.

To declare a standard indirect array, precede the array identifier with a standard
indirection symbol (.) as follows:

INT .array_x[0:1];         !Declare standard indirect array

To declare an extended indirect array, precede the array identifier with an extended
indirection symbol (.EXT) as follows:

INT .EXT array_y[0:1];     !Declare extended indirect array

Specifying Data Types The data type determines the kind of values the array can contain.  The data type also
determines the storage unit the compiler allocates for each array element, as follows:

Data Type Storage Unit

STRING Byte

INT Word

INT(32) or REAL Doubleword

REAL(64) or FIXED Quadrupleword

UNSIGNED Sequence of 1, 2, 4, or 8 bits

“Arrays by Data Type” in this section gives more information on each data type.

Initializing Arrays You can initialize most arrays when you declare them.  You cannot initialize
UNSIGNED or local extended indirect arrays.  It is recommended that you initialize
arrays with values that are appropriate for the data type of the array.

To initialize an array, include an assignment operator (:=) and a constant list or a
constant in the array declaration.   For example, you can initialize an array with a
constant list as follows:

INT array[0:1] := ["A", "B"];

More information on array initializations is given in the following subsections.
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Initializing Arrays With Constant Lists

A constant list can include the following elements:

Numbers

INT .numbers[0:5] := [1,2,3,4,5,6];

Character strings of up to 127 characters on one line

INT(32) .words[0:3] := ["cats", "dogs", "bats", "cows"];

STRING .buffer[0:102] := [ "A constant list can consist ",
                 "of several character string constants ",
                  "one to a line, separated by commas." ];

Repetition factors—INT constants by which to repeat constant lists

INT zeros[0:9] := 10 * [0];  !Repetition factor of 10

You can nest constant lists that include repetition factors.  The following example
expands to [1,1,0,0,1,1,0,0,1,1,0,0]:

INT digits[0:11] := [3 * [2 * [1], 2 * [0]]];

LITERALs

LITERAL len = 80;
STRING .buffer[0:len - 1] := len * [" "];

If you specify fewer initialization values than the number of elements (and the values
are appropriate for the data type of the array), the values of uninitialized elements are
undefined:

STRING bean[0:9] := [1,2,3,4];  !Values in BEAN[4:9]
                                ! are undefined

Initializing Arrays With Constants

You can initialize an array with a numeric constant or a character string constant:

INT some_array[0:3] := -1;      !Values in SOME_ARRAY[1:3]
                                ! are undefined

INT any_array[0:1] := "abcd";   !Store one character per byte
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Global, Local, and Sublocal Initializations

You can initialize an array declared at any level except for extended indirect arrays
declared at the local level:

INT(32) .a[0:1] := [5D, 7D];    !Global array can be
                                ! initialized
PROC my_procedure;
  BEGIN
  STRING .b[0:1] := ["A","B"];  !Local array can be
                                ! initialized

  FIXED .EXT c[0:3];            !Local extended indirect
                                ! array cannot be initialized
  SUBPROC my_subproc;
    BEGIN
    INT d[0:2] := ["Hello!"];   !Sublocal array can be
    !Lots of code               ! initialized
    END;
  END;

Arrays by Data Type The following subsections give information about arrays by data type.  For
information about the appropriate range and format of values for each data type, see
Section 6, “Using Simple Variables.”

STRING Arrays

For STRING arrays, the compiler allocates one byte for each element.  The compiler
always starts the zeroth element of a STRING array on a word boundary.  In the
diagram, question marks denote undefined values:

STRING a[0:2];

STRING b[3:4];

STRING c[-1:1];

361

A[0] A[1]

A[2]    ?

   ? B[3]

B[4]    ?

   ? C[-1]

C[0] C[1]

B[0]
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INT Arrays

For INT arrays, the compiler allocates a word for each element:

INT a[0:2];

INT b[2:3];

INT c[-2:-1];

B[0]

C[-1]

362

B[3]

C[-2]

A[2]

B[2]

A[0]

A[1]

INT(32) Arrays

For INT(32) arrays, the compiler allocates a doubleword for each element:

D[0]

D[1]

363

INT(32) d[0:1];

REAL Arrays

For REAL arrays, the compiler allocates a doubleword for each element:

REAL r[4:5]; R[4]

R[5]

364
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REAL(64) Arrays

For REAL(64) arrays, the compiler allocates a quadrupleword for each element:

REAL(64) r[0:1];

365

R[0]

R[1]

FIXED Arrays

For FIXED arrays, the compiler allocates a quadrupleword for each element:

366

FIXED f[0:1];

F[0]

F[1]

When you declare a FIXED array, you can specify the implied fpoint of values you
store in the array elements.  The fpoint is an integer in the range –19 through 19,
enclosed in parentheses, following the FIXED keyword.  The default fpoint is 0 (no
decimal places).  Here is an example of a FIXED array with an fpoint of 5:

FIXED(5) array[0:2];

If you declare a FIXED(*) array, values stored in the array are not scaled and are
treated as having an fpoint of 0.



Declaring Arrays

Using Arrays

096254 Tandem Computers Incorporated 7–7

UNSIGNED Arrays

When you declare an UNSIGNED array, you must specify as part of the data type a
value of 1, 2, 4, or 8 that specifies the width, in bits, of the elements in the array.  Here is
an example of an UNSIGNED array that has eight 4-bit elements:

UNSIGNED(4) array[0:7];

The compiler packs allocation of UNSIGNED array elements in sequential words.  A
word can contain up to sixteen 1-bit elements, eight 2-bit elements, four 4-bit elements,
or two 8-bit elements in successive bit fields.  For example, if you declare an array as
having six 2-bit elements, the compiler packs allocation of all six 2-bit elements in the
same word:

UNSIGNED(2) a[0:5];

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A[0] A[1] A[2] A[3] A[4] A[5]

367

The compiler always allocates the zeroth element of an UNSIGNED array at a word
boundary.  For example, if you declare an UNSIGNED simple variable followed by an
UNSIGNED array having bounds of [4:7], the compiler allocates the array in the same
word as the simple variable, with the zeroth array element at bit [0]:

UNSIGNED(5) uns_var;
UNSIGNED(2) b[4:7];

368

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

UNS_VAR B[4] B[5] B[6] B[7]

If you declare a STRING simple variable followed by an UNSIGNED array, the
compiler allocates the zeroth array element starting at bit [0] of the next word:

STRING str_var;

UNSIGNED(2) c[4:7];

369

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

STR_VAR

C[4] C[5] C[6] C[7]C[0]
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Allocating Arrays The compiler allocates storage for an array in a particular storage area based on
declaration characteristics such as:

The global, local, or sublocal level
The direct, standard indirect, or extended indirect addressing mode

Allocating Direct Arrays

The compiler allocates storage for directly addressed arrays in the global, local, or
sublocal primary areas of the user data segment as shown in Figure 7-1.

Figure 7-1.  Allocating Direct Arrays

INT(32) a[0:1];    !Global 
INT b[1:2];        ! arrays

PROC proc_a;
  BEGIN
  STRING c[0:2];   !Local
  FIXED d[0:3];    ! arrays
  
  SUBPROC subproc_a;
    BEGIN
    INT e[0:1];    !Sublocal 
    STRING f[0:3]; ! arrays
    !Lots of code
    END;

  !Lots of code
  CALL subproc_a;
  !More code
  END; 

G[0]

S[0]

L[1]C[0]

S[-3]

S[-2]

S[-1]

L[3]

Sublocal 
arrays

Global 
arrays

Local 
arrays

B[1]

B[2]
. . .

G[4]

C[1]

C[2]

. . .

. . .

E[0]

E[1]

F[0]

F[2]

F[1]

F[3]
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A[0]

D[0]

A[1]

D[3]
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Allocating Indirect Arrays

You can declare global or local indirect arrays.  Sublocal arrays cannot be indirectly
addressed.

For each standard indirect array, the compiler allocates space as follows:

1. It allocates a word of storage in the global (or local) primary area of the user data
segment for an implicit standard pointer.

2. It then allocates storage for each array in the global (or local) secondary area.

3. Finally, it initializes each implicit pointer (provided in step 1) with the 16-bit
address of the array.  For a STRING array, the pointer contains a byte address.  For
any other array, the pointer contains a word address.

For each extended indirect array, the compiler allocates space as follows:

1. It allocates a doubleword of storage in the global (or local) primary area of the user
data segment for an implicit extended pointer.

2. It then allocates storage for each extended array in an automatic extended data
segment.

3. Finally, it initializes each implicit pointer (provided in step 1) with the 32-bit byte
address of the array.  The address is always an even-byte address.

If you declare arrays within BLOCK declarations, however, the compiler allocates
storage anywhere within the list of data blocks, as described in Section 14, “Compiling
Programs.”
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Figure 7-2 shows storage allocation for global indirect arrays.

Figure 7-2.  Allocating Indirect Arrays

INT(32) .EXT a[0:9];

INT .EXT b[1:9];

STRING .c[0:1];

INT .d[-1:49]; 

G[0]

Global 
primary 

area

C[0] C[1]

D[-1]

ptr to C

ptr to D

G[1]

G[2]

G[3]

G[4]

G[5]

G[6]

G[7]

G[8] D[0]
. . .

D[49]

Automatic extended 
data segment

B[1]

B[0]

B[2]
. . .

B[9]

. . .

User data segment

Global 
secondary 

area

G[57]
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ptr to A

ptr to B

A[0]

A[9]

A[1]
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Addressability of Arrays The zeroth element of an array must always be addressable.  If it is not addressable,
the compiler issues an address range violation error.

Addressability in the User Data Segment

The zeroth element of a direct array must fit within the lower 32K-word area of the
user data segment, even if the zeroth element is not allocated.

The global area has G-plus addressing.  If a global array is located at G[0], its lower
bound must be a zero or negative value.  Avoid the following practice:

G[0]

G[1]

A[1]

A[2]

372

( A[0] )

INT a[1:2];

The sublocal area has S-minus addressing.  If a sublocal array is located at S[0], its
upper bound must be a zero or larger value.  Avoid the following practice:

S[-2]

S[-1]

S[0]

A[-3]

A[-1]

A[-2]

373

SUBPROC s;
  BEGIN
  !Sublocal data
  INT a[-3:-1];
  !Lots of code
  END; ( A[0] )

Addressability in the Extended Segment

The zeroth element of an extended indirect array must reside within the automatic
extended data segment, even if the zeroth element is not allocated.  If an extended
indirect array is located at the beginning of the extended data segment, its lower
bound must be a zero or negative value.  Avoid the following practice:

INT .EXT aa[1:2];

Automatic extended 
data segment

User data segment

G[0] ptr to AA

374

AA[1]

AA[2]

( AA[0] )
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Accessing Arrays After you declare an array, you can access its elements by using the array identifier in
statements, regardless of addressing mode.  For example, you can declare a direct
array, a standard indirect array, and an extended indirect array, and then access each
by its identifier:

INT dir_array[0:2];      !Declare direct array
INT .std_array[0:2];     !Declare standard indirect array
INT .EXT ext_array[0:2]; !Declare extended indirect array

dir_array[2] := 5;       !Access third element of each
std_array[2] := 5;       ! array by using its identifier in
ext_array[2] := 5;       ! an assignment statement

Indexing Arrays To access an array element, you append an index such as [5] to the array identifier.
You can access element [0] of any array (except type UNSIGNED) by specifying the
array identifier with no index.  Thus, the references BUFFER and BUFFER[0] are
equivalent.  To access an UNSIGNED array, however, you must always append an
index:

UNSIGNED(8) uns_array[0:2];

uns_array[0] := 0;       !UNS_ARRAY requires index

Index Values

The index value represents the array element you want to access, relative to the zeroth
element.  For example, to access the third element, specify an index of [2]:

INT array[0:2];

array[2] := 5;           !Access third element of array

For the index value, use a signed arithmetic expression:

For standard addressing, use a signed INT expression, which has a range of
–32,768 through 32,767.

For extended addressing, use either a signed INT expression or an INT(32)
expression, which has a range of –2,147,483,648 through 2,147,483,647.
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You can use constants and LITERALs as index values:

LITERAL index = 5;       !Declare LITERAL
INT table[0:9];          !Declare array

table[index] := "AB";    !Access sixth element of array

You can use variables as index values:

INT .EXT b[0:10];        !Declare array
INT .c[0:9];             !Declare array
INT(32) x;               !Declare variables X, Y, and
INT y;                   ! Z to use for indexes
INT z;

!Code to manipulate indexes and initialize arrays

b[x] := c[y-z];          !Access array element

Assigning Data
to Array Elements

You can assign data to one array element at a time.  For each array element, use a
separate assignment statement:

STRING .an_array[0:4];   !Declare AN_ARRAY

an_array[1] := "Z";      !Assign "Z" to second
                         ! element of AN_ARRAY

You cannot use constant lists in assignment statements (as you can in declarations) to
assign values to multiple array elements.  For example, the following initialization of
THIS_ARRAY is equivalent to the three assignment statements applied to
THAT_ARRAY:

INT .this_array[0:2] := ["ABCDEF"];
                         !Constant list initializes
                         ! all elements of THIS_ARRAY

INT .that_array[0:2];

that_array[0] := "AB";   !Assignment statements assign
that_array[1] := "CD";   ! values to elements of
that_array[2] := "EF";   ! THAT_ARRAY, one at a time

However, you can copy data to multiple array elements by using a move statement,
described in “Copying Data Into Arrays” later in this section.

Assigning the
Address of Arrays

You can assign the address of array elements to other variables.  For example, to
assign the address of ARRAY[1] to VAR, prefix the array identifier with the @ operator
in an assignment statement:

INT .array[0:2];         !Declare array
INT var;                 !Declare simple variable

var := @array[1];        !Assign address of ARRAY[1]
                         ! to VAR
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Copying Data
Into Arrays

To copy data to multiple array elements, use the move statement.  You can, for
example, copy:

A constant list into an array
Data between arrays
Data within an array

Copying a Constant
List Into an Array

To copy a constant list into an array, specify the destination array and the constant list in
a move statement.  You can copy the source data from left to right or from right to left.

Copying Left to Right

To start copying from the leftmost item of the source data, use the left-to-right move
operator (':=').  For example, you can start copying from the leftmost character in a
source character string such as "A ... Z."   In this case, you copy "A" into element [0] of
the destination array, then "B" into element [1], and so on through element [25]:

STRING .alpha_array[0:25];      !Declare 26-element array

alpha_array[0] ':=' ["ABCDEFGHIJKLMNOPQRSTUVWXYZ"];
                                !Copy "A" through "Z" into
                                ! ALPHA_ARRAY[0] through [25]

Copying Right to Left

To start copying from the rightmost item of the source data, use the right-to-left move
operator ('=:').  For example, you can start copying from the rightmost constant of a
constant list such as [1, 2, 3, 4].  In this case, you copy the constant 4 into element [3] of
the destination array, the constant 3 into element [2], and so on through element [0]:

INT num_array[0:3];             !Declare 4-element array

num_array[3] '=:' [1, 2, 3, 4]; !Copy 4 through 1 into
                                ! NUM_ARRAY[3] through [0]

Using Repetition Factors

To repeat the same value in consecutive elements of the destination array, specify a
repetition factor followed by a multiplication operator (*) and the value to repeat.  For
example, you can copy a zero into all elements of the destination array:

LITERAL len = 100;              !Specify repetition factor
INT .an_array[0:len - 1];       !Declare 100-element array

an_array[0] ':=' len * [0];     !Copy a zero into all
                                ! elements of AN_ARRAY
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Copying a Byte Constant Into a STRING Array

To copy a single byte constant into an element of the destination array, enclose the
constant in brackets in the move statement.  The destination array must be a STRING
array or have a byte address:

STRING x[0:8];                   !Declare STRING array X

x[0] ':=' ["A"];                 !Copy a single byte;
                                 ! puts "A" in X[0]

If you do not enclose the constant in brackets, you copy a word, doubleword, or
quadrupleword depending on the size of the constant.  The following example repeats
the preceding example, substituting an unbracketed constant in the move statement:

STRING x[0:8];                   !Declare STRING array X

x[0] ':=' "A";                   !Copy a word; put %0 in
                                 ! X[0] and "A" in X[1]

Copying Data
Between Arrays

To copy data from one array to another, specify the destination and source arrays in the
move statement and include the FOR clause.  In the FOR clause, specify a count
value—an INT arithmetic expression that specifies the number of elements, bytes, or
words you want to copy.

Copying Bytes

To copy bytes regardless of source data type, specify the BYTES keyword in the FOR
clause of the move statement.  BYTES copies the number of bytes specified by the count
value.  If both source and destination have word addresses, however, BYTES generates a
word copy for (count + 1) / 2 words.

For example, you can copy bytes instead of words from an INT array as follows:

LITERAL length = 70;             !Number of array elements
INT .new_array[0:length - 1];    !Destination array
INT .old_array[0:length - 1];    !Source array
INT file_number;                 !File number
INT byte_count;                  !Count value (number of
                                 ! bytes to copy)
!Lots of code here

CALL READ (file_number, old_array, byte_count);
new_array[0] ':=' old_array[0] FOR byte_count BYTES;
                                 !Copy bytes from OLD_ARRAY
                                 ! to NEW_ARRAY
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Copying Words

To copy words regardless of source data type, specify the WORDS keyword in the
FOR clause.  WORDS generates a word copy for the number of words specified by the
count value.

For example, to copy words instead of doublewords from an INT(32) source array,
multiply LENGTH by 2 and include the WORDS keyword:

LITERAL length = 12;             !Count value (number of
                                 ! words to copy)
INT(32) .new_array[0:length - 1];!Destination
INT(32) .old_array[0:length - 1];!Source

!Some code here to put values in OLD_ARRAY

new_array[0] ':=' old_array[0] FOR 2 * length WORDS;
                                 !Copy 24 words from
                                 ! OLD_ARRAY to NEW_ARRAY

Copying Elements

To copy elements based on the data type of the source array, you can specify the
ELEMENTS keyword.  For example, you can copy doubleword values from an
INT(32) source array into the destination array as follows:

LITERAL length = 12;             !Count value (number of
                                 ! elements to copy)
INT(32) .new_array[0:length - 1];!Destination
INT(32) .old_array[0:length - 1];!Source

!Some code here to put values in OLD_ARRAY
new_array[0] ':=' old_array[0] FOR length ELEMENTS;
                                 !Copy 12 doublewords from
                                 ! OLD_ARRAY to NEW_ARRAY

When you copy array elements, the ELEMENTS keyword is optional but provides
clearer source code.  When you copy structure occurrences, the ELEMENTS keyword
is required, as described in Section 8, “Using Structures.”
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Copying Data
Within an Array

To copy data within an array, specify the same array for the destination and source
arrays and include the FOR clause in the move statement.

For example, you can free element [0] of a 12-element array by specifying the
following move statement.  This move statement first copies element [10] into element
[11], then element [9] into element [10], and so forth.  Finally, it copies element [0] into
element [1], thereby freeing element [0] for new data:

LITERAL upper_bound = 11;        !Upper bound of array
FIXED .buffer[0:upper_bound];    !12-element array

!Some code here to put values in
! BUFFER[0] through BUFFER[10]

buffer[upper_bound] '=:'
  buffer[upper_bound - 1] FOR upper_bound;
                                 !Start copy with BUFFER[10]
                                 ! into BUFFER[11]

Using the Next Address The next address (also known as next-addr) is the memory location immediately
following the last item copied.  The next address is returned by the move statement.
You can use the next address for various purposes, such as the starting location for a
new group of values.

First declare a simple pointer and then use its identifier (prefixed by @) in the next-
address clause in a move statement.  Here is an example of the next-address clause:

–> @next_addr_ptr

For example, you can copy spaces into the first five elements of an array, and then use
the next address as the destination for copying dashes into the next five elements:

LITERAL len = 10;                !Length of array
STRING .array[0:len - 1];        !Destination array
STRING .next_addr_ptr;           !Simple pointer for
                                 ! the next address

array[0] ':=' 5 * [" "] -> @next_addr_ptr;
                                 !Complete first copy
                                 ! and capture next address
next_addr_ptr ':=' 5 * ["-"];    !Use next address as start
                                 ! of second copy operation
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The compiler does a standard move and returns a 16-bit next address if:

Both arrays have standard byte addresses
Both arrays have standard word addresses

The compiler does an extended move and returns a 32-bit next address if:

One of the two arrays has a standard byte address and the other has a standard
word address
Either array has an extended address

STRING arrays and arrays pointed to by STRING pointers are byte addressed.  All
other arrays are word addressed.

Copying Bytes Into INT Arrays

To copy data from a byte-addressed source array into a word-addressed destination
array, declare an extended STRING simple pointer and use it in the next-address
clause of the move statement:

STRING  byte_array[0:9];         !Byte-addressed source array
INT     word_array[0:4];         !Word-addressed destination
                                 ! array
STRING  .EXT next_addr;          !STRING simple pointer for
                                 ! the next-address clause
!Some code here
word_array[0] ':=' byte-array[0] FOR 3 BYTES -> @next_addr;
                                 !Copy three bytes into
                                 ! WORD_ARRAY

When the copy operation is complete, the next-address pointer (NEXT_ADDR) points
to the right byte of WORD_ARRAY[1], not the left byte.

Concatenating
Copy Operations

You can concatenate any number of move sources in a single move statement by using
the ampersand operator (&).

The following move statement concatenates six move sources.  It copies three string
constants and data from three arrays into LINE_ARRAY:

LITERAL line_len = 63;           !Length of destination array
LITERAL date_len = 11;           !Length of source array 1
LITERAL id_len = 11;             !Length of source array 2
LITERAL dept_len = 3;            !Length of source array 3

STRING .line_array[0:line_len - 1];     !Destination array
STRING .date_array[0:date_len - 1] := "Feb 1, 1992";
STRING .id_num[0:id_len - 1] := "854-70-1950";
STRING .dept_num[0:dept_len - 1] := "107";

line_array ':='   "   DATE: " & date_array FOR date_len BYTES
           & "   ID NUMBER: " & id_num FOR id_len BYTES
          & "   DEPARTMENT: " & dept_num FOR dept_len BYTES;
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When the preceding example executes, LINE_ARRAY contains the following:

DATE: Feb 1, 1992   ID NUMBER: 854-70-1950   DEPARTMENT: 107

Initializing a Large Array Quickly

To initialize a large array quickly, you can concatenate two copy operations in a move
statement.  The first copy operation copies two spaces into element [0], and the second
copies the spaces from element [0] into the remaining elements:

LITERAL length = 100;           !Length of array
INT .array[0:length - 1];       !Destination array

array[0] ':=' "  " & array[0] FOR (length - 1);
                                !Initialize array to blanks

In the preceding example, make sure the value in the FOR clause is a positive number.
The move statement treats the value as an unsigned integer.  It treats a small negative
number (such as –1) as a large positive number (in this case, 65,535).

Scanning Arrays You can use scan statements to scan arrays for a test character.  You can apply scan
statements to any array (except UNSIGNED arrays) located in the lower 32K-word
area of the user data segment or no more than 32K words away in the user code
segment.  You can only scan bytes.

The SCAN statement scans an array from left to right.  The RSCAN statement scans an
array from right to left.  Both scan statements return the next address, described in
“Using the Next Address” earlier in this section.

Delimiting the Scan Area Unless you delimit the scan area, a scan operation might continue to the 32K-word
boundary if:

A SCAN UNTIL operation does not find a zero or the test character
A SCAN WHILE operation does not find a zero or a character other than the test
character

When you declare the array to scan, you can use zeros to delimit the start and end of
the scan area.  Here is an example for delimiting the scan area with zeros:

INT .buffer[-1:20] := [0,"  John James Jones  ",0];

Here is another example for delimiting the scan area with zeros:

LITERAL stopper = 0;
STRING an_array[0:9];

!Fill array from some source
an_array[0] := stopper;
an_array[9] := stopper;
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Determining What
Stopped the Scan

To determine what stopped the scan, test $CARRY in an IF statement immediately
after the SCAN or RSCAN statement.  If $CARRY is true after a SCAN UNTIL, the test
character did not occur.  If $CARRY is true after SCAN WHILE, a character other than
the test character did not occur.  Here are examples for using $CARRY:

IF $CARRY THEN ... ;        !If test character not found
IF NOT $CARRY THEN ... ;    !If test character found

To determine the number of multibyte elements processed, divide (next address '–'
byte address of the array) by the number of bytes per element, using unsigned
arithmetic.

Scanning Bytes in
Word-Aligned Arrays

Operating system procedures require that procedure parameters use INT arrays,
which are word aligned.  To scan bytes in a word-aligned array, convert the word
address of the array to a byte address by using the unsigned left-shift operation
('<<' 1).

The following example converts the word address of an INT array to a byte address.
The assignment statement stores the resulting byte address into a STRING pointer.
The SCAN statement then scans the bytes in the array until it finds a comma:

INT .words[-1:3] := [0,"Doe, J",0];
                            !Declare INT array (WORDS)

STRING .byte_ptr := @words[0] '<<' 1;
                            !Declare BYTE_PTR; initialize
                            ! with byte address of WORDS[0]

SCAN byte_ptr[0] UNTIL ","; !Scan bytes in WORDS

Multipart Scan Example These declarations apply to a series of scan statement examples that follow:

INT .int_array[-1:9] := [0,"  Smith, Maurice  ",0];
                            !INT_ARRAY

STRING .sptr := @int_array[0] '<<' 1;
                            !STRING pointer to INT_ARRAY[0]

STRING .start_last_name,    !
       .end_last_name,      !
       .start_first_name,   !STRING pointers for next address
       .end_first_name,     !
       .comma;              !

INT offset,                 !
    length;                 !INT variables
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In the diagrams shown with the following examples, an arrow points to the character
that stopped the scan.

Scanning WHILE

SCAN WHILE searches until it finds a byte character other than the test character or a
zero.  The following example scans left to right while spaces occur, starting from the
zeroth element of INT_ARRAY.  The scan stops at the beginning of the last name and
stores that address in the next-address pointer START_LAST_NAME.  An IF statement
then checks the carry bit to see what stopped the scan.  If a character (rather than a
zero) stopped the scan, the program calls a string-handling procedure:

SCAN sptr[0] WHILE " " -> @start_last_name;
IF NOT $CARRY THEN   
  CALL string_handler; Smith, Maurice

375

START_LAST_NAME

Scanning UNTIL

SCAN UNTIL searches until it finds the test character or a zero.  The following
example scans INT_ARRAY left to right until it finds a comma or a zero, starting from
the address stored in START_LAST_NAME by the previous scan.  If any character but
a comma stops the scan, the program calls an error-printing procedure:

SCAN start_last_name UNTIL "," -> @comma;
IF $CARRY THEN      
  CALL invalid_input; Smith, Maurice

376
COMMA

Scanning Right to Left

The following RSCAN example finds the end of the last name.  It scans INT_ARRAY
right to left for a character other than a space or a zero, starting from the location
preceding the comma.  Because no space separates the end of the last name from the
comma, the scan starts and stops at the same location:

RSCAN comma[-1] WHILE " " -> @end_last_name; 

Smith, Maurice

377
END_LAST_NAME
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Computing the Offset of a Character

The following SCAN WHILE example finds the offset of the first name from the
beginning of the array.  It scans left to right from the address following the comma,
looking for a character other than a space or a zero.  It stops at the beginning of the
first name and stores that address in the next-address pointer START_FIRST_NAME.
The assignment statement then computes the offset and assigns it to OFFSET:

SCAN comma[1] WHILE " " -> @start_first_name; 
offset := @start_first_name '-' @sptr; 

Smith, Maurice

378

START_LAST_NAMESPTR[0]

Computing the Length of a Character String

The following SCAN UNTIL example finds the length of the name contained in the
array.  It scans left to right from the address stored in START_FIRST_NAME by the
preceding scan, looking for a space or a zero.  It stores in END_FIRST_NAME the
address where the space occurs.  The assignment statement then computes the length
of the entire name and assigns it to LENGTH:

SCAN start_first_name UNTIL " " -> @end_first_name; 
length := @end_first_name '-' @start_last_name; 

Smith, Maurice

379

START_FIRST_NAME

END_FIRST_NAME

START_LAST_NAME
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Comparing Arrays You can compare two arrays, or compare an array to a constant list, by using a group
comparison expression in a statement.  Group comparison expressions are described in
Section 13, “Using Special Expressions.”  Here are some examples.

You can compare an array to a constant list:

STRING an_array[0:3];                   !Declare array

!Some code here
IF an_array[0] = ["ABCD"] THEN ... ;    !Compare array to
                                        ! constant list

You can compare two arrays:

INT in_array[0:8];                      !Declare array
INT out_array[0:8];                     !Declare array

!Some code here
IF in_array = out_array FOR 9 ELEMENTS THEN ... ;
                                        !Compare the arrays

You can use the next address in a group comparison expression:

STRING .sp;                             !Declare next-address
                                        ! pointer
STRING .a[0:1] := "AB";                 !Declare array
STRING .b[0:1] := "AC";                 !Declare array

IF b <> a FOR 2 BYTES -> @SP THEN ... ; !SP points to B[1]

Using Standard
Functions With Arrays

You can use the following standard functions to get certain information about arrays,
such as the number of elements in an array:

Standard Function Effect

$BITLENGTH Returns the length, in bits, of one array element

$LEN Returns the length, in bytes, of one array element (1 for STRING arrays, 2
for INT arrays, and so forth)

$OCCURS Returns the number of elements in an array

$TYPE Returns a value that denotes the data type of an array

For example, you can find the total length of an array as follows:

INT array_length;
INT array[0:2];

array_length := $LEN (array) * $OCCURS (array);
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Using Read-Only
Arrays

A read-only array is an array you cannot modify.  When you declare a read-only array,
the compiler allocates storage for the array in a user code segment.

Declaring
Read-Only Arrays

Read-only array declarations differ from other array declarations in a number of ways:

You must specify the read-only array symbol (= 'P') following the array identifier.

You must initialize read-only arrays when you declare them, because you cannot
assign values to read-only arrays by using assignment statements later in your
program.

You cannot declare read-only arrays of data type UNSIGNED because you cannot
initialize UNSIGNED arrays.

You cannot declare indirect read-only arrays, because code segments have no
primary or secondary storage areas.

You can omit the array bounds.  The default lower bound is 0; the default upper
bound is the number of elements initialized minus one.

For example, you can declare and initialize two read-only arrays, PROMPT and
ERROR, using default bounds:

STRING prompt = 'P' := ["Enter a character: ", 0];

INT    error  = 'P' := ["Incorrect input"];

Numeric constants in the constant list should be appropriate for the data type of the
array.

The system uses the program counter (P register) to access read-only arrays.  The P
register contains the address of the next instruction to be executed in the current code
segment.

If you declare a read-only array in a procedure declared with the RESIDENT
procedure attribute, the array is also resident in main memory.  For more information
on the RESIDENT attribute of procedures, see the TAL Reference Manual.

Accessing
Read-Only Arrays

You can access read-only arrays in the same way as you access any other array, except
that:

You cannot modify a read-only array;  that is, you cannot specify a read-only array
on the left side of an assignment or move operator.

You cannot specify a read-only array on the left side of a group comparison
expression.

In a SCAN or RSCAN statement, you cannot use next-address to read the last
character of a string.  You can use next-address to compute the length of the string.

A procedure can access any global read-only array located in the same 32K-word area
of the code segment.
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A procedure located in the upper 32K-word area of the code segment can access global
STRING read-only arrays located in the lower 32K-word area only by using extended
pointers.  Here is an example:

PROC q (sp, len);
    STRING .EXT sp;
    INT len;
  BEGIN
  !Code to print sp[0:len - 1]
  END;

PROC p;
  BEGIN
  STRING s = 'P' := "Hello";
  STRING .EXT sp := $XADR(s);
  LITERAL LEN = 5;
  CALL q (sp, len);
  END;

A procedure can pass the data of a read-only array only by reference to a procedure
located in the same code segment.

You can copy data from a read-only array into a user data segment array as follows:

STRING message = 'P' := ["** LOAD MAG TAPE #00144"];
STRING .array[0:22];

array ':=' message FOR 23;



8 Using Structures

096254 Tandem Computers Incorporated 8–1

A structure is a collectively stored set of data items that you can access individually or
as a group.  Structures contain structure items (fields) such as simple variables, arrays,
simple pointers, structure pointers, and nested structures (called substructures).  The
structure items can be of different data types.

Structures usually contain related data items such as the fields of a file record.  For
example, in an inventory control application, a structure can contain an item number,
unit price, and quantity.

Structures can simulate multidimensional arrays, arrays of arrays, or arrays of
structures.

This section describes:

Kinds of structures—definition, template, and referral
Declaring and allocating definition structures
Declaring template structures
Declaring and allocating referral structures
Declaring and allocating structure items
Accessing structure items
Assigning data to structure items
Copying structure data

Kinds of Structures A structure declaration associates an identifier with any of three kinds of structures.
Table 8-1 lists the kinds of structures you can declare.

Table 8-1.  Kinds of Structures

Structure Description

Definition Describes a structure layout and allocates storage for it

Template Describes a structure layout but allocates no storage for it

Referral Allocates storage for a structure whose layout is the same as the layout of a
previously declared structure
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Structure Layout The structure layout is a BEGIN-END construct that contains declarations of structure
items.  Table 8-2 lists structure items.

Table 8-2.  Structure Items

Structure Item Description

Simple variable A single-element variable

Array A variable that contains multiple elements of the same data type

Substructure A structure nested within a structure (to a maximum of 64 levels)

Filler byte A place-holding byte

Filler bit A place-holding bit

Simple pointer A variable that contains the memory address, usually of a simple variable or
array, which you can access with this simple pointer

Structure pointer A variable that contains the memory address of a structure, which you can
access with this structure pointer

Redefinition A new identifier and sometimes a new description for a substructure, simple
variable, array, or pointer declared in the same structure

You can nest substructures within structures up to 64 levels deep.  That is, you can
declare a substructure within a substructure within a substructure, and so on, for up to
64 levels.  The structure and each substructure has a BEGIN-END level depending on
the level of nesting.

The following rules apply to all structure items:

You can declare the same identifier in different structures and substructures, but
you cannot repeat an identifier at the same BEGIN-END level.

You cannot initialize a structure item when you declare it.  After you have
declared it, however, you can assign a value to it by using an assignment or move
statement.

The following subsections describe how to declare definition, template, referral
structures, and structure items.
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Declaring Definition
Structures

A definition structure describes a structure layout and allocates storage for it.  To
declare a single occurrence of a definition structure, specify:

The keyword STRUCT
The structure identifier, usually preceded by an indirection symbol (. or .EXT)
A semicolon
The structure layout (enclosed in a BEGIN-END construct)

You can, for example, declare a definition structure named INVENTORY like this:

STRUCT .inventory;              !Declare definition structure
  BEGIN                         !Begin structure layout
  INT item;
  FIXED(2) price;
  INT quantity;
  END;                          !End structure layout

Specifying Structure
Occurrences

A definition structure that contains multiple occurrences is also known as an array of
structures.  For multiple occurrences, specify the lower and upper bounds in the
structure declaration.  These bounds represent the indexes of the first and last
structure occurrences you want allocated.  The bounds must be INT constant
expressions in the range –32,768 through 32,767, separated by a colon and enclosed in
brackets.  The default bounds are [0:0] (one structure occurrence).

For example, to declare an array of definition structures that consists of four
occurrences of the structure, specify structure bounds such as [0:3]:

STRUCT .inventory[0:3];         !Declare definition structure
  BEGIN                         !Begin structure layout
  INT item;
  FIXED(2) price;
  INT quantity;
  END;                          !End structure layout

The size of one occurrence of a structure must not exceed 32,767 bytes.  In the
preceding example, the size of each structure occurrence is 12 bytes.  The size of the
entire structure, including all four occurrences, is 48 bytes.

Using Indirection You should use indirection for most global and local structures, because storage areas
for direct global and local variables are limited.  You access indirect structures by
identifier as you do direct structures.

Do not use indirection for sublocal structures, because sublocal storage has no
secondary area.
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To declare a standard indirect structure, precede the structure identifier with the
standard indirection symbol (.):

STRUCT .std_structure;          !Declare standard indirect
  BEGIN                         ! definition structure
  INT a;                        ! (global or local scope)
  INT b;
  END;

For very large structures, you should use extended indirection.  When you declare one
or more extended indirect structures (or arrays), the compiler allocates the automatic
extended data segment.  If you also must allocate an explicit extended data segment,
follow the instructions given in Appendix B, “Managing Addressing.”

To declare an extended indirect structure, precede the structure identifier with the
extended indirection symbol (.EXT):

STRUCT .EXT ext_structure;      !Declare extended indirect
  BEGIN                         ! definition structure
  INT a;                        ! (global or local scope)
  INT b;
  END;

Allocating Definition
Structures

The compiler allocates storage for direct and indirect structures as shown for arrays in
Figures 7-1 and 7-2 in Section 7, “Using Arrays.”  That information is summarized here
for structures.

At the global and local levels, you can declare direct or indirect structures.  At the
sublocal level, you can declare direct structures only.

Direct Structures

For each directly addressed structure, the compiler allocates space in the global, local,
and sublocal primary areas of the user data segment.

Standard Indirect Structures

For each standard indirect structure, the compiler allocates space as follows:

1. It allocates a word of storage in the global (or local) primary area of the user data
segment for an implicit standard structure pointer.

2. Next, it allocates storage for the structure in the global (or local) secondary area of
the user data segment.

3. Finally, it initializes the implicit pointer (provided in Step 1) with the 16-bit word
address of the zeroth structure occurrence.
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Extended Indirect Structures

For each extended indirect structure, the compiler allocates space as follows:

1. It allocates two words of storage in the global (or local) primary area of the user
data segment for the implicit extended structure pointer.

2. Next, it allocates storage for the structure in the automatic extended data segment.

3. Finally, it initializes the implicit pointer (provided in Step 1) with the 32-bit byte
address of the zeroth structure occurrence.

Word Boundaries

The compiler starts the allocation of each structure occurrence on a word boundary,
even if each occurrence contains an odd number of bytes.

For example, the compiler starts structure occurrences A[0] and A[1] on a word
boundary as follows.  (Slashes in the diagram represent compiler-allocated pad bytes.)

STRUCT a_struct[0:1]; 
  BEGIN 
  INT x;
  STRING s;
  END;

A_STRUCT[0]

A_STRUCT[1]

380

X

S / / /

X

S / / /

Amount of Allocation

The compiler determines the amount of storage to allocate for the structure data from
the size and number of structure occurrences.  The compiler allocates storage only for
the structure occurrences specified in the bounds of the declaration.

For example, if you declare simple variables A and B, and then declare structure S
with bounds of [1:2], the compiler allocates storage for A, B, S[1], and S[2] as follows.
In this case, the zeroth occurrence of S is located at the address of simple variable A:

INT a;
INT b;

STRUCT my_struct[1:2]; 
  BEGIN 
  INT s_c;
  STRING s_d;
  END;

381

MY_STRUCT[0]

MY_STRUCT[1]

MY_STRUCT[2]

A

B

S_C

S_D / / /

S_C

S_D / / /

Note When your code later refers to a structure occurrence, the compiler does no bounds checking.  If you
refer to a structure occurrence outside the bounds specified in the declaration, you access data at an
address outside of the structure.
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Addressability
of Structures

The zeroth occurrence of a structure must be addressable.  If it is not addressable, the
compiler issues an address range violation error.  (In the following diagrams,
parentheses enclose the zeroth occurrence to indicate that it is not addressable.)

Addressability in the User Data Segment

The zeroth occurrence of a direct structure must fit within the lower 32K-word area of
the user data segment, even if the zeroth occurrence is not allocated.

The global area has G-plus addressing.  If a global structure is located at G[0], its lower
bound must be a 0 or negative value.  Avoid the following practice:

G[0]

G[1]

ASTR[1]

ASTR[2]

382

( ASTR[0] )STRUCT astr[1:2];
  BEGIN
  INT x; 
  END; 

The sublocal area has S-minus addressing.  If a sublocal structure is located at S[0], its
upper bound must be a 0 or larger value.  Avoid the following practice:

383

S[-2]

S[-1]

S[0]

BSTR[-3]

BSTR[-1]

BSTR[-2]

( BSTR[0] )

SUBPROC s; 
  BEGIN 
  STRUCT bstr[-3:-1];
    BEGIN 
    INT x; 
    END; 
  END;  

Addressability in the Extended Segment

The zeroth occurrence of an extended indirect structure must reside within the
extended data segment, even if the zeroth occurrence is not allocated.  If an extended
indirect structure is located at the beginning of the extended data segment, the lower
bound must be a 0 or negative value.  Avoid the following practice:

384

%2000000

User data segment

G[0] ptr to XSTR

Automatic extended 
data segment

XSTR[1]

XSTR[2]

( XSTR[0] )

STRUCT .EXT xstr[1:2]; 
  BEGIN  
  INT x;  
  END; 
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Declaring Template
Structures

(A template structure declares a structure layout but allocates no storage for it.  You
use the template in subsequent structure, substructure, or structure pointer
declarations.

To declare a template structure, specify:

The keyword STRUCT
The structure identifier (with no indirection symbol)
An asterisk enclosed in parentheses
A semicolon
The structure layout (enclosed in a BEGIN-END construct)

For example, you can declare a template structure named STOCK like this:

STRUCT stock (*);                !Declare template structure
  BEGIN                          !Begin structure layout
  INT item;
  FIXED(2) price;
  INT quantity;
  END;                           !End structure layout

A template structure has meaning only when you refer to it in the subsequent
declaration of a referral structure (described next), a referral substructure, or a
structure pointer.  The subsequent declaration allocates space for a structure whose
layout is the same as the template layout.
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Declaring Referral
Structures

A referral structure allocates storage for a structure whose layout is the same as that of
a specified structure or structure pointer.

To declare a single occurrence (copy) of a referral structure, specify:

The keyword STRUCT

The structure identifier, usually preceded by an indirection symbol (. or .EXT)

A referral that provides the structure layout—enclose the identifier of an existing
definition structure, template structure, or structure pointer in parentheses

For example, you can declare referral structure NEW_STRUCT to use the layout of
OLD_STRUCT:

STRUCT .new_struct (old_struct); !Declare referral structure

Specifying Structure
Occurrences

A referral structure that contains multiple occurrences is an array of structures.  To
indicate multiple occurrences, specify the lower and upper bounds in the structure
declaration.  These bounds represent the indexes of the first and last structure
occurrences you want allocated.  Specify the bounds as INT constant expressions in the
range –32,768 through 32,767, separated by a colon and enclosed in brackets.  The
default bounds are [0:0] (one structure occurrence).

For example, to declare an array of referral structures that consists of 50 occurrences of
the structure, specify structure bounds such as [0:49].  The following example declares:

A template structure named RECORD

A referral structure named CUSTOMER that uses the layout of RECORD for 50
occurrences:

STRUCT record (*);               !Declare template structure
  BEGIN
  STRING name[0:19];
  STRING addr[0:29];
  INT acct;
  END;

STRUCT .customer (record) [0:49];
                                 !Declare referral structure

The size of one occurrence of a structure must not exceed 32,767 bytes.  In the
preceding example, the size of each structure occurrence is 52 bytes.  The size of the
entire structure, including all 50 occurrences, is 2,600 bytes.

Using Indirection You should use indirection for most global and local structures, because storage areas
for direct global and local variables are limited.  You access indirect structures by
identifier as you do direct structures.

Do not use indirection for sublocal structures, because sublocal storage has no
secondary area.
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To declare a standard indirect structure, precede the structure identifier with the
standard indirection symbol (.), as shown in the preceding example.

For very large structures, you should use extended indirection.  When you declare one
or more extended indirect structures (or arrays), the compiler allocates the automatic
extended data segment.  If you also must allocate an explicit extended data segment,
follow the instructions given in Appendix B, “Managing Addressing.”

To declare an extended indirect structure, precede the structure identifier with the
extended indirection symbol (.EXT):

STRUCT record (*);               !Declare template structure
  BEGIN
  STRING name[0:19];
  STRING addr[0:29];
  INT acct;
  END;

STRUCT .EXT customer (record) [0:49];
                                 !Declare extended indirect
                                 ! referral structure

Allocating Referral
Structures

The compiler allocates storage for each referral structure based on the following
characteristics:

The addressing mode and number of occurrences specified in the new declaration
The layout of the previous declaration

In all other ways, allocation of referral structures is the same as for definition
structures, as described earlier in this section.

Addressability of
Structures

The zeroth occurrence of a structure must always be addressable, as described for
definition structures.

Declaring Simple
Variables and Arrays

in Structures

You declare simple variables and arrays inside and outside a structure in the same
way, except that inside a structure:

You cannot initialize simple variables or arrays.
You cannot declare indirect arrays or read-only arrays.
You can specify bounds of [n:n-1]; the array is addressable but uses no memory.

For example, you can declare simple variables and arrays in a structure like this:

STRUCT .record;               !Declare definition structure
  BEGIN
  STRING name[0:19];          !Declare array
  STRING addr[0:29];          !Declare array
  INT acct;                   !Declare simple variable
  END;

A structure that contains arrays is also known as an array of arrays.
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Declaring Arrays
That Use No Memory

If you declare within a structure an array that has bounds of [n:n-1], the compiler
places the identifier of the array in the symbol table but allocates no storage for the
array.  You can then apply the array’s data type to subsequent items in the same
structure.

For example, suppose you declare within a structure an INT(32) array that has bounds
of [0:-1], followed by a FIXED variable.  If you then assign 0 to the first element of the
INT(32) array, you set the two high-order words of the FIXED variable to 0:

385

0

0
ARRAY

VAR

STRUCT x; 
  BEGIN  
  INT(32) array[0:-1]; 
  FIXED(0) var;  
  END;

x.array[0] := 0D;

Allocating Simple Variables
and Arrays in Structures

The data type of simple variables and arrays declared within a structure determines
the storage unit that the compiler allocates for the variable or array:

Data Type Storage Unit

STRING Byte

INT Word

INT(32) or REAL Doubleword

REAL(64) or FIXED Quadrupleword

UNSIGNED Bit sequence of specified width

Alignment of Simple
Variables and Arrays

The compiler aligns and pads simple variables and arrays in structures as follows:

STRING items are byte aligned.
All other items are word aligned.
If a word-aligned item follows a STRING item that ends on an odd byte, the
compiler allocates a pad byte after the STRING item.
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This example shows how the compiler allocates STRING simple variables (VAR1 and
VAR2) and STRING arrays (A, B, and C) on byte boundaries.  The compiler allocates a
pad byte following array C because VAR4 must be word aligned.

STRUCT .padding;
  BEGIN 
  STRING var1;
  STRING var2; 
  INT var3;   
  STRING a[0:2]; 
  STRING b[0:1]; 
  STRING c[0:3];  
  INT var4; 
  END;  

386

VAR1

VAR3

A[0]

A[2] B[0]

B[1]

C[1] C[2]

C[3]

VAR4

VAR2

C[0]

/ / /

A[1]

Allocating UNSIGNED Structure Items

The compiler packs the bits of UNSIGNED simple variables and arrays declared inside
a structure in the same way as those declared outside a structure.

For example, the compiler allocates two bits for Y on a word boundary within
structure Z and then then allocates four bits for X in the same word unit.  The compiler
also allocates ten pad bits following X because V must be word aligned.

STRUCT .EXT z; 
  BEGIN      
  UNSIGNED(2) y; 
  UNSIGNED(4) x;  
  INT v;   
  END;        387

X

V

Y / / / 
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Declaring
Substructures

A substructure is a structure embedded within another structure or substructure.  In
general, substructures have the following characteristics:

They must be directly addressed.
They have byte addresses, not word addresses.
They can be nested to a maximum of 64 levels.
They can have bounds of [n: n-1].  Such substructures are addressable but use no
memory.

You can declare definition or referral substructures.

Declaring Definition
Substructures

A definition substructure declares a layout and allocates storage for it.  To declare a
definition substructure, specify:

The keyword STRUCT
The substructure identifier (with no indirection symbol)
Optional substructure bounds—the default bounds are [0:0] (one occurrence)
A semicolon
The substructure layout (the same BEGIN-END construct as for structures)

The substructure layout can contain declarations for simple variables, arrays,
substructures, filler bits, filler bytes, redefinitions, simple pointers, and structure
pointers.  The size of one substructure occurrence is the size of the layout, either in odd
or even bytes.  The total layout for one occurrence of the encompassing structure must
not exceed 32,767 bytes.

For example, within definition structure D, you can declare definition substructure
DB.  The length of DB is two bytes;  the length of D is six bytes:

STRUCT .EXT d; !Declare structure D
  BEGIN          
  STRING da;  
  STRUCT db;   !Declare substructure DB
    BEGIN   
    STRING db1;
    STRING db2;
    END;       !End DB
  !Implicit byte filler
  INT dc;
  END;         !End D

388

DA

DC

DB2

DB1

/ / /
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Declaring Multidimensional Arrays

You can nest substructures in a structure to simulate a multidimensional array.

The following structure simulates a two-dimensional array.  The structure represents
two warehouses.  The two substructures represent 50 items and ten employees in each
warehouse.  The substructures are both nested at the second level but contain different
kinds of records:

LITERAL last = 49;               !Declare number of last item

STRUCT .warehouse[0:1];          !Declare structure WAREHOUSE
  BEGIN
  STRUCT inventory[0:last];      !Declare substructure
    BEGIN                        ! INVENTORY
    INT item_number;
    INT price;
    INT on_hand;
    END;                         !End INVENTORY
  STRUCT employee[0:9];          !Declare substructure
    BEGIN                        ! EMPLOYEE
    STRING name[0:31];
    STRING telephone[0:6];
    END;                         !End EMPLOYEE
  END;                           !End WAREHOUSE

The following structure simulates a five-dimensional array.  The structure represents a
corporation that contains three branches.  Each branch contains four divisions.  Each
division contains up to six departments.  Each department contains up to six groups.
Each group contains up to 20 employees.

STRUCT .corp;                    !Declare structure CORP
  BEGIN
  STRUCT branch[0:2];            !Declare substructure BRANCH
    BEGIN
    STRUCT div[0:3];             !Declare substructure DIV
      BEGIN
      STRUCT dept[0:5];          !Declare substructure DEPT
        BEGIN
        STRUCT group[0:5];       !Declare substructure GROUP
          BEGIN
          STRUCT employee[0:19]; !Declare substructure
            BEGIN                ! EMPLOYEE
            STRING name[0:31];
            STRING telephone[0:6];
            END;                 !End EMPLOYEE
          END;                   !End GROUP
        END;                     !End DEPT
      END;                       !End DIV
    END;                         !End BRANCH
  END;                           !End CORP
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Allocating Definition Substructures

The compiler allocates storage for each substructure when it allocates storage for the
encompassing structure.  The compiler aligns a definition substructure on a byte or
word boundary.

Byte Alignment.  A definition substructure is byte aligned if the first item it contains
begins on a byte boundary.

In the following example, definition substructure SUB follows a STRING item (X);  the
first item in SUB is also a STRING item (AA).  Thus, each occurrence of SUB begins on
a byte boundary.  After the last occurrence of SUB, the compiler allocates a pad byte,
because the next variable, Y, is an INT variable and must begin on a word boundary:

STRUCT struct_one;  
  BEGIN        
  STRING x;        
  STRUCT sub[0:2];   !Byte-aligned SUB 
    BEGIN      
    STRING aa;     
    INT b;      
    STRING c;   
    END;             !End SUB   
  INT y;                  
  END;         
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X

B

C

B

C

B

C

Y

AA

AA

/ / /

AA

Word Alignment.  A definition substructure is word aligned if the first item it contains is
word aligned, including arrays that have bounds of [n:n-1].  If a word-aligned
substructure has more than one occurrence and contains an odd number of bytes, the
compiler allocates a pad byte after each occurrence.

In the following example, definition substructure SUB starts with INT item A_A.  The
compiler starts each occurrence of SUB on a word boundary, allocating a pad byte in
each unused byte:

STRUCT struct_two;   
  BEGIN           
  STRING x;              
  STRUCT sub [0:1]; !Word-aligned SUB
    BEGIN           
    INT a_a;       
    INT b;         
    STRING c;      
    END;            !End SUB 
  END;        
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Declaring Referral
Substructures

A referral substructure uses the layout of a previously declared structure.  To declare a
referral substructure, specify:

The keyword STRUCT

The substructure identifier (with no indirection symbol)

A referral that provides a layout—enclose in parentheses the identifier of an
existing structure (except the encompassing structure) or structure pointer

Optional substructure bounds—the default bounds are [0:0] (one occurrence)

In the following example, referral substructure REF_SUB uses the body of structure
STRUCT_TWO from the preceding example:

STRUCT .EXT struct_three;
  BEGIN
  INT a;
  STRUCT ref_sub (struct_two) [0:2];    !Declare REF_SUB
  END;

Allocating Referral Substructures

The compiler allocates storage for a referral substructure when it allocates storage for
the encompassing structure.  The compiler allocates the storage based on:

The addressing mode and number of occurrences specified in the new declaration
The layout of the previous declaration

A referral substructure always begins on a word boundary.  If the substructure
contains an odd number of bytes, the compiler appends a pad byte to each occurrence
of the substructure.

The following example shows how the compiler aligns referral substructure ABC on a
word boundary, allocating a pad byte in each unused byte:

STRUCT template (*);   
  BEGIN              
  STRING a[0:2];    
  INT    b;        
  STRING c;        
  END;             

STRUCT .indirect_structure;  
  BEGIN               
  INT    header[0:1];  
  STRING abyte;               
  STRUCT abc (template) [0:1];   
         !Referral substructure 
  END;     
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ABYTE / / /

HEADER[0]
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Declaring Fillers You can declare filler bytes or bits to allocate place holder space within a structure.
You cannot access filler locations.

You can use filler items to allocate space within a structure when the structure layout
must match a structure layout defined by another program.  The new structure
declaration need only include data items used by your program.  You can use filler
items for the unused data.

You can use filler declarations to produce clearer source code.  For example, you can:

Document pad bytes or bits that would otherwise be inserted by the compiler
Provide place holders for unused space in the structure

The compiler allocates space for each byte or bit you specify in a filler declaration.  If
the alignment of the next data item requires additional pad bytes or bits, the compiler
allocates those also.

Declaring Filler Bytes You declare filler bytes within a structure by specifying the number of filler bytes as a
constant expression in the range 0 through 32,767 as follows:

FILLER 5;

You can use filler byte declarations to document unused bytes in a structure:

LITERAL last = 11;          !Last occurrence

STRUCT .x[1:last];
  BEGIN
  STRING byte[0:2];
  FILLER 1;                 !Document word-alignment pad byte
  INT word1;
  INT word2;
  INT(32) integer32;
  FILLER 30;                !Place holder for unused space
  END;

Declaring Filler Bits You declare filler bits within a structure by specifying the number of filler bits as a
constant expression in the range 0 through 255 as follows:

BIT_FILLER 5;

You can use filler bit declarations to document unused bits in a structure:

STRUCT .flags;
  BEGIN
  UNSIGNED(1) flag1;
  UNSIGNED(1) flag2;
  UNSIGNED(2) state;        !State = 0, 1, 2, or 3
  BIT_FILLER 12;
  END;
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Declaring Simple
Pointers in Structures

You can declare simple pointers within a structure.  A simple pointer is a variable in
which you store the memory address, usually of a simple variable or array, which you
can access with this pointer.  The compiler allocates space for the pointer but not for
the data to which the pointer points.

Simple pointers can be standard or extended:

Standard (16-bit) pointers can access addresses in the current user data segment.

Extended (32-bit) pointers can access addresses in any segment, normally the
automatic extended data segment.

To declare a simple pointer inside a structure, specify:

Any data type except UNSIGNED
The simple pointer identifier, preceded by an indirection symbol (. or .EXT)

For example, you can declare STD_POINTER and EXT_POINTER inside
MY_STRUCT:

STRUCT my_struct;
  BEGIN
  FIXED .std_pointer;         !Standard simple pointer
  STRING .EXT ext_pointer;    !Extended simple pointer
  END;

The data type determines how much data a simple pointer can access at a time, as
listed in Table 8-3.

Table 8-3.  Data Accessed by Simple Pointers

Data Type Accessed Data

STRING Byte

INT Word

INT(32) Doubleword

REAL Doubleword

REAL(64) Quadrupleword

FIXED Quadrupleword
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Addresses Simple
Pointers Can Contain

The addressing mode and data type of a simple pointer determines the kind of address
the pointer can contain, as described in Table 8-4.

Table 8-4.  Addresses in Simple Pointers

Addressing Mode Data Type Kind of Addresses

Standard STRING 16-bit byte address in the lower 32K-word area of the user data
segment.

Standard Any except
STRING

16-bit word address anywhere in the user data segment.

Extended STRING 32-bit byte address, normally in the automatic extended data
segment.

Extended Any except
STRING

32-bit even-byte address, normally in the automatic extended
data segment.  (If you specify an odd-byte address, the results
are undefined.)

Allocating Simple
Pointers in Structures

The compiler allocates storage for simple pointers declared within structures when it
allocates the encompassing structure.  It allocates one word for each standard pointer
and one doubleword for each extended pointer.  The storage area depends on the
scope and addressing mode of the encompassing structure.

The compiler does not allocate space for the data to which the pointer points.  You can
store addresses of previously declared items in pointers as described in “Assigning
Addresses to Pointers in Structures” later in this section.  Otherwise, you must manage
the allocation of the data to which the pointer points, as described in Appendix B,
“Managing Addressing.”
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Declaring Structure
Pointers in Structures

You can declare structure pointers within a structure or substructure.  A structure
pointer is a variable in which you store the memory address of a structure, which you
can access with this structure pointer.  The compiler allocates space for the pointer but
not for the data to which the pointer points.

Structure pointers can be standard or extended:

Standard (16-bit) pointers can access addresses in the current user data segment.

Extended (32-bit) pointers can access addresses in any segment, normally the
automatic extended data segment.

To declare a structure pointer, specify:

STRING or INT attribute as described in Table 8-5

The structure pointer identifier, preceded by an indirection symbol (. or .EXT)

A referral that provides the structure layout—enclose in parentheses the identifier
of an existing structure or structure pointer or of the encompassing structure

The following example declares STRUCT_A and STRUCT_B.   STRUCT_B contains a
declaration for STRUCT_PTR, whose layout is the same as the layout of  STRUCT_A:

STRUCT struct_a;                  !Declare STRUCT_A
  BEGIN
  INT a;
  INT b;
  END;

STRUCT struct_b;                  !Declare STRUCT_B
  BEGIN
  INT .EXT struct_ptr (struct_a); !Declare STRUCT_PTR
  STRING a;
  END;
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Addresses Structure
Pointers Can Contain

The addressing mode and STRING or INT attribute of a structure pointer determine
the kind of addresses the pointer can contain, as described in Table 8-5.

Table 8-5.  Addresses in Structure Pointers

Addressing
Mode

STRING or
INT Attribute Kind of Addresses

Standard STRING * 16-bit byte address of a substructure, STRING simple variable, or
STRING array declared in a structure located in the lower 32K-word
area of the user data segment

Standard INT ** 16-bit word address of any structure data item located anywhere in
the user data segment

Extended STRING * 32-bit byte address of any structure data item located in any
segment, normally the automatic extended data segment

Extended INT ** 32-bit byte address of any structure data item located in any
segment, normally the automatic extended data segment

* If the pointer is the source in a move statement or group comparison expression that omits a
count-unit, the count-unit is BYTES.

** If the pointer is the source in a move statement or group comparison expression that omits a
count-unit, the count-unit is WORDS.

Allocating Structure
Pointers in Structures

The compiler allocates storage for structure pointers declared within structures when
it allocates the encompassing structure.  It allocates one word for each standard
pointer and one doubleword for each extended pointer.  The storage area depends on
the scope and addressing mode of the encompassing structure.

The compiler does not allocate space for the data to which the pointer points.  You can
store addresses of previously declared items in pointers as described in “Assigning
Addresses to Pointers in Structures” later in this section.  Otherwise, you must manage
the allocation of the data to which the pointer points, as described in Appendix B,
“Managing Addressing.”
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Declaring
Redefinitions

A redefinition declares a new identifier and sometimes a new description for a
previously declared item in the same structure.  The new item or the previous item can
be a simple variable, array, pointer, or substructure.

The new item must be at the same BEGIN-END level in a structure as the previous
item.  The new item must also be of the same length or shorter than the previous item.

The subsections that follow describe how you declare and access redefinitions.  Some
examples include diagrams that show how a redefinition relates to the previous item.
In each diagram:

The shaded box represents the previous item (the allocated item).
The unshaded box represents the new item (the redefinition).

Unless otherwise noted, the diagrams refer to memory locations in the primary area of
the user data segment.  Here is an example diagram:

393

A[2]

A[4]

B[1]

B[3]

A[3]

B[0]

B[2]

/ / /

C[1]

D

A[0] A[1] C[0]STRUCT array_redefinition; 
  BEGIN             
  STRING a[0:4];    
  STRING b[0:3];   
  INT c[0:1] = a; 
  STRING d = b;  
  END;         

Simple Variables or
Arrays as Redefinitions

To declare a new simple variable or array that redefines a previous item within the
same structure, specify:

Any data type (except UNSIGNED)

The identifier of the new simple variable or array

For an array, its bounds—if you omit the bounds, the default bounds are [0:0] (one
element)

An equal sign (=)

The identifier of a previous item at the same BEGIN-END level of a structure—the
previous item can be a simple variable, array, pointer, or substructure

For example, you can declare NEW_VAR to redefine OLD_VAR as follows:

STRUCT simple_variable_redefinition;
  BEGIN
  INT old_var;
  STRING new_var = old_var;                !Redefinition
  END;
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You can declare DW_ADDR to redefine DW_MEM as follows:

STRUCT dw_template (*);
  BEGIN
  INT(32) .dw_mem;
  INT dw_addr = dw_mem;                    !Redefinition
  END;

Even if the lower bound of the new array is not zero, the new specified lower bound is
always associated with the zeroth element of the previous array.  In the following
example, new INT(32) array B[1:2] redefines previous INT array A[0:3]:

392

A[-2]

.

.

.

A[-1]

A[0]

A[1]

A[2]

A[3]

B[1]

B[2]

STRUCT .array_redefinition; 
  BEGIN                   
  INT a[-2:3];         
  INT(32) b[1:2] = a; 
  END;               

Data Type Restrictions

The new item can be any data type except UNSIGNED.

You can redefine the data type of a STRING array only if the array is aligned on a
word boundary.  For example, you can redefine the data type of STRING array A,
because A is aligned on a word boundary.  You cannot redefine the data type of
STRING array B because B is aligned on a byte boundary, but you can declare another
STRING item (such as D) to redefine B:
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A[2]

A[4]

B[1]

B[3]

A[3]

B[0]

B[2]

/ / /

C[1]

D

A[0] A[1] C[0]STRUCT array_redefinition; 
  BEGIN             
  STRING a[0:4];    
  STRING b[0:3];   
  INT c[0:1] = a; 
  STRING d = b;  
  END;         

Byte and Word Addressing

In a redefinition, the new variable and the previous (nonpointer) variable both must
have a byte address or both must have a word address.  If the previous variable is a
pointer, the data it points to must be word or byte addressed to match the new
variable.
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Definition Substructures
as Redefinitions

To declare a definition substructure that redefines a previously declared item within
the same structure, specify:

The keyword STRUCT

The identifier of the new substructure

Optional bounds—if you omit the bounds, the default bounds are [0:0] (one
occurrence)

An equal sign (=)

The identifier of a previous item at the same BEGIN-END level of the encompassing
structure—the previous item can be a simple variable, array, pointer, or
substructure

A semicolon

The substructure layout (the same BEGIN-END construct as for structures)

If the previous item is a substructure and you omit the bounds or if either bound is 0,
the new substructure and the previous substructure occupy the same space and have
the same offset from the beginning of the structure.

For example, you can declare new substructure INITIALS to redefine substructure
WHOLE_NAME as follows:

STRUCT .name_record;
  BEGIN
  STRUCT whole_name;   !Declare WHOLE_NAME
    BEGIN
    STRING first_name[0:10];
    STRING middle_name[0:10];
    STRING last_name[0:15];
    END;
  STRUCT initials = whole_name;
    BEGIN              !Redefine WHOLE_NAME as INITIALS
    STRING first_initial;
    FILLER 10;
    STRING middle_initial;
    FILLER 10;
    STRING last_initial;
    FILLER 15;
    END;
  END;
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You can declare new substructure SS to redefine array A and then declare simple
variable V to redefine substructure SS as follows:

STRUCT .st;
  BEGIN
  INT a[0:1];           !Declare array A
  STRUCT ss = a;        !Redefine A as substructure SS
    BEGIN
    INT x;
    INT y;
    END;
  INT(32) v = ss;       !Redefine SS as V
  END;

Size of Substructure Redefinitions

The new substructure must be of the same size or smaller than the previous item:
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NUM STR / / /

SUB1 SUB2

STRUCT str;
  BEGIN
  STRUCT sub1;         !Declare SUB1
    BEGIN
    INT num;
    END;
  STRUCT sub2 = sub1;  !Redefine SUB1 as SUB2
    BEGIN              
    STRING str;
    END;   
  END;    

If the new substructure is larger than the previous item, the compiler issues a warning:

STRUCT str2;
  BEGIN
  STRUCT sub1;         !Declare SUB1
    BEGIN
    STRING str1;
    END;
  STRUCT sub2 = sub1;  !Redefine SUB1 as SUB2, which is
    BEGIN              ! larger; compiler issues warning
    INT int1;
    END;      
  END;     STR1 / / / INT1
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Alignment of Substructure Redefinitions

The new substructure must have the same byte or word alignment as the previous
substructure.  That is, if the previous substructure starts on an odd byte, the first item
in the new substructure must be a STRING item.

The following substructures (B and C) both begin on an odd-byte boundary:

STRUCT a;
  BEGIN
  STRING x;
  STRUCT b;        !B starts on odd byte
    BEGIN
    STRING y;
    END;
  STRUCT c = b;    !Redefine B as C, also on odd byte
    BEGIN
    STRING z;  
    END; 
  END; X Y
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 / / / Z
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Referral Substructures
as Redefinitions

To declare a referral substructure that redefines a previously declared item within the
same structure, specify:

The keyword STRUCT

The identifier of the new substructure

A referral that provides a layout—enclose in parentheses the identifier of an
existing structure (except the encompassing structure) or structure pointer

Optional bounds—if you omit the bounds, the default bounds are [0:0] (one
occurrence)

An equal sign (=)

The identifier of a previous item at the same BEGIN-END level of the structure—the
previous item can be a simple variable, array, pointer, or substructure

A semicolon

If the previous item is a substructure and you omit the bounds or if either bound is 0,
the new substructure and the previous substructure occupy the same space and have
the same offset from the beginning of the structure.
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For example, you can declare a referral substructure redefinition that uses a template
structure layout:

STRUCT temp(*);              !Declare template structure
  BEGIN
  STRING a[0:2];
  INT    b;
  STRING c;
  END;

STRUCT .ind_struct;          !Declare definition structure
  BEGIN
  INT    header[0:1];
  STRING abyte;
  STRUCT abc(temp) [0:1];    !Declare ABC
  STRUCT xyz(temp) [0:1] = abc;
                             !Redefine ABC as XYZ
  END;

Simple Pointers
as Redefinitions

To declare a simple pointer that redefines a previously declared item within the same
structure, specify:

Any data type except UNSIGNED
The identifier of the new pointer, preceded by an indirection symbol (. or .EXT)
An equal sign (=)
The identifier of a previous item at the same BEGIN-END level of the structure—a
simple variable, array, pointer, or substructure

For example, you can declare new simple pointer EXT_POINTER to redefine simple
variable VAR as follows:

STRUCT my_struct;
  BEGIN
  STRING var[0:5];
  STRING .EXT ext_pointer = var;             !Redefinition
  END;

Structure Pointers
as Redefinitions

To declare a structure pointer that redefines a previously declared item within the
same structure, specify:

STRING or INT attribute, as described in Table 8-5 earlier in this section

The identifier of the new pointer, preceded by an indirection symbol (. or .EXT)

A referral that provides the structure layout—enclose in parentheses the identifier
of an existing structure or structure pointer or of the encompassing structure

An equal sign (=)

The identifier of a previous item at the same BEGIN-END level of the structure—a
simple variable, array, pointer, or substructure
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For example, you can declare new standard and extended structure pointers to
redefine simple variables as follows:

STRUCT record;
  BEGIN
  FIXED(0) data;
  INT std_link_addr;
  INT .std_link(record) = std_link_addr;     !Redefinition
  INT ext_link_addr;
  INT .EXT ext_link(record) = ext_link_addr; !Redefinition
  END;

Accessing
Structure Items

You access an item in a definition or referral structure by using the item’s fully
qualified identifier in a statement.  Structure items you can access are simple variables,
arrays, substructures, pointers, and redefinitions.  For example, you can:

Assign a value to a structure item by using an assignment statement
Copy substructure values within a structure by using a move statement

Qualifying Identifiers To access a structure item, you must specify its fully qualified identifier and indexes if
any.  A fully qualified identifier includes all levels of nesting.  For example, the fully
qualified identifier for ARRAY_Z declared in SUBSTRUCT_Y in STRUCT_X is:

struct_x.substruct_y[0].array_z[0]

The following example shows how nesting affects qualified identifiers.  The two
structures both contain three substructures.  In both cases, SUB_3 contains ITEM_X:

STRUCT .struct_a;             STRUCT .struct_b;
  BEGIN                         BEGIN
  STRUCT sub_1;                 STRUCT sub_1;
    BEGIN                         BEGIN
    INT a;                        STRUCT sub_2;
    END; !End SUB_1                 BEGIN
  STRUCT sub_2;                     STRUCT sub_3;
    BEGIN                             BEGIN
    INT b;                            INT a;
    END; !End SUB_2                   INT b;
  STRUCT sub_3;                       INT item_x;
    BEGIN                             END; !End SUB_3
    INT item_x;                     END; !End SUB_2
    END;  !End SUB_3              END; !End SUB_1
  END; !End STRUCT_A            END; !End STRUCT_A

For STRUCT_A, the fully qualified identifier for ITEM_X is:

struct_a.sub_3.item_x

For STRUCT_B, the fully qualified identifier for ITEM_X is:

struct_b.sub_1.sub_2.sub_3.item_x

You can use a DEFINE declaration to associate alternate names for structure items, as
described in Section 5, “LITERALs and DEFINEs,” in the TAL Reference Manual.
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Indexing Structures You can access a particular structure item by appending indexes (enclosed in brackets)
to the various levels in the qualified identifier of the structure item.  For example, you
can access an array element in a particular structure and substructure occurrence by
appending indexes as follows:

my_struct[1].my_substruct[0].my_array[4]

Each index represents an offset from the zeroth occurrence of a structure or
substructure and the zeroth element of the array, respectively, regardless of the
declared lower bounds.

The indexed item determines the size of the index offset, as listed in Table 8-6:

Table 8-6.  Indexing Structures

Indexed Item Data Type Size of Index Offset

Structure or structure pointer Not applicable Total bytes in one structure occurrence

Substructure Not applicable Total bytes in one substructure
occurrence

Simple variable or array STRING Byte

Simple variable or array INT Word

Simple variable or array INT(32) or REAL Doubleword

Simple variable or array REAL(64) or FIXED Quadrupleword

Indexing Standard Indirect Structures

The index for standard indirect structures must be a signed INT arithmetic expression
in the range –32,768 through 32,767.  The offset of a structure item is from the zeroth
structure occurrence (not the current structure occurrence).  Here are examples of
signed INT arithmetic expressions:

25
index
index + 2
index – 1
9 * index
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The following example shows how you can index a standard indirect structure:

STRUCT .std_struct[0:99]; !Standard indirect structure
  BEGIN
  INT var;                !Simple variable
  STRING array[0:25];     !Array
  STRUCT substr[0:9];     !Substructure
    BEGIN
    STRING array[0:25];   !Array
    END;
  END;

INT index := 5;           !Simple variable

PROC x MAIN;              !Declare procedure X
  BEGIN
  std_struct[index].var := 35;
                          !Access STD_STRUCT[5].VAR

  std_struct[index+2].array[0] := "A";
                          !Access STD_STRUCT[7].ARRAY[0]

  std_struct[index+2].array[25] := "Z";
                          !Access STD_STRUCT[7].ARRAY[25]

  std_struct[9*index].substr[index-1].array[index-5] := "a";
                          !Access
                          ! STD_STRUCT[45].SUBSTR[4].ARRAY[0]
  END;                    !End procedure X
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Indexing Extended Indirect Structures

The index for extended indirect structures must be a signed INT or INT(32) arithmetic
expression, depending on the size of the offset of the structure item you want to
access.  The offset of a structure item is from the zeroth structure occurrence (not the
current structure occurrence).

C-Series System.  If you are writing a program to run on a C-series system, you can
determine whether to use an INT index or an INT(32) index (which is slower) as
follows:

1. Compute the lower and upper byte or word offsets of the structure item whose
extended indirect structure is being indexed.  (A byte-addressed structure item is
at a byte offset.  A word-addressed structure item is at a word offset.)

2. If the offsets are inside the signed INT range (–32,768 through 32,767), use a signed
INT index.  Usually, offsets are within the signed INT range.

3. If the offsets are outside the signed INT range, use an INT(32) index.  To convert
an INT index to an INT(32) index, use $DBL, a standard function.

Whenever you increase the structure size or number of occurrences, you must repeat
the preceding sequence.

To access a structure item whose offset is inside the signed INT range, you can use an
INT index as follows:

STRUCT .EXT xstruct[0:9];      !Declare extended indirect
  BEGIN                        ! structure; upper byte offset
  STRING array[0:9];           ! is within INT range
  END;

INT index;                     !Declare INT index
STRING var;

PROC my_proc MAIN;
  BEGIN
  !Code to initialize INDEX
  var := xstruct[index].array[0];
  END;                         !Generate correct offset

In the preceding example, if the default NOINHIBITXX directive is in effect, the
compiler generates efficient addressing (by using XX instructions described in the
System Description Manual for your system).

Conversely, INHIBITXX suppresses efficient addressing of extended indirect
declarations located between G[0] and G[63] of the user data segment—except when
the extended indirect declarations are declared in a BLOCK declaration with the
AT (0) or BELOW (64) option.  (The BLOCK declaration is described in Section 14,
“Compiling Programs.”)
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To access a structure item whose offset is outside the signed INT range (–32678
through 32,767), you must use an INT(32) index.  To convert an INT index to an
INT(32) index, you can use the $DBL standard function:

STRUCT .EXT xstruct[0:9999];
  BEGIN
  STRING array[0:9];           !Upper byte offset > 32,767;
  END;                         ! INT(32) index required

INT index;

PROC my_proc MAIN;
  BEGIN
  !Some code here to initialize INDEX

  xstruct[$DBL(index)].array[0] := 1;
                               !Generate correct offset
  END;                         ! because INDEX is an INT(32)
                               ! expression

In the preceding example, the upper-byte offset of ARRAY is larger than 32,767,
computed as follows:

9999 * 10 + 9 = 99999

Upper bound of array

Size of structure in bytes

Upper bound of structure

Size of offset to ARRAY[9]

334
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D-Series System.  If you are writing a program to run on a D-series system and need to
index into extended indirect structures, you can either:

Determine when to use a signed INT or INT(32) index as described for C-series
programs in the preceding subsection.

Use the INT32INDEX directive, which is easier and safer, albeit slightly less
efficient.

INT32INDEX generates INT(32) indexes from INT indexes and computes the correct
offset for the indexed structure item.  INT32INDEX overrides the INHIBITXX or
NOINHIBITXX directive, whichever is in effect.

NOINT32INDEX, the default, generates incorrect offsets for structure items whose
offsets are outside the signed INT range.  NOINT32INDEX does not override
INHIBITXX or NOINHIBITXX.

Specify INT32INDEX or NOINT32INDEX immediately before the declarations to
which it applies.  The specified directive then applies to those declarations throughout
the compilation.  The following D-series example shows how INT32INDEX generates
correct offsets and NOINT32INDEX generates incorrect offsets:

?INT32INDEX                !Assign INT32INDEX attribute
                           ! to subsequent declaration

STRUCT .EXT xstruct[0:9999];
  BEGIN                    !XSTRUCT has INT32INDEX
  STRING array[0:9];       ! attribute
  END;

INT index;

PROC my_proc MAIN;
  BEGIN
?NOINT32INDEX              !Assign NOINT32INDEX attribute to
                           ! subsequent declaration

  STRUCT .EXT xstruct2 (xstruct) := @xstruct[0];
                           !XSTRUCT2 has NOINT32INDEX
                           ! attribute

  xstruct[index].array[0]:= 1;
                           !Generate correct offset even
                           ! when offset is greater than
                           ! 32,767, because XSTRUCT
                           ! has INT32INDEX attribute

  xstruct2[index].array[0] := 1;
                           !Generate incorrect offset if
                           ! offset is greater than 32,767,
                           ! because XSTRUCT2 has
  END;                     ! NOINT32INDEX attribute
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Standard Addressing Contrasted With Extended Indexing

The allowed offset of a standard indirect structure item is greater than that of an
extended indirect structure item.  The following example declares a standard indirect
structure item accessed by an index that is greater than that allowed for an extended
indirect structure item:

LITERAL ub = 32759;

STRUCT .t[0:ub];           !Standard indirect structure
  BEGIN
  STRING x, y;
  END;

PROC m MAIN;
  BEGIN
  INT index;
  FOR index := 0 TO ub DO
    t[index].x := t[index].y := 0;
  END;

If you change the preceding standard indirect structure to an extended indirect
structure, you must also change the index that is applied to the structure item to an
INT(32) index:

LITERAL ub = 32759;

STRUCT .EXT t[0:ub];       !Extended indirect structure
  BEGIN
  STRING x, y;
  END;

PROC m MAIN;
  BEGIN
  INT index;
  FOR index := 0 TO ub DO
    BEGIN
    t[index].x := t[index].y := 0;
                           !Compiler generates incorrect code

    t[$DBL(index)].x := t[$DBL(index)].y := 0;
                           !Compiler generates correct code
    END;
  END;
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Assigning Values to
Structure Items

You assign a value to a structure item by using its fully qualified identifier in an
assignment statement.  For example, the assignment statement for assigning an
expression to simple variable VAR declared in SUBSTRUCT_A in STRUCT_B is:

struct_b.substruct_a.var := any_expression;

Here are examples.  You can assign a value to VAR3 in DEF_STRUCT:

STRUCT .def_struct;             !Declare definition structure
  BEGIN
  FIXED  var1;
  STRING var2;
  INT    var3;
  END;

PROC a MAIN;
  BEGIN
  def_struct.var3 := 45;        !Assign 45 to DEF_STRUCT.VAR3
  END;

You can assign a value to BEAN[2] in REF_STRUCT:

STRUCT template_struct (*);     !Declare template structure
  BEGIN
  REAL deal;
  STRING bean[0:2];
  END;

STRUCT .ref_struct (template_struct);
                                !Declare referral structure

PROC b MAIN;
  BEGIN
  ref_struct.bean[2] := 92;     !Assign 92 to
  END;                          ! REF_STRUCT.BEAN[2]

You can assign a value to ARRAY[5] in SUBST[3] in STRUCT:

STRUCT .struc;                  !Declare definition structure
  BEGIN
  INT foo;
  STRUCT subst[0:99];
    BEGIN
    REAL var;
    INT array[0:9];
    END;
  END;

PROC c MAIN;
  BEGIN
  struc.subst[3].array[5] := 8; !Assign 8 to
  END;                          ! STRUC.SUBST[3].ARRAY[5]
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Assigning Addresses to
Pointers in Structures

You can assign to pointers the kinds of addresses listed in Tables 8-4 and 8-5 earlier in
this section.  To assign an address to a pointer within a structure, specify the fully
qualified pointer identifier in an assignment statement.  Prefix the structure identifier
with @.  For example, the assignment statement to assign an address to PTR_X
declared in SUBSTRUCT_A in STRUCT_B is:

@struct_b.substruct_a.ptr_x := arith_expression;

In the preceding example, @ applies to PTR_X, the most qualified item.  On the left
side of the assignment operator, @ changes the address contained in the pointer, not
the value of the item to which the pointer points.

You can also prefix @ to a variable on the right side of the assignment operator.  If the
variable is a pointer, @ returns the address contained in the pointer.  If the variable is
not a pointer, @ returns the address of the variable itself.

The following example shows @ used on both sides of the assignment operator.  This
example assigns the address of ARRAY to STD_PTR within a structure.  Also, the
$XADR function converts the standard address of ARRAY to an extended address,
which is then assigned to an extended simple pointer:

INT .array[0:99];             !Declare ARRAY

STRUCT .st;                   !Declare ST
  BEGIN
  INT .std_ptr;               !Declare STD_PTR
  INT .EXT ext_ptr;           !Declare EXT_PTR
  END;

PROC e MAIN;
  BEGIN
  @st.std_ptr := @array[0];   !Assign standard address of
                              ! ARRAY[0] to ST.STD_PTR

  @st.ext_ptr := $XADR(array[0]);
                              !Assign extended address of
  END;                        ! ARRAY[0] to ST.EXT_PTR
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The following example assigns the address of a structure to structure pointers declared
in another structure:

STRUCT .s1;                      !Declare S1
  BEGIN
  INT var1;
  INT var2;
  END;

STRUCT .s2;                      !Declare S2
  BEGIN
  INT .std_ptr (s1);             !Declare STD_PTR
  INT .EXT ext_ptr (s1);         !Declare EXT_PTR
  END;

PROC g MAIN;
  BEGIN
  @s2.std_ptr := @s1[0];         !Assign standard address
                                 ! of S1 to S2.STD_PTR

  @s2.ext_ptr := $XADR(s1);      !Assign extended address
  END;                           ! of S1 to S2.EXT_PTR

Accessing Data Through
Pointers in Structures

After you declare a pointer inside a structure and assign an address to it, you can use
assignment statements to access the data to which the pointer points:

INT .array[0:99];                !Declare ARRAY
STRUCT .st;                      !Declare ST
  BEGIN
  INT .std_ptr;                  !Declare STD_PTR
  INT .EXT ext_ptr;              !Declare EXT_PTR
  END;

PROC h MAIN;
  BEGIN
  @st.std_ptr := @array[0];      !Assign word address of
                                 ! ARRAY[0] to St.STD_PTR

  @st.ext_ptr := $XADR(array[1]);!Assign extended address of
                                 ! ARRAY[1] to ST.EXT_PTR

  array[2] := st.std_ptr;        !Assign content of
                                 ! ARRAY[0] to ARRAY[2]

  st.ext_ptr := array[3];        !Assign content of ARRAY[3]
  END;                           ! to ARRAY[1]
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The last two statements in the following example access S3 to which the structure
pointers declared in S2 point:

INT .a[0:99];                    !Declare array A
STRUCT .s3;                      !Declare S3
  BEGIN
  INT b[0:99];                   !Declare array B
  END;
STRUCT .s2;                      !Declare S2
  BEGIN
  INT .std_ptr (s3);             !Declare STD_PTR
  INT .EXT ext_ptr (s3);         !Declare EXT_PTR
  END;

PROC i MAIN;
  BEGIN
  @s2.std_ptr := @s3;            !Assign standard address
                                 ! of S3 to S2.STD_PTR

  @s2.ext_ptr := $XADR(s3);      !Assign extended address
                                 ! of S3 to S2.EXT_PTR

  a[1] := s2.std_ptr.b[1];       !Assign content of
                                 ! S3.B[1] to A[1]

  s2.ext_ptr.b[2] := a[2];       !Assign content of A[2]
  END;                           ! to S3.B[2]
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The following example shows how you can access structure items by using structure
pointers declared in structures:

STRUCT template (*);        !Declare template structure
  BEGIN
  STRING b[0:2];
  INT    e;
  END;

STRUCT .link_list;          !Declare definition structure
  BEGIN
  INT .fwd_ptr (link_list); !Declare structure pointer and
                            ! redefine simple variable
  STRING .EXT ptr_to_ext_item(template);
                            !Declare structure pointer
  INT(32) .b;               !Declare simple pointer
  STRUCT item(template);    !Declare referral substructure
  END;

INT .new_item := %100000;   !Declare simple pointer to
                            ! first list item
PROC m MAIN;
  BEGIN
  @link_list.fwd_ptr := @new_item;
                            !Put address into first forward
                            ! pointer
  @new_item := @new_item '+' ($LEN(link_list) + 1 ) / 2;
  @link_list.fwd_ptr.fwd_ptr := @new_item;
                            !Put address into second forward
  END;                      ! pointer

In the preceding example:

@LINK_LIST.FWD_PTR refers to the content of the first forward standard simple
pointer.

@LINK_LIST.FWD_PTR.PTR_TO_EXT_ITEM refers to the content of the extended
simple pointer in the second LINK_LIST.

@LINK_LIST.FWD_PTR.PTR_TO_EXT_ITEM.B refers to the address of B in the
second instance of LINK_LIST in extended memory.
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Copying Data in Structures You can copy data to structures by using a move statement.  For example, you can
copy:

Structure occurrences between structures
Structure occurrences within a structure
Substructure occurrences between structures
Structure items

To start copying from the lower occurrence, use the left-to-right move operator (':=').
To start copying from the upper occurrence, use the right-to-left move operator ('=:').

Copying Structure Occurrences Between Structures

To copy structure occurrences from one structure to another, specify in a move
statement:

A destination structure and a source structure
The FOR clause including the ELEMENTS qualifier

For example, you can copy three occurrences of a source structure to a destination
structure as follows:

LITERAL copies = 3;              !Number of occurrences

STRUCT .s_struct[0:copies - 1];  !Source structure
  BEGIN
  INT a;
  INT b;
  INT c;
  END;

STRUCT .d_struct (s_struct) [0:copies - 1];
                                 !Destination structure

PROC j;
  BEGIN
  d_struct ':=' s_struct FOR copies ELEMENTS;
                                 !Move statement copies three
  END;                           ! structure occurrences

If you do not specify ELEMENTS, the equivalent move statement is:

  d_struct ':=' s_struct FOR copies
                     * (($LEN(s_struct) + 1) '>>' 1) WORDS;

which is the code that the compiler generates in this case.  The standard function $LEN
returns the length in bytes of one occurrence of S_STRUCT.
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Copying Structure Occurrences Within a Structure

To copy occurrences within a structure, specify in a move statement:

The same structure for destination and source
The FOR clause including the ELEMENTS qualifier

For example, you can copy the data in each occurrence of a structure one occurrence to
the right, beginning with occurrence [8], thus freeing occurrence [0] for new data.

LITERAL last = 9;       !Last occurrence

STRUCT t_struct(*);     !Template structure
  BEGIN
  INT i;
  INT j;
  END;

STRUCT .s_struct (t_struct) [0:last];
                        !Source and destination structure
PROC k;
  BEGIN
  s_struct[last] '=:' s_struct[last-1] FOR last ELEMENTS;
                        !Move nine structure occurrences
  END;

Copying Substructure Occurrences Between Structures

To copy occurrences of a substructure between structures, specify in a move statement:

The fully qualified identifiers of the destination and source substructures
The FOR clause including the ELEMENTS qualifier

You can copy three substructure occurrences from one structure to another as follows:

LITERAL copies = 3;     !Number of occurrences

STRUCT .s_struct;
  BEGIN
  STRUCT s_sub[0:copies - 1];
    BEGIN               !Source S_SUB is in S_STRUCT
    INT a;
    INT b;
    END;
  END;

STRUCT .d_struct (s_struct);
                        !Destination S_SUB is in D_STRUCT

PROC m;
  BEGIN
  d_struct.s_sub ':=' s_struct.s_sub FOR copies ELEMENTS;
                        !Byte move of three
  END;                  ! substructure occurrences
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Copying Structure Items

You can use a move statement to copy structure items within and between structures
and substructures.  Structure items you can copy are simple variables, arrays, and
pointers declared within structures or substructures.

For example, to copy an array from one structure to another structure, specify in a
move statement:

The fully qualified identifiers of the destination and source arrays
The FOR clause with or without the BYTES or WORDS qualifier

The FOR clause copies the specified number of bytes, words, doublewords, or
quadruplewords depending on the data type of the source array.  To copy bytes or
words regardless of source data type, include the BYTES or WORDS qualifier in the
FOR clause.

The following example shows how you can copy an array from one structure to
another, first in quadrupleword units, then in word units:

STRUCT .s_struct;
  BEGIN
  FIXED array[0:2];     !Source ARRAY is in S_STRUCT
  END;

STRUCT .d_struct (s_struct);
                        !Destination ARRAY is in D_STRUCT

PROC m;
  BEGIN
  d_struct.array ':=' s_struct.array FOR 3;
                        !Copy three quadruplewords as
                        ! dictated by FIXED data type

  d_struct.array ':=' s_struct.array FOR 6 WORDS;
                        !Copy six words as dictated by
  END;                  ! the WORDS qualifier
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Copying Structure Occurrences Using Structure Pointers

You can copy structure occurrences using structure pointers:

LITERAL copies := 3;

STRUCT a_struct;        !Definition structure
  BEGIN
  INT a;
  STRING b;
  END;

STRUCT b_struct (a_struct) [0:copies - 1];
                        !Referral structure

INT .EXT ptr0(a_struct) := $XADR (a_struct);
                        !Assign address of A_STRUCT to
                        ! extended INT pointer PTR0

STRING .EXT ptr1(a_struct) := $XADR (b_struct);
                        !Assign address of B_STRUCT to
                        ! extended STRING pointer PTR1
PROC n;
  BEGIN
  ptr1 ':=' ptr0 FOR copies ELEMENTS;
                        !Word move from A_STRUCT to B_STRUCT

  ptr0 ':=' ptr1 FOR copies ELEMENTS;
                        !Byte move from B_STRUCT to A_STRUCT
  END;
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Using Standard
Functions With

Structures

You can use the following standard functions with structures.  These functions return
information such as the length of a structure occurrence or the offset of a structure
item within a structure:

Standard Function Effect

$BITLENGTH Returns the length, in bits, of one occurrence of a structure or substructure

$BITOFFSET Returns an item’s offset, in bits, from the zeroth occurrence of the
encompassing structure

$LEN Returns the length, in bytes, of one occurrence of an item

$OFFSET Returns an item’s offset, in bytes, from the zeroth occurrence of the
encompassing structure

$OCCURS Returns the number of occurrences of a structure, substructure, or array, but
not of a template structure

$TYPE Returns the type of an item

The following example reads structured data from a disk file.  In the FOR statement,
$OCCURS returns 6 (the number of occurrences in JOB_DATA), and $LEN returns 24
(the length in bytes of one occurrence of JOB_DATA):

INT record_num;                      !Number of records

STRUCT emp_data(*);                  !Template structure
  BEGIN
  INT number;
  INT dept;
  STRING ssn[0:11];
  FIXED(2) salary;
  END;

PROC p MAIN;                         !Main procedure
  BEGIN
  INT diskfile, num_read;
  STRUCT .job_data (emp_data) [0:5]; !Referral structure
  !Some code
  FOR record_num := 0 TO $OCCURS (job_data) - 1 DO
                                     !FOR statement

    CALL READ(diskfile,              !CALL statement
              job_data[record_num],  !Buffer
              $LEN (job_data),       !Maximum bytes to read
              num_read);             !Count of bytes read
  !More code
  END;

In the preceding example, the FOR statement calls the READ system procedure once
for each occurrence of structure JOB_DATA.  For information on the READ procedure,
see the Guardian Procedure Calls Reference Manual.
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This section describes:

How to declare and initialize pointers
How to assign addresses to pointers
How to access data with pointers
How the compiler allocates storage for pointers

You can declare the following kinds of pointers:

Simple pointer—a variable into which you can store a memory address, usually of
a simple variable or array, which you can access with this simple pointer.

Structure pointer—a variable into which you can store the memory address of a
structure which you can access with this structure pointer.

Pointers can be standard or extended:

Standard (16-bit) pointers can access data only in the user data segment.

Extended (32-bit) pointers can access data in any segment, normally the automatic
extended data segment.

Other information on pointers appears in the TAL manuals as follows:

Information Manual Section/Appendix

Pointers declared inside structures TAL Programmer’s Guide
TAL Reference Manual

8, “Using Structures”
8, “Structures”

Pointer access to the upper 32K-word
area of the user data segment, to the
user code segment, or to an explicit
(user-allocated) extended data
segment

TAL Programmer’s Guide B, “Managing Addressing”

Implicit pointers (those generated by
the compiler when you declare indirect
arrays and structures)

TAL Programmer’s Guide 7, “Using Arrays”
8, “Using Structures”

Dereferencing (formerly known as
temporary pointers)

TAL Programmer’s Guide 5, “Using Expressions”
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Using Simple Pointers A simple pointer is a variable into which you must store a memory address, usually of
a simple variable or an array element.  When you refer to a simple pointer identifier in
expressions, you access the item whose address is stored in the simple pointer.

Before accessing data through a simple pointer, you must declare the pointer and store
a memory address in it.  You can store an address by initializing the pointer when you
declare it or by assigning an address to it later in an assignment statement.

Declaring Simple Pointers To declare a simple pointer, specify:

Any data type except UNSIGNED
An identifier, preceded by an indirection symbol (. or .EXT)

To declare a standard simple pointer, use the standard indirection symbol (.):

INT .my_ptr;

To declare an extended simple pointer, use the extended indirection symbol (.EXT):

INT .EXT my_xptr;

Extended pointer declarations should precede other global or local declarations.  The
compiler emits more efficient machine code if it can allocate extended pointers
between G[0] and G[63] or between L[0] and L[63].

Specifying a Data Type When you declare a simple pointer, you can specify any of the following data types.
The data type determines how much data a simple pointer can access at a time, as
listed in Table 9-1.

Table 9-1.  Data Accessed by Simple Pointers

Data Type Accessed Data

STRING Byte

INT Word

INT(32) Doubleword

REAL Doubleword

REAL(64) Quadrupleword

FIXED Quadrupleword
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Initializing Simple Pointers To initialize a pointer in the declaration, specify the assignment operator after the
pointer identifier, followed by an initialization expression that represents an address.
The addressing mode and data type determines the kind of address the simple pointer
can contain, as described in Table 9-2.

Table 9-2.  Addresses in Simple Pointers

Addressing Mode Data Type Kind of Addresses

Standard STRING 16-bit byte address in the lower 32K-word area of the user data
segment.

Standard Any except
STRING

16-bit word address anywhere in the user data segment.

Extended STRING 32-bit byte address, normally in the automatic extended data
segment.

Extended Any except
STRING

32-bit even-byte address, normally in the automatic extended
data segment.  (If you specify an odd-byte address, results are
undefined.)

Initializing Global
Simple Pointers

At the global level, you can only initialize pointers with constant expressions.
Constant expressions can contain the following operands:

Numeric constants
LITERALs
Return values of standard functions whose arguments are constant expressions
Addresses of previously declared variables obtained by using the @ operator

Standard Pointers

To initialize a standard pointer with the address of a variable, prefix @ to the variable
name on the right side of the assignment operator in the declaration.  You can specify
the address to store in a pointer by using any of the following expressions:

Expression Operation

@identifier Accesses address of variable

@identifier '<<' 1 Converts word address to byte address

@identifier '>>' 1 Converts byte address to word address

@identifier[index] Accesses address of variable indicated by index



Using Simple Pointers

Using Pointers

9–4 096254 Tandem Computers Incorporated

The following table shows the kinds of global variables to which you can apply the @
operator:

Variable @identifier?

Direct array Yes

Standard indirect array Yes

Extended indirect array No

Direct structure Yes

Standard indirect structure Yes

Extended indirect structure No

Simple pointer No

Structure pointer No

For example, you can initialize a global standard simple pointer with the address of an
array element:

STRING .array[0:3];      !Declare ARRAY

STRING .string_ptr := @array[3];
                         !Declare STRING_PTR; initialize
                         ! it with address of ARRAY[3]

You can use a STRING simple pointer for byte access to a word-addressed array.  To
convert the word address to a byte address, use a left-shift operation ('<<' 1):

INT .word_array[0:39];   !Declare WORD_ARRAY

STRING .byte_ptr := @word_array[0] '<<' 1;
                         !Declare BYTE_PTR; initialize
                         ! it with converted byte
                         ! address of WORD_ARRAY

You can use an INT simple pointer for word access to a byte-addressed array.  To
convert the byte address to a word address when you initialize the pointer, use a right-
shift operation ('>>' 1).  (Only even byte addresses can be converted to correct word
addresses):

STRING .byte_array[0:4]; !Declare BYTE_ARRAY

INT .word_ptr := @byte_array[0] '>>' 1;
                         !Declare WORD_PTR; initialize
                         ! it with converted word
                         ! address of BYTE_ARRAY
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Extended Pointers

You can initialize global extended pointers with extended addresses converted from
standard addresses by the $DBL, $UDBL, and $DBLL standard functions.  These
functions compute the initialized value if their arguments are constant expressions or
expressions that follow the rules applied to standard global pointers.  Here is an
example of the $UDBL function:

INT a[0:2];

INT .EXT ptr := $UDBL(@a[0] '<<' 1);

In the preceding example, the word address returned by $UDBL must be converted to
a byte address by shifting it left by one bit, because extended addresses are always
byte addresses.

Pointers in BLOCK Declarations

A data declaration and any declaration that refers to that declaration must appear in
the same BLOCK declaration.   For example, the following data declarations must
appear in the same BLOCK declaration:

BLOCK my_globals;             !BLOCK declaration
  STRING .EXT array[0:5];
  STRING .EXT ptr_a := @array[0];
  END BLOCK;                  !End BLOCK declaration

Initializing Local or
Sublocal Simple Pointers

At the local or sublocal level, you can initialize simple pointers with any arithmetic
expression, including those shown previously for global pointers.  In other words, you
can use initialization expressions that contain variables, constants, and LITERALs.

You can initialize a local or sublocal standard simple pointer with the content of an
array element:

INT array[0:1] := [%100000, %110000];      !Declare ARRAY

INT .int_ptr1 := array[0];    !Declare INT_PTR1; initialize
                              ! it with %100000

INT .int_ptr2 := array[1];    !Declare INT_PTR2; initialize
                              ! it with %110000

You can initialize a local or sublocal standard simple pointer with the address of a
structure item:

STRUCT .x;                    !Declare structure
  BEGIN
  INT i;
  END;

INT .ip := @x.i;              !Declare IP; initialize it
                              ! with address of structure
                              ! item
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You can initialize a local or sublocal extended simple pointer with the address of an
extended indirect array:

INT .EXT ext_array[0:99];     !Declare EXT_ARRAY

INT .EXT ext_ptr := @ext_array[5];
                              !Declare EXT_PTR; initialize it
                              ! with address of EXT_ARRAY[5]

You can initialize a local or sublocal extended simple pointer with the 32-bit byte
address returned by the $XADR standard function for an array that has a 16-bit byte
address:

STRING byte_array[0:1];       !Declare BYTE_ARRAY to have
                              ! 16-bit byte address

INT .EXT ext_ptr := $XADR(byte_array[0]);
                              !Declare EXT_PTR; initialize it
                              ! with converted 32-bit byte
                              ! address of BYTE_ARRAY[0]

You can initialize a local or sublocal extended simple pointer with the 32-bit byte
address returned by $XADR for an array that has a 16-bit word address:

INT word_array[0:1];          !Declare WORD_ARRAY to have
                              ! 16-bit word address

STRING .EXT ext_ptr := $XADR(word_array[0]);
                              !Declare EXT_PTR; initialize it
                              ! with converted 32-bit byte
                              ! address of WORD_ARRAY[0]

Allocating Simple Pointers The compiler allocates a word of storage for each standard pointer and a doubleword
for each extended pointer.

The compiler does not allocate space for the data to which the pointer points.  You
normally store the addresses of previously declared items in pointers.

Figure 9-1 shows example pointer declarations and the storage allocation that results.
(If you use BLOCK declarations, however, the compiler allocates storage as described
in Section 14, “Compiling Programs.”)
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Figure 9-1.  Allocating Simple Pointers
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Assigning Addresses
to Simple Pointers

Once you have declared a simple pointer, you can store a memory address in it by
using an assignment statement (even if you initialized the pointer with an address
when you declared it).

To assign an address to a pointer, specify the pointer identifier (prefixed by @),
followed by the assignment operator and an arithmetic expression that represents a
memory address.  On the left side of the assignment operator, @ changes the address
contained in the pointer, not the value of the variable to which the pointer points.

You can also prefix @ to a variable on the right side of the assignment operator.  If the
variable is a pointer, @ returns the address contained in the pointer.  If the variable is
not a pointer, @ returns the address of the variable itself.
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Assigning Addresses of Simple Variables or Arrays

To assign the address of a simple variable or array to a standard simple pointer, place
the variable or array identifier (prefixed by @) on the right side of the assignment
operator:

STRING .bytes[0:3];          !Declare indirect array BYTES
STRING .s_ptr;               !Declare simple pointer S_PTR
INT i := 3;                  !Declare simple variable I

@s_ptr := @bytes[i];         !Assign address of
                             ! BYTES[3] to S_PTR

You can assign the address of an INT simple variable or array to standard simple
pointers of different types.  The FIXED simple pointer lets you view four words at a
time; the INT(32) simple pointer lets you view two words at a time:

INT .array[0:99];            !Declare INT array
FIXED .quad_ptr;             !Declare FIXED simple pointer
INT(32) .dbl_ptr;            !Declare INT(32) simple pointer

@quad_ptr := @array[0];      !Assign address of INT array
                             ! to FIXED simple pointer

@dbl_ptr  := @array[0];      !Assign address of INT array
                             ! to INT(32) simple pointer

Assigning Converted Addresses

You can convert a word address to a byte address and assign it to a STRING simple
pointer.  You then have byte access to the word item:

STRING .s_ptr;               !Declare STRING simple pointer

INT .word[0:5];              !Declare INT array

@s_ptr := @word[3] '<<' 1;   !Assign converted byte address
                             ! of WORD[3] to S_PTR

To convert a standard (16-bit) address to an extended (32-bit) address and assign it to
an extended simple pointer, use the $XADR standard function:

INT .EXT ext_ptr;            !Declare extended simple pointer

STRING s_array[0:1];         !Declare STRING array

@ext_ptr := $XADR(s_array[0]);
                             !Assign converted 32-bit address
                             ! of S_ARRAY to EXT_PTR
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Assigning the Content of Simple Pointers

To assign an address contained in a simple pointer (for instance, PTR1) to another
simple pointer (for instance, PTR2), specify @PTR1 on the right side of the assignment
operator:

INT array[0:99];             !Declare ARRAY
INT .ptr1 := @array;         !Declare and initialize PTR1
INT .ptr2;                   !Declare PTR2

@ptr2 := @ptr1;              !Assign content of PTR1 to PTR2

Accessing Data
With Simple Pointers

You access the data item to which a simple pointer points by using the pointer
identifier in statements.  When you use the pointer identifier in statements, omit the @
operator.

You can use standard and extended simple pointers in any statement.  For example, to
assign a value, say 45, to an array element, you can store the array address in a simple
pointer and then assign 45 to the pointer (without prefixing it with @):

INT .addr[0:2] := [1,2,3];    !Declare and initialize
                              ! array ADDR
INT .sp := @addr[0];          !Declare and initialize
                              ! standard simple pointer SP
                              ! with address of ADDR[0]
sp := 45;                     !Assign 45 to ADDR[0]; ADDR
                              ! now contains [45,2,3]

Accessing Data in Scans and Moves

Here are guidelines for using simple pointers in scan and move statements:

An array that is the object of a SCAN or RSCAN statement must be located in the
lower 32K-word area of the user data segment.

An extended simple pointer cannot be the object of a SCAN or RSCAN statement.

In a move statement, the destination pointer must point to a variable large enough
to accommodate the source data you want to copy.
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The following example shows pointers used in assignment, move, IF, and SCAN
statements:

INT var_a;                    !Declare variables VAR_A and
INT var_b;                    ! VAR_B
INT .ptr;                     !Declare standard simple
                              ! pointer PTR
INT .EXT ptr_a;               !Declare extended simple
INT .EXT ptr_b;               ! pointers PTR_A and PTR_B
!Some code to initialize PTR_A and PTR_B

                              !Assignment statements:
var_a := ptr_a;               !Assign to VAR_A the value of
                              ! item pointed to by PTR_A
ptr_a := var_a;               !Assign value of VAR_A to PTR_A
ptr_a := ptr_b;               !Assign to PTR_A the value of
                              ! item pointed to by PTR_B

                              !Move statements:
var_a ':=' ptr_a FOR 2 WORDS; !Copy 2 words starting at
                              ! address in PTR_A (modify
                              ! both VAR_A and VAR_B)

ptr_a ':=' var_a FOR 2 WORDS; !Copy 2 words starting at
                              ! address of VAR_A (copy
                              ! content of VAR_A and VAR_B
                              ! into location pointed to
                              ! by PTR_A)

ptr_a ':=' ptr_b FOR 10 WORDS; !Copy 10 words starting at
                              ! address contained in PTR_B

                              !IF and SCAN statements:
IF var_a = ptr_a FOR 2 WORDS THEN
  SCAN ptr WHILE " ";         !If contents of VAR_A and VAR_B
                              ! match data pointed to by
                              ! PTR_A, scan area starting at
                              ! address contained in PTR
                              ! while spaces occur

Indexing Simple Pointers You can access data by appending an index (enclosed in brackets) to the identifier of a
simple pointer as follows:

ptr[2]

For a standard simple pointer, the index must be a signed INT arithmetic expression.
For an extended simple pointer, the index can be either:

A signed INT arithmetic expression (–32,768 through 32,767)
A signed INT(32) arithmetic expression (–2,147,483,648 through 2,147,483,647)
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The index represents an element offset from the address stored in the simple pointer;
that is, from the address of a simple variable, array, or structure item.  The element
offset yielded by an index depends on the data type of the simple pointer:

Data Type Element Offset

STRING Byte

INT Word

INT(32) or REAL Doubleword

REAL(64) or FIXED Quadrupleword

For example, you can initialize an INT simple pointer with the address of an INT(32)
array.  You can then append an index to the simple pointer and assign a value to the
last word of the array:

PROC z MAIN;
  BEGIN
  INT(32) dbl[0:4] := [1D, 2D, 3D, 4D, 0D];
  INT .p := @dbl;        !View DBL as single words

  p[9] := 5;             !Last word of DBL is at a 9-word
  END;                   ! offset from P[0]

Figure 9-2 shows how the compiler allocates a doubleword for each element of the
INT(32) array declared in the preceding example.  The figure shows how INT pointer
P can access each word of each element and how the assignment to P[9] changes the
value stored in the last word of the array to 5.

Figure 9-2.  Indexing Simple Pointers
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Using Structure
Pointers

A structure pointer is a variable that you associate with a particular structure layout.
You must store the memory address of a structure in the structure pointer before you
access the data to which it points.  You can store an address by initializing the pointer
when you declare it or by assigning an address to it later in an assignment statement.
When you refer to a structure pointer identifier in expressions, you access the structure
whose address is stored in the structure pointer.

Declaring
Structure Pointers

To declare a structure pointer, specify:

STRING or INT attribute, as described in Table 9-3

An identifier, preceded by an indirection symbol (. or .EXT)

A referral that associates the structure pointer with a structure layout—enclose in
parentheses the identifier of one of the following:

An existing definition structure, template structure, or referral structure
An existing structure pointer
The encompassing structure if this structure pointer is a structure item

To declare a standard structure pointer, use the standard indirection symbol (.) and
enclose a referral in parentheses:

INT .struct_ptr (prev_struct);

To declare an extended structure pointer, use the extended indirection symbol (.EXT)
and enclose a referral in parentheses:

INT .EXT xstruct_ptr (prev_struct);

Place extended pointer declarations preceding other global or local declarations.  The
compiler emits more efficient machine code if it can store extended pointers between
G[0] and G[63] or between L[0] and L[63].
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Initializing
Structure Pointers

To initialize a pointer when you declare it, specify the assignment operator after the
identifier, followed by an initialization expression.

The addressing mode and STRING or INT attribute of the structure pointer determine
the kind of addresses the pointer can contain, as described in Table 9-3.

Table 9-3.  Addresses in Structure Pointers

Addressing
Mode

STRING or
INT Attribute Kind of Addresses

Standard STRING * 16-bit byte address of a substructure, STRING simple variable, or
STRING array declared in a structure located in the lower
32K-word area of the user data segment

Standard INT ** 16-bit word address of any structure item located anywhere in the
user data segment

Extended STRING * 32-bit byte address of any structure item located in any segment,
normally in the automatic extended data segment

Extended INT ** 32-bit byte address of any structure item located in any segment,
normally in the automatic extended data segment

* If the pointer is the source in a move statement or group comparison expression that omits a
count-unit, the count-unit is BYTES.

** If the pointer is the source in a move statement or group comparison expression that omits a
count-unit, the count-unit is WORDS.

Initializing Global
Structure Pointers

At the global level, you can initialize structure pointers only with constant expressions,
as described in “Initializing Global Simple Pointers” earlier in this section.

Standard Pointers

You can initialize a standard structure pointer with the address of a structure
occurrence:

STRUCT struct_a[0:2];         !Declare STRUCT_A
  BEGIN
  INT var;
  END;

INT .struct_ptr (struct_a) := @struct_a[1];
                              !Declare STRUCT_PTR; initialize
                              ! it with address of
                              ! STRUCT_A[1]
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You can initialize standard structure pointers with the addresses of structure items by
using:

The $OFFSET standard function, which returns an item’s byte offset from the
zeroth occurrence of the encompassing structure

An unsigned operator such as '+' to append an offset in the range 0 through 65,535
to a standard pointer

Bit-shift operations ('>>' 1 or '<<' 1) to convert a byte address to a word address or
vice versa

For example, the following initializations store addresses of structure items
SUBSTRUC and VAR_A in standard structure pointers:

STRUCT .struc;               !Declare STRUC
  BEGIN
  STRUCT substruc;           !Declare SUBSTRUC
    BEGIN
    INT var_a;               !Declare VAR_A
    INT var_b;
    END;
  END;

INT .word_ptr_a (struc):= @struc '+'
           $OFFSET(struc.substruc) '>>' 1;
                             !Declare WORD_PTR_A; initialize
                             ! it with converted word address
                             ! of STRUC.SUBSTRUC

INT .word_ptr_b (struc) := @struc '+'
           $OFFSET(struc.substruc.var_a) '>>' 1;
                             !Declare WORD_PTR_B; initialize
                             ! it with converted word address
                             ! of STRUC.SUBSTRUC.VAR_A

STRING .byte_ptr (struc) := @struc '<<' 1 '+'
           $OFFSET(struc.substruc);
                             !Declare BYTE_PTR; initialize
                             ! it with converted byte
                             ! address of STRUC.SUBSTRUC

A standard STRING structure pointer can access the following structure items only—a
substructure, a STRING simple variable, or a STRING array—located in the lower
32K-word area of the user data segment.  The last declaration in the preceding
example shows a STRING structure pointer initialized with the converted byte address
of a substructure.



Using Structure Pointers

Using Pointers

096254 Tandem Computers Incorporated 9–15

Here is another way to access a STRING item in a structure.  You can convert the word
address of the structure to a byte address when you initialize the STRING structure
pointer and then access the STRING item in a statement:

STRUCT .astruct[0:1];
  BEGIN
  STRING s1;
  STRING s2;
  STRING s3;
  END;

STRING .ptr (astruct) := @astruct[1] '<<' 1;
                              !Declare STRING PTR; initialize
                              ! it with converted byte
                              ! address of ASTRUCT[1]

ptr.s2 := %4;                 !Access STRING structure item

Initializing Local or
Sublocal Structure Pointers

You can initialize a local or sublocal standard structure pointer with the address of a
standard indirect structure:

STRUCT .std_struct[0:2];     !Declare STD_STRUCT
  BEGIN
  INT array1[0:7];
  END;

INT .std_ptr (std_struct) := @std_struct[0];
                              !Declare STD_PTR; initialize it
                              ! with address of STD_STRUCT[0]

You can initialize a local or sublocal STRING structure pointer with the address of a
substructure:

STRUCT name_def(*);
  BEGIN
  STRING first[0:3];
  STRING last[0:3];
  END;

STRUCT .record;
  BEGIN
  STRUCT name (name_def);      !Declare substructure
  INT age;
  END;

STRING .my_name (name_def) := @record.name;
                              !Declare STRING structure
                              ! pointer; initialize it with
                              ! address of substructure

my_name ':=' ["Don Good"];
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You can initialize a local or sublocal extended structure pointer with the address of an
extended indirect structure:

STRUCT .EXT ext_struct[0:2]; !Declare EXT_STRUCT
  BEGIN
  INT array1[0:7];
  END;

INT .EXT ext_ptr (ext_struct) := @ext_struct[0];
                             !Declare EXT_PTR; initialize it
                             ! with address of EXT_STRUCT[0]

You can initialize an extended structure pointer with the 32-bit byte address returned
by the $XADR standard function for a structure that has a 16-bit word address:

STRUCT std_struct[0:2];      !Declare STD_STRUCT
  BEGIN
  INT array1[0:7];
  END;

INT .EXT ext_ptr (std_struct) := $XADR(std_struct[0]);
                             !Declare EXT_PTR; initialize it
                             ! with converted 32-bit byte
                             ! address of STD_STRUCT[0]

Allocating
Structure Pointers

The compiler allocates a word of storage for each standard pointer and a doubleword
for each extended pointer, as shown in Figure 9-1 earlier in this section.

The compiler does not allocate space for the data to which the pointer points.  You
normally store the addresses of previously declared structures in structure pointers.

Assigning Addresses to
Structure Pointers

Once you have declared a structure pointer, you can store a memory address in it by
using an assignment statement (even if you initialized the pointer with an address
when you declared it).

To assign an address to a pointer, prefix @ to the pointer identifier on the left side of
the assignment operator, and specify an arithmetic expression that represents a
memory address.  On the left side of the assignment operator, @ changes the content of
the pointer (that is, the address contained in the pointer), not the value of the item to
which the pointer points.

You can also prefix @ to a variable identifier on the right side of the assignment
operator.  If the variable is a pointer, @ returns the address contained in the pointer.  If
the variable is not a pointer, @ returns the address of the variable.
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Address of Structure Occurrence

To assign the address of a standard structure occurrence to a structure pointer, place
the structure identifier, prefixed with @, on the right of the assignment operator:

STRUCT struct_a[0:2];          !Declare STRUCT_A
  BEGIN
  INT array1[0:7];
  END;

PROC any MAIN;
  BEGIN
  INT .struct_ptr (struct_a);  !Declare STRUCT_PTR
  @struct_ptr := @struct_a[2]; !Assign address of STRUCT_A[2]
  END;                         ! to STRUCT_PTR

Converting Addresses

To convert a standard (16-bit) address to an extended (32-bit) address and assign it to
an extended structure pointer, use the $XADR standard function:

STRUCT struct_a[0:2];          !Declare STRUCT_A
  BEGIN
  INT array1[0:7];
  END;

PROC any MAIN;
  BEGIN
  INT .EXT xstruct_ptr (struct_a);
                               !Declare XSTRUCT_PTR
  @xstruct_ptr := $XADR(struct_a[2]);
                               !Assign address of STRUCT_A[2]
  END;                         ! to XSTRUCT_PTR

Assigning the Content of a Structure Pointer

You can assign an address contained in a structure pointer to another structure pointer
by using the @ operator on the right side of the assignment operator:

PROC any;
  BEGIN

  STRUCT struct_a[0:2];        !Declare STRUCT_A
    BEGIN
    INT array1[0:7];
    END;

  INT .ptr_a (struct_a) := @struct_a[0];
                               !Declare PTR_A; initialize it
                               ! with address of STRUCT_A[0]

  INT .ptr_b (struct_a);       !Declare PTR_B;

  @ptr_b := @ptr_a;            !Assign content of PTR_A
  END;                         ! to PTR_B
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Accessing Data With
Structure Pointers

You access the data item to which a pointer points by using the pointer identifier,
without @, in statements.

In a move, SCAN, or RSCAN statement, you normally use the unqualified identifier of
a structure pointer.  (An extended pointer cannot be the object of a SCAN or RSCAN
statement.)

Assigning Values to Structure Items

In an assignment statement, you can specify the qualified identifier of a structure item
suffixed to a standard or extended structure pointer.  The following example shows
the qualified identifier of structure item NAME, which is declared in substructure
CUSTOMER, which is declared in substructure RECORDS, which is declared in a
structure that is pointed to by STRUCT_PTR:

struct_ptr.records.customer.name

The following example assigns values to items in a structure, pointed to by
STRUCT_PTR.INT2 and STRUCT_PTR.STR1:

STRUCT .astruct[0:2];         !Declare ASTRUCT
  BEGIN
  INT    int1;
  INT    int2;
  INT    int3;
  STRING str1;
  END;

INT struct_ptr (astruct) := @astruct[0];
                              !Declare STRUCT_PTR; initialize
                              ! it with address of ASTRUCT[0]

struct_ptr.int2 := %14;       !Assign values to ASTRUCT[0]
struct_ptr.str1 := %3;        ! items INT2 and STR1
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Copying Structure Occurrences

To copy structure occurrences from one location to another, use unqualified identifiers
of structure pointers such as STRUCT_PTR1 and STRUCT_PTR2 in move statements:

STRUCT .old_record[0:2];      !Declare OLD_RECORD
  BEGIN
  STRING name[0:31];
  INT salary;
  END;

STRUCT .new_record (old_record) [0:2];
                              !Declare NEW_RECORD

INT .struct_ptr1 (old_record) := @old_record;
                              !Declare STRUCT_PTR1;
                              ! initialize it with
                              ! address of OLD_RECORD

INT .struct_ptr2 (new_record) := @new_record;
                              !Declare STRUCT_PTR2;
                              ! initialize it with
                              ! address of NEW_RECORD

struct_ptr2 ':=' struct_ptr1 FOR 3 ELEMENTS;
                              !Move statement copies data
                              ! from OLD_RECORD to NEW_RECORD

Accessing STRING Items in Structures

A STRING structure pointer can access the following structure items only—a
substructure, a STRING simple variable, or a STRING array—located in the lower
32K-word area of the user data segment.

To enable a STRING structure pointer to access a STRING structure item, you must
convert the word address of the structure to a byte address before assigning the
address to the pointer:

STRUCT .astruct[0:1];
  BEGIN
  STRING s1;
  STRING s2;
  STRING s3;
  END;

STRING .ptr (astruct) := @astruct[1] '<<' 1;
                              !Initialize PTR with converted
                              ! byte address of ASTRUCT[1]

ptr.s2 := %4;                 !Access STRING structure item
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In the following example, a STRING structure pointer accesses a substructure in a
structure:

STRUCT name_def(*);
  BEGIN
  STRING first[0:3];
  STRING last[0:3];
  END;

STRUCT .record;
  BEGIN
  STRUCT name (name_def);      !Declare substructure
  INT age;
  END;

STRING .my_name(name_def) := @record.name;
                              !Only allowed for local or
                              ! sublocal structure pointer
my_name ':=' ["DON GOOD"];

Indexing Structure Pointers To access a structure item in a particular structure occurrence, append an index
(enclosed in brackets) to the identifier of a structure pointer.  For example, you can
access item B in the fourth occurrence of a structure by indexing as follows:

STRUCT .low[0:5];             !Declare structure LOW
  BEGIN                       ! to have six occurrences
  INT a;
  INT b;
  END;

INT struct_ptr (low) := @low; !Declare STRUCT_PTR; initialize
                              ! it with address of LOW[0]

struct_ptr[3].b := 45;        !Access item B in LOW[3]

You can access a nested structure item by appending indexes to the various levels in
the qualified identifier of the structure item.  For example, you can access an array
element in a particular structure and substructure occurrence as follows:

struct_ptr[1].my_substruct[0].my_array[4]

Each index represents an offset from the zeroth element of an array or the zeroth
occurrence of a structure or substructure, regardless of the declared lower bound.

For a byte-addressed structure item, the index represents a byte offset.  For a word-
addressed structure item, the index represents a word offset.
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The indexed item determines the size of the index offset, as listed in Table 9-4:

Table 9-4.  Indexing Structure Pointers

Indexed Item Data Type Size of Index Offset

Structure or structure pointer Not applicable Total bytes in one structure occurrence

Substructure Not applicable Total bytes in one substructure occurrence

Simple variable or array STRING Byte

Simple variable or array INT Word

Simple variable or array INT(32) or REAL Doubleword

Simple variable or array REAL(64) or FIXED Quadrupleword

Indexing Standard Structure Pointers

The index for standard structure pointers must be a signed INT arithmetic expression
in the range –32,768 through 32,767.  Examples of signed INT arithmetic expressions
are:

25
index
index + 2
index – 1
9 * index
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The following example shows how you can index a standard structure pointer:

STRUCT .std_struct[0:99]; !Standard indirect structure
  BEGIN
  INT var;                !Simple variable
  STRING array[0:25];     !Array
  STRUCT substr[0:9];     !Substructure
    BEGIN
    STRING array[0:25];   !Array
    END;
  END;

INT index := 5;           !Simple variable

PROC x MAIN;              !Declare procedure X
  BEGIN
  INT struct_ptr (std_struct) := @std_struct;
                          !Declare standard structure pointer

  struct_ptr[index].var := 35;
                          !Access STD_STRUCT[5].VAR

  struct_ptr[index+2].array[0] := "A";
                          !Access STD_STRUCT[7].ARRAY[0]

  struct_ptr[index+2].array[25] := "Z";
                          !Access STD_STRUCT[7].ARRAY[25]

  struct_ptr[9*index].substr[index-1].array[index-5] := "a";
                          !Access
                          ! STD_STRUCT[45].SUBSTR[4].ARRAY[0]
  END;                    !End procedure X

Indexing Extended Structure Pointers

The index for extended structure pointers must be a signed INT or INT(32) arithmetic
expression, depending on the size of the offset of the structure item you want to
access.  The offset of a structure item is from the zeroth structure occurrence (not the
current structure occurrence).

C-Series System.  If you are writing a program to run on a C-series system, you can
determine whether to use an INT index or an INT(32) index (which is slower) as
follows:

1. Compute the lower and upper byte or word offsets of the structure item whose
structure pointer is being indexed.  (A byte-addressed structure item is at a byte
offset.  A word-addressed structure item is at a word offset.)

2. If the offsets are inside the signed INT range (–32,768 through 32,767), use an INT
index.  Usually, offsets are within the signed INT range.

3. If the offsets are outside the signed INT range, use an INT(32) index.  To convert
an INT index to an INT(32) index, use the $DBL function.
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Whenever you increase the structure size or number of occurrences, you must repeat
the preceding sequence of steps.

To access a structure item whose offset is within the signed INT range, you can use an
INT index as follows:

!Default NOINHIBITXX in effect

STRUCT .EXT xstruct[0:9];      !Declare extended indirect
  BEGIN                        ! structure; upper byte offset
  STRING array[0:9];           ! is within INT range
  END;

INT index;                     !Declare INT index
STRING var;

PROC my_proc MAIN;
  BEGIN
  INT .EXT xstruct_ptr (xstruct) := @xstruct[0];
  !Code to initialize INDEX
  var := xstruct_ptr[index].array[0];
  END;                         !Generate correct offset

In the preceding example, NOINHIBITXX generates efficient addressing for extended
indirect declarations (by using XX instructions described in the System Description
Manual for your system).

Conversely, INHIBITXX suppresses efficient addressing of extended indirect
declarations located between G[0] and G[63] of the user data segment—except when
the extended indirect declarations are declared in a BLOCK declaration with the
AT (0) or BELOW (64) option.  (The BLOCK declaration is described in Section 14,
“Compiling Programs.”)

To access a structure item whose offset is outside the signed INT range (–32678
through 32,767), you must use an INT(32) index.  To convert an INT index to an
INT(32) index, you can use the $DBL function:

STRUCT .EXT xstruct[0:9999];
  BEGIN
  STRING array[0:9];           !Upper byte offset > 32,767;
  END;                         ! INT(32) index required

INT index;

PROC my_proc MAIN;
  BEGIN
  INT .EXT xstruct_ptr (xstruct) := @xstruct[0];
  !Some code here to initialize INDEX

  xstruct_ptr[$DBL(index)].array[0] := 1;
                              !Generate correct offset
  END;                        ! because INDEX is an INT(32)
                              ! expression
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In the preceding example, the upper-byte offset of ARRAY is larger than 32,767,
computed as follows:

9999 * 10 + 9 = 99999

Upper bound of array

Size of structure in bytes

Upper bound of structure

Size of offset to ARRAY[9]

334

D-Series System.  If you are writing a program to run on a D-series system and need to
index into extended indirect structures, you can either:

Determine when to use a signed INT or INT(32) index as described for C-series
programs in the preceding subsection.

Use the INT32INDEX directive, which is easier and safer, albeit slightly less
efficient.

INT32INDEX generates INT(32) indexes from INT indexes and computes the correct
offset for the indexed structure item.  INT32INDEX overrides the INHIBITXX or
NOINHIBITXX directive, whichever is in effect.

NOINT32INDEX, the default, generates incorrect offsets for structure items whose
offsets are outside the signed INT range.  NOINT32INDEX does not override
INHIBITXX or NOINHIBITXX.
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Specify INT32INDEX or NOINT32INDEX immediately before the declarations to
which it applies.  The specified directive then applies to those declarations throughout
the compilation.  The following D-series example shows how INT32INDEX generates
correct offsets and NOINT32INDEX generates incorrect offsets:

!The default NOINT32INDEX is in effect.

STRUCT .EXT xstruct[0:9999];   !XSTRUCT has NOINT32INDEX
  BEGIN                        ! attribute
  STRING array[0:9];
  END;

INT index;

PROC my_proc MAIN;
  BEGIN
?INT32INDEX                    !Assign INT32INDEX
                               ! attribute to subsequent
                               ! declaration

  INT .EXT xstruct_ptr (xstruct) := @xstruct[0];
                               !XSTRUCT_PTR has INT32INDEX
                               ! attribute
  !Some code here
  xstruct_ptr[index].array[0]:= 1;
                               !Generate correct offset even
                               ! when offset is > 32,767,
                               ! because XSTRUCT_PTR has
                               ! INT32INDEX attribute

  xstruct2[index].array[0] := 1;
                               !Generate incorrect offset
                               ! if offset is > 32,767,
                               ! because XSTRUCT2 has
  END;                         ! NOINT32INDEX attribute
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Equivalencing lets you declare more than one identifier and description for a location
in a primary storage area.  This section describes how to equivalence a new variable
to a previously declared variable.  You can declare:

Equivalenced simple variables
Equivalenced simple pointers
Equivalenced structures
Equivalenced structure pointers

The new and previous variables can have different data types and byte-addressing
and word-addressing attributes.  You can, for example, refer to an INT(32) variable as
two separate words or four separate bytes.

Other kinds of equivalencing are described in the TAL manual set as follows:

Information Manual Section

Redefinitions (equivalencing
within structures)

TAL Programmer’s Guide
TAL Reference Manual

8, “Using Structures”
8, “Structures”  (syntax)

Base-address equivalencing TAL Reference Manual 10, “Equivalenced Variables”

'SG'-equivalencing TAL Reference Manual 15, “Privileged Procedures”

Example Diagrams The diagrams in this section show the relationship of an equivalenced variable to the
previous variable.  Unless otherwise noted, the diagrams refer to memory locations
in the primary area of the user data segment.  Here is a sample diagram:

The shaded box is the previous (allocated) variable
The unshaded box is the equivalenced (new) variable

INT word1;          
INT word2 = word1;      

WORD1 WORD2

300

Variables You Can
Equivalence

You can equivalence any variable in the first column of Table 10-1 to any variable in
the second column.  (You cannot equivalence an array to another variable.)

Table 10-1.  Equivalenced Variables

Equivalenced (New) Variable Previous Variable

Simple variable
Simple pointer
Structure
Structure pointer

Simple variable
Simple pointer
Structure
Structure pointer
Array
Equivalenced variable

For compatibility with future software platforms, however, equivalence indirect
structures only to indirect structures or indirect arrays.
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Equivalencing
Simple Variables

You can equivalence a new simple variable to a previously declared variable as listed
in Table 10-1 earlier in this section.

Declaring Equivalenced
Simple Variables

To declare an equivalenced simple variable, specify:

Any data type but UNSIGNED
The identifier of the new simple variable
An equal sign (=)
The identifier of the previous variable

For portability to future software platforms, declare equivalenced variables that fit
within the previous variable.

Equivalencing INT Simple Variables

For example, you can equivalence an INT variable (WORD2) to a previous INT
variable (WORD1):

INT word1;          
INT word2 = word1;      

WORD1 WORD2

300

Equivalencing STRING Simple Variables

You can equivalence a STRING variable (S2) to a previous STRING variable (S1):

STRING s1 := "A";
STRING s2 = s1;    

301

S1 ? S2

Equivalencing Mixed Simple Variables

The data type of the new variable can differ from the data type of the previous
variable.  For example, you can equivalence STRING and INT(32) variables to a
previous INT array.  (The middle box looks like an array, but it is an equivalenced
STRING simple variable shown with indexes.)

INT w[0:1]; 
STRING b = w[0];
INT(32) d = b;

w[0]

w[1]

B[0] B[1]

B[2] B[3]

302

D
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Equivalencing Simple Variables to Simple Pointers

If you equivalence a simple variable to a simple pointer, the simple variable is
equivalenced to the location occupied by the simple pointer, not to the location
whose address is stored in the pointer:

INT .ptr := 200; 
INT addr = ptr; 

332

ADDRPTR = 200
.
.
.

G[200]

Avoid Equivalencing Simple Variables to Indirect Variables

If you equivalence a simple variable to an indirect variable, the simple variable is
equivalenced to the location occupied by the implicit pointer, not to the location of
the data whose address is stored in the implicit pointer.

Therefore, avoid equivalencing a simple variable to a standard indirect array:

INT .array[0:9];
INT var = array;

327

ptr to ARRAY

User data segment
Primary area

Secondary area

VAR

.

.

.

ARRAY
.
.
.
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Also avoid equivalencing a simple variable to an extended indirect array:

INT .EXT array[0:999];
INT(32) addr = array;

309

Automatic extended data segment

ARRAY
.
.
.

 ptr to ARRAY  ADDR

Avoid Odd-Byte Equivalencing

If you equivalence a STRING variable to an odd-byte array element, the compiler
converts the odd-byte index to the previous word boundary as shown in the diagram
and issues a warning.

Avoid the following practice:

STRING a[0:1];   
STRING b = a[1];

303

A[0] A[1] B

Avoid Equivalenced Arrays

You cannot equivalence arrays to other variables.  Avoid the following practice:

INT a[0:5];
INT b;
INT c[0:5] = a;              !Error
INT d[0:5] = b;              !Error
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Accessing Equivalenced
Simple Variables

Once you have declared an equivalenced variable, you access it in the same way as
you access any other variable, by specifying its identifier in a statement.

Accessing Words in Doublewords

You can declare two INT variables, each equivalent to one of the two words of an
INT(32) variable.  You can then access the location either as an INT variable or as an
INT(32) variable:

A

B

304

INT(32) dbl; 
INT a = dbl;  
INT b = a[1]; 
  
a := 0;     !Access first word of DBL
dbl := -1D; !Access DBL as a doubleword

DBL

Accessing Bytes in Words

You can equivalence a STRING variable to an INT array, and then access bytes in the
INT array by indexing the STRING variable:

INT word[0:2];
STRING s = word;

s[3] := 0; 
IF s[4] > 2 THEN ...;

305

WORD[0]

WORD[1]

WORD[2]

S[0] S[1]

S[2] S[3]

S[4] S[5]
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Equivalencing
Simple Pointers

You can equivalence a new simple pointer to a previously declared variable as listed
in Table 10-1 earlier in this section.

Declaring Equivalenced
Simple Pointers

To declare an equivalenced simple pointer, specify:

Any data type except UNSIGNED
The identifier of the new simple pointer, preceded by an indirection symbol
An equal sign (=)
The identifier of the previous variable

For portability to future software platforms, declare equivalenced variables that fit
within the previous variable.

Matching Byte or Word Addressing

If the previous variable is a pointer, an indirect array, or an indirect structure, the
previous pointer and the new pointer must both contain either:

A standard byte address
A standard word address
An extended address

Otherwise, the pointers will point to different locations, even if they both contain the
same value.  That is, a standard STRING or extended pointer normally points to a
byte address, and a standard pointer of any other data type normally points to a
word address.

When you equivalence standard pointers, ensure that the byte or word addressing
match.  For example, INT and INT(32) standard pointers both contain a word
address:

INT .ptr1 := 200; 
INT(32) .ptr2 = ptr1; 

307

PTR2 = 200PTR1 = 200
.
.
.

G[200]
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When you equivalence extended pointers, you need not worry about byte and word
addressing mismatches, because extended pointers always point to byte addresses.
Thus, you can equivalence an extended INT pointer to an extended STRING pointer:

STRING .EXT xstrptr
          := %2000000D;
INT    .EXT xintptr 
          = xstrptr;

Primary area of user data segment

399

Automatic extended data segment

XSTRPTR =
%2000000D  

XINTPTR

%2000000D
.
.
.

Avoid Mixing Byte and Word Addressing

If you equivalence a STRING standard pointer to an INT standard pointer, the INT
pointer points to a word address and the STRING pointer points to a byte address.

Avoid the following practice:

INT  .ptr1 := 200;   
STRING .ptr2 = ptr1;     

308

PTR2 = 200

G[200]

PTR1 = 200
.
.
.

.

.

.

G[200]

Byte address

Word address

Equivalencing Simple Pointers to Direct Variables

You can equivalence a simple pointer to a direct variable.  The content of the simple
variable becomes the address of the data to which the pointer points.

You can equivalence a standard pointer to a simple variable:

INT dir := 200; 
INT .ptr = dir;

PTR = 200

306

G[200]

DIR = 200
.
.
.
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You can equivalence an extended pointer to an INT(32) simple variable:

INT(32) xaddr := %2000000D;
INT .EXT xptr = xaddr;

Automatic extended data segment

Primary area of user data segment

417

XADDR =
%2000000D  

XPTR

%2000000D
.
.
.

Accessing Equivalenced
Simple Pointers

After you declare an equivalenced pointer, you can access it by specifying in a
statement the identifier of the pointer or of the variable to which the pointer is
equivalenced.  Suppose you equivalence a simple pointer to a simple variable as
follows:

INT dir := 200; 
INT .ptr = dir;

PTR = 200

306

G[200]

DIR = 200
.
.
.

If you assign a value to the simple variable in the preceding example, you change the
content of both the simple variable and the simple pointer:

dir := 45; PTR = 45

310

G[45]

DIR = 45
.
.
.
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If you prefix @ to the pointer identifier in the preceding example and assign a value
to the pointer, you change the content of both the direct variable and the simple
pointer:

@ptr := 66; PTR = 66

311

G[66]

DIR = 66
.
.
.

If you assign a value to the simple pointer without the @ operator, you change the
content of only the variable to which the simple pointer points.  Location G[66] now
contains 15:

ptr := 15; PTR = 66

312

G[66]

DIR = 66
.
.
.

15

Equivalencing
Structures

You can equivalence a new definition or referral structure to a previously declared
variable as listed in Table 10-1 earlier in this section.

If you want the new structure layout to occupy the same location as the previous
variable, be sure that you match the addressing mode of the new structure and of the
previous variable as follows:

New Structure Previous Variable

Direct structure Simple variable
Direct structure
Direct array

Standard indirect structure Standard indirect structure
Standard indirect array
Standard structure pointer *

Extended indirect structure Extended indirect structure
Extended indirect array
Extended structure pointer *

*   If the previous variable is a pointer, the new structure is really a pointer.

Definition structures and referral structures are described separately in the following
subsections.
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Equivalencing
Definition Structures

To declare an equivalenced definition structure, specify:

The keyword STRUCT
The identifier of the new structure, often preceded by an indirection symbol
An equal sign (=)
The identifier of the previous variable
The layout of the new structure (enclosed in a BEGIN-END construct)

For portability to future software platforms, declare equivalenced variables that fit
within the previous variable.

Equivalencing Direct Structures

You can declare a directly addressed definition structure equivalent to another
directly addressed structure:

STRUCT dir1; 
  BEGIN
  STRING name[0:20];
  STRING addr[0:50];
  END;

STRUCT dir2 = dir1;
  BEGIN 
  STRING name[0:30];
  STRING addr[0:40];
  END; 

DIR2DIR1

313

.

.

.

.

.

.

.

.

.

Equivalencing Standard Indirect Structures

You can equivalence a standard indirect definition structure to another standard
indirect structure.

For example, you can equivalence standard indirect structure STR2 equivalent to
standard indirect structure STR1:

STRUCT temp(*); 
  BEGIN
  STRING name[0:20];
  STRING addr[0:50];
  END;

STRUCT .str1 (temp);

STRUCT .str2 = str1;
  BEGIN 
  STRING name[0:30];
  STRING addr[0:40];
  END; 

ptr to STR1

Primary area

Secondary area

314

ptr to STR2

STR2

.

.

.

STR1

.

.

.

.

.

.

.

.

.
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Equivalencing Extended Indirect Structures

You can equivalence an extended indirect definition structure to another extended
indirect structure:

STRUCT .EXT xstr1; 
  BEGIN
  STRING old_name[0:20];
  STRING old_addr[0:50];
  END;

STRUCT .EXT xstr2 = xstr1;
  BEGIN 
  STRING new_name[0:30];
  STRING new_addr[0:40];
  END; 

XSTR1

315

XSTR2

.

.

.

Automatic extended data segment

.

.

.

.

.

.

.

.

.

Primary area of user data segment

 ptr to XSTR1  ptr to XSTR2

Equivalencing Structures to Simple Variables

You can equivalence a structure to a simple variable.  For example, you can declare a
two-word structure to an INT(32) simple variable:

400

VAR ASTRUCT
HIGH

LOW

STRUCT astruct = var;
  BEGIN
  INT high;
  INT low;
  END;

INT(32) var;
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Equivalencing Structures to Arrays

You can equivalence a structure to an array.  The following example equivalences a
standard indirect structure to a standard indirect array:

STRING .array[0:127];

STRUCT .str = array;
  BEGIN 
  STRING name[0:63];
  STRING addr[0:63];
  END; 

ptr to ARRAY

Primary area

ARRAY

Secondary area
318

ptr to STR

STR

.

.

.

.

.

.

.

.

.

You can equivalence an extended indirect structure to an extended indirect array:

INT .EXT xarray[0:127];

STRUCT .EXT xstr = xarray;
  BEGIN 
  STRING name[0:30];
  STRING addr[0:40];
  END; 

Primary area of user data segment

XARRAY

401

XSTR

Automatic extended data segment

.

.

.

ptr to XARRAY ptr to XSTR 

.

.

.
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Equivalencing Structures to Structure Pointers

If you equivalence an indirect structure to a structure pointer, the indirect structure
behaves exactly like the structure pointer:

ptr to STR1

PTR

STRUCT .str1;
  BEGIN
  INT a[0:3];
  INT b[0:9];
  END;

INT .ptr (str1) := @str1; 

STRUCT .str2 = ptr;
  BEGIN
  STRING a2[0:7];
  STRING b2[0:19];
  END;

ptr to STR2

STR2STR1

317

Secondary area

.

.

.

.

.

.

.

.

.

Avoid Mixing Addressing Modes

Do not equivalence an indirect structure to a direct variable, because the implicit
pointer to the indirect structure cannot point to the structure data.  Avoid the
following practice:

319

STRUCT dir_str; 
  BEGIN  
  STRING a[0:19];
  STRING b[0:49];
  END;

STRUCT .ind_str = dir_str;  
  BEGIN         
  INT a[0:9];
  INT b[0:24];
  END;

DIR_STR ptr to IND_STR

IND_STR
.
.
.

Primary area

Secondary area

.

.

.
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Avoid equivalencing a direct structure to an indirect variable, because the direct
structure is not equivalenced to the indirect structure.  Avoid the following practice:

Secondary area

STRUCT .ind_str; 
  BEGIN  
  STRING a[0:19];
  STRING b[0:49];
  END;

STRUCT dir_str = ind_str; 
  BEGIN         
  INT a[0:9];
  INT b[0:24];
  END;

402

DIR_STR
.
.
.

ptr to IND_STR

IND_STR

Primary area

.

.

.

Accessing Equivalenced Definition Structures

You access equivalenced definition structures as you do any other structure.  That is,
you qualify the structure name with the appropriate structure items, as described in
Section 8, “Using Structures.”

Equivalencing
Referral Structures

To declare an equivalenced referral structure, specify:

The keyword STRUCT

The identifier of the new structure, often preceded by an indirection symbol

A referral that associates the new structure with a structure layout—enclose in
parentheses the identifier of a previously declared structure or structure pointer

An equal sign (=)

The identifier of the previous variable

For portability to future software platforms, declare equivalenced variables that fit
within the previous variable.

All other equivalencing guidelines described for equivalenced definition structures
apply to equivalenced referral structures.
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Equivalencing Referral Structures to Definition Structures

You can equivalence a referral structure to a previous definition structure.  In the
following example, both are standard indirect structures:

STRUCT .d_str; 
  BEGIN  
  STRING name[0:19];
  STRING address [0:49];
  END;

STRUCT tmp (*);  
  BEGIN         
  INT name[0:9];
  INT address[0:24];
  END;

STRUCT .r_str (tmp) = d_str;

ptr to D_STR

D_STR

Secondary area
316

ptr to R_STR

R_STR

.

.

.

.

.

.

.

.

.

Accessing Equivalenced Referral Structures

You access equivalenced definition structures as you do any other structure.  That is,
you qualify the structure name with the appropriate structure items, as described in
Section 8, “Using Structures.”

Equivalencing
Structure Pointers

You can equivalence a new structure pointer to a previously declared variable as
listed in Table 10-1 earlier in this section.

Be sure that you match the addressing mode of the new structure pointer and of the
previous variable as follows:

New Structure Pointer Previous Variable

Standard structure pointer Simple variable
Direct array
Standard indirect structure
Standard indirect array
Standard structure pointer

Extended structure pointer Simple variable
Direct array
Extended indirect structure
Extended indirect array
Extended structure pointer
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Declaring Equivalenced
Structure Pointers

To declare an equivalenced structure pointer, specify:

STRING or INT attribute (as described in Table 9-3 in Section 9)

The identifier of the new structure pointer, preceded by an indirection symbol

A referral that provides a structure layout—enclose the identifier of a previously
declared structure or structure pointer in parentheses

An equal sign (=)

The identifier of the previous variable

For portability to future software platforms, declare equivalenced variables that fit
within the previous variable.

Equivalencing Structure Pointers to Structure Pointers

You can declare a structure pointer equivalent to another structure pointer as
follows:

STRUCT temp (*);
  BEGIN
  STRING s[0:71];
  END;

STRUCT .EXT str; 
  BEGIN
  STRING name[0:20];
  STRING addr[0:50];
  END;

INT .EXT ptr1 (str) := @str;

INT .EXT ptr2 (temp) = ptr1; 
       

Primary area of user data segment

STR

320

Automatic extended data segment

PTR2

 ptr to STR  

PTR1  

.

.

.
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Equivalencing Structure Pointers to Structures

Equivalencing an extended structure pointer to an extended indirect structure is the
same as equivalencing an indirect structure to another indirect structure.

STRUCT .EXT str; 
  BEGIN
  STRING name[0:20];
  STRING addr[0:50];
  END;

INT .EXT ptr (str) = str;

 
       

Primary area of user data segment

STR

321

Automatic extended data segment

 ptr to STR  PTR

.

.

.

Equivalencing Structure Pointers to Simple Variables or Arrays

Before you equivalence a structure pointer to a simple variable or an element of a
direct array, make sure that the simple variable or array element contains the address
of a structure:

Primary area of user data segment

STR

403

Automatic extended data segment

STR_PTR

 ptr to STR  

STR_ADDR 
= @STR  

.

.

.

STRUCT temp (*);
  BEGIN
  STRING s[0:71];
  END;

STRUCT .EXT str; 
  BEGIN
  STRING name[0:20];
  STRING addr[0:50];
  END;

INT(32) str_addr := @str;

INT .EXT str_ptr (temp) 
              = str_addr; 
       

Matching Byte or Word Addressing

All guidelines for matching byte or word addressing given earlier in this section
apply to equivalenced structure pointers.
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Avoid Mixing Addressing Modes

All guidelines for avoiding mixed address modes given earlier in this section apply
to equivalenced structure pointers.

Accessing Data Through
Equivalenced Structure

Pointers

To access a structure through a structure pointer, qualify the name of the pointer
with the appropriate structure item names, as was described in Section 9, “Using
Pointers.”

This example accesses item A[2] in structure STR through structure pointer PTR:

Primary area

ptr to STRSTRUCT .str;
  BEGIN
  INT a[0:3];
  INT b[0:9];
  END;

INT .ptr (str) = str;   

ptr.a[2] := %14;     
     !Assign value to 
     ! STR.A[2]

PTR.A[2]

STR

322
Secondary area

.

.

.

.

.

.

Avoiding an Access Error

As previously discussed, you can equivalence a structure pointer to an indirect
structure.  Both the structure pointer and the implicit pointer to the indirect structure
then point to the data of the structure.

Primary area

INT var1;
INT var2;

STRUCT .str;
  BEGIN
  INT a[0:3];
  INT b[0:9];
  END;

INT .ptr (str) = str;  

Secondary area

VAR2

ptr to STR PTR 

STR

.

.

.

VAR1G[0]

323

.

.

.
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However, if you assign an address to the structure pointer in the preceding example,
both the structure pointer and the implicit pointer point to the new address, rather
than to the structure data.  You can no longer access the structure data.

Avoid the last statement in the following example:

418

INT var1;
INT var2;

STRUCT .str;
  BEGIN
  INT a[0:3];
  INT b[0:9];
  END;

INT .ptr (str) = str;  

@ptr := 0;   
   

VAR2

ptr to STR PTR  = 0

STR

.

.

.

VAR1G[0]

Primary area

Secondary area

.

.

.

Using Indexes
or Offsets

When you declare equivalenced variables, you can append an index or an offset to the
previously declared variable.  Table 10-2 compares indexes and offsets.

Table 10-2.  Indexes and Offsets

Specified As: Used With Represents

Index INT constant
(enclosed in
brackets)

Direct
previous
variable

An element offset from the location of the previous
variable (which cannot be a pointer, including an implicit
pointer).  The element size depends on the data type of
the previous variable.  The indexed location must begin
on a word boundary.

Offset INT constant
(preceded by a
plus (+) or
minus (–))

Direct or
indirect
previous
variable

A word offset from either:
−The location of a direct previous variable.
−The location of the pointer of an indirect previous
   variable, not from the location of the data pointed to.
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For direct INT previous variables, indexes and offsets both have word offsets:

INT x[0:1]; 
INT indx = x[1];
INT offst = x + 1;

x[0]

x[1] INDX OFFST

324

For direct previous variables other than INT, indexes have element offsets and offsets
have word offsets:

INT(32) xx; 
INT indx = xx[1];  
INT offst = xx + 1; 

OFFST

INDX

325

IndexOffset

XX+1 

XX+2

XX+3

XX+0 XX[0]

XX[1]

You can equivalence a variable to an offset simple pointer but not to an indexed
simple pointer:

INT addr[0:2];
INT .ptr = addr;
INT offst = ptr + 2;
   !Offset allowed
INT indx = ptr[2];
   !Index not allowed 

326

?

OFFST

Offset

PTR+1 

PTR+2

PTR+0

?

?
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Emulating Pascal
Variant Parts

You can simulate variant parts of a Pascal record type by using equivalenced
structures as follows.  (For information on record type variant parts, see the Pascal
Reference Manual.)

LITERAL triangle, rectangle, circle;

STRUCT geometry (*);
  BEGIN
  REAL x, y;
  REAL area;
  INT shape;                  ! 0 = TRIANGLE,
                              ! 1 = RECTANGLE,
                              ! 2 = CIRCLE

  STRUCT triangle_info;       !If SHAPE = TRIANGLE
    BEGIN
    REAL side1, side2, side3;
    REAL(64) angle1, angle2, angle3;
    END;

  STRUCT rectangle_info = triangle_info;
                              !If SHAPE = RECTANGLE
    BEGIN
    REAL side1, side2;
    END;

  STRUCT circle_info = triangle_info;
                              !If SHAPE = CIRCLE
    BEGIN
    REAL diameter;
    END;

  END;
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Procedures are program units that can contain the executable portions of a TAL
program and that are callable from anywhere in the program.  Procedures let you
segment a program into discrete parts that each perform a particular operation such as
I/O or error-handling.

A procedure can call other procedures, one at a time, or it can call another procedure
that in turn calls another, and so on.  It can pass parameters (arguments).  It can
contain subprocedures, which are callable from various points within the same
procedure.

A function is a procedure or subprocedure that returns a value to the caller.  A
function is also known as a typed procedure or a typed subprocedure.

This section discusses:

How to declare and call procedures and subprocedures
How to declare and pass parameters
How the compiler allocates storage for procedures and parameters
How the compiler provides parameter masks
How to declare and use labels
How to get the addresses of procedures and subprocedures

Procedures and
Code Segments

The procedures in a program are located in one or more code segments within the user
code space.  A procedure can call a procedure that is located:

In the same (or current) segment
In another segment of the same code space
In the system code segment
In a system library segment
In a user library segment

The starting address of a procedure is known as the entry point.  The operating system
records entry points in the following system tables:

System Table Content of Table Location of Table

Procedure Entry Point
(PEP) table

Entry points of all procedures located
in the current code segment

At the beginning of the current
code segment

External Entry Point
(XEP) table

Entry points of procedures located in
other code segments

Near the end of the current code
segment

When a procedure calls another procedure in the current segment, control passes to
the called procedure through the segment’s PEP table.

When a procedure calls a procedure in a another code segment, control passes out of
the current segment through its XEP table to the called procedure through the other
segment's PEP table.

You can declare procedures that are up to 32K words in size, minus the size of either:

The PEP table (for procedures in the lower 32K-word area of the code segment)
The XEP table (for procedures in the upper 32K-word area of the code segment)
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Declaring Procedures To declare a procedure in its simplest form, specify:

The keyword PROC
The procedure identifier, followed by a semicolon
The procedure body—a BEGIN-END construct that can include data declarations,
subprocedure declarations, and statements

Here is an example of a procedure declaration:

PROC my_proc;                  !Declare procedure MY_PROC
  BEGIN
  INT var;                     !Declare local data
  !Declare subprocedures, if any
  var := 99;                   !Specify local statements
  CALL some_proc;
  END;                         !End MY_PROC

Calling Procedures When you run your program, a procedure is activated by a CALL statement in another
procedure or subprocedure (the caller).

For example, a caller can call the preceding procedure (MY_PROC) as follows:

PROC caller_proc;              !Declare CALLER_PROC
  BEGIN
  !Lots of code
  CALL my_proc;                !Call MY_PROC
  !More code
  END;                         !End CALLER_PROC

When the called procedure finishes executing, control returns to the statement
following the CALL statement in the caller.
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Declaring Parameters
in Procedures

You can include formal parameters in the procedure declaration.  Callers can then pass
corresponding actual parameters for use in the called procedure.

Specifying a Formal
Parameter List

To include formal parameters in a procedure declaration, specify a comma-separated
list (enclosed in parentheses) of up to 32 formal parameters.

PROC proc_a (param1, param2);  !Declare PROC_A; include
                               ! formal parameter list

Declaring Formal
Parameters

After specifying the formal parameter list, declare each formal parameter by
specifying:

A parameter type (for example, STRING, INT, STRUCT, or PROC).  A procedure
can have any number of parameter words.

The identifier of the parameter.

If the parameter is a reference parameter, precede the identifier with an indirection
symbol (. or .EXT).  The absence of an indirection symbol denotes a value
parameter.  Table 11-1 describes value and reference parameters.

Table 11-1.  Value and Reference Parameters

Formal
Parameter Description

Indirection
Symbol Passed Value

Value The caller passes a value.  The called
procedure cannot change the original value in
the caller's scope.

No Simple variable,
constant expression,
or procedure

Reference The caller passes the address of a value.  The
called procedure can change the original value
 in the caller's scope.

Yes Address of simple
variable, array, or
structure

For example, you can declare simple variables as value and reference formal
parameters.  The compiler treats the value parameter as if it were a simple variable.
The compiler treats the reference parameter as if it were a simple pointer:

PROC proc_x (val_param, ref_param); !Include parameter list
    INT val_param;          !Declare value parameter
    INT .ref_param;         !Declare reference parameter
  BEGIN
  ref_param := val_param + ref_param;
                            !Manipulate parameters
  END;

For more information on parameter specifications, see Table 11-3 later in this section.
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Passing Actual Parameters The formal parameter declarations in the called procedure dictates how the calling
procedure declares the actual parameters.  For example, if the called procedure
declares a simple variable as a formal reference parameter, the calling procedure must
declare a simple pointer as the actual parameter.

The calling procedure passes actual parameters by specifying an actual parameter list
in a CALL statement.  In the following example, PROC_Y calls PROC_X (declared in
the previous example).  PROC_Y passes VAR1 by value and VAR2 by reference as
dictated by the formal parameter declarations in PROX_X:

PROC proc_y;                !Declare PROC_Y
  BEGIN
  INT var1 := 50;           !Declare simple variable
  INT .var2 := 20;          !Declare simple pointer
  CALL proc_x (var1, var2); !Call PROC_X and pass
  END;                      !actual parameters to it

When a CALL statement occurs, the compiler assigns each actual parameter to a
formal parameter in order.  More information on parameters is provided in “Using
Parameters” later in this section.

Declaring Data
in Procedures

Data items you declare before the first procedure declaration have global scope.  You
can access global data from any procedure in the program.

Data items you declare within a procedure have local scope.  You can access local data
only from within the same procedure.

A local data item can have the same identifier as a global data item.  In this case,
however, you cannot access the global data item from within that procedure.  For
example, if you declare global variables A and B and local variables A and B, the
procedure can access local variables A and B but not global variables A and B.  If you
declare a variable named C only at the global level, the procedure can access C:

INT a := 9;                   !Declare global A, B, and C
INT b := 3;
INT c;

PROC a_proc MAIN;             !Declare A_PROC
  BEGIN
  INT a := 4;                 !Declare local A and B
  INT b := 1;
  c := a + b;                 !Access local A and B
  END;                        !End A_PROC
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Allocating Local Variables When a procedure is activated, the compiler allocates storage for the procedure's
variables in the procedure's private local storage area, which consists of a primary and
a secondary storage area.

Local Primary Area

The primary area for each procedure can store up to 127 words of the following kinds
of local variables:

Directly addressed simple variables, arrays, and structures
Pointers you declare
Implicit pointers (those the compiler provides when you declare indirect arrays or
indirect structures)

When a procedure is activated, the compiler allocates storage at the current top of the
data stack for each direct local variable and each pointer.  The addresses of the
variables are at an increasingly higher offset from L[1].

Local Secondary Area

The local secondary area begins immediately after the last pointer or direct variable of
the procedure’s local primary area.  The local secondary area of a procedure has no
explicit size, but the total of all global and local primary and secondary areas cannot
exceed the lower 32K-word area of the user data segment.

For each standard indirect array or structure you declare in the procedure:

1. The compiler provides an implicit standard pointer and allocates a word of
storage for the pointer in the procedure’s local primary area.

2. The compiler allocates storage for the array or structure in the procedure’s
secondary area, which begins immediately following the procedure’s last direct
item.

If you declare indirect arrays or indirect structures within BLOCK declarations,
however, the compiler allocates such data blocks anywhere in the procedure’s
secondary data blocks, as described in Section 14, “Compiling Programs.”

3. The compiler initializes the implicit pointer (provided in step 1) with the address
of the array or structure in the procedure’s secondary area.

For a STRING array, the pointer contains the byte address of the array.
For any other array, the pointer contains the word address of the array.
For a structure, the pointer contains the word address of the structure.

Allocating Parameters
and Variables

Figure 11-1 shows how the compiler allocates storage for the called procedure’s
parameters and variables in the procedure’s local primary and secondary storage
areas.
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Figure 11-1.  Procedure Data Allocation
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Returning From
a Procedure

A called procedure returns control to the caller when a RETURN statement is executed
or the last END keyword is reached.  (In a nonfunction procedure, a RETURN
statement is optional.)  In the following example, MY_PROC returns control when A is
less than B, which invokes the RETURN statement, or when the last END is reached:

PROC my_proc;
  BEGIN
  INT a, b;
  !Lots of code
  IF a < b THEN
    RETURN;                !Return to caller if A < B
  !Lots more code
  END;                     !Last END keyword

Using Procedure
Options

By specifying procedure declaration options, you can declare:

The MAIN procedure
Functions
FORWARD procedures
EXTERNAL procedures
VARIABLE procedures
EXTENSIBLE procedures

Other procedure declaration options include:

Public name and LANGUAGE options, described in Section 17, “Mixed-Language
Programming.”

INTERRUPT, RESIDENT, CALLABLE, and PRIV options, described in the TAL
Reference Manual.  Most of these options are used only by system procedures.

Declaring the
MAIN Procedure

An executable program requires a MAIN procedure.  It is the first procedure executed
when you run the program (although it often appears last.)  The MAIN procedure
cannot have parameters.  If more than one MAIN procedure appears in a program, the
compiler issues a warning and uses the first one it encounters as the MAIN procedure.
When the MAIN procedure completes execution, it passes control to the
PROCESS_STOP_ system procedure, rather than executing an EXIT instruction.

To declare the MAIN procedure, include the MAIN keyword following the procedure
identifier:

PROC mymain MAIN;            !Declare MAIN procedure
  BEGIN
  !Lots of code
  CALL some_procedure;
  END;
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Declaring Functions A function is a procedure or subprocedure that returns a result to the caller.  You
declare a function as you would a procedure, plus you specify:

The data type of the result value to be returned by the function
A RETURN statement that returns the result (and optionally a condition code)

For example, you can declare a function that has two formal parameters, multiplies
them, and returns an INT result to the caller:

INT PROC mult_function (var1, var2);  !INT return type
    INT var1, var2;       !Declare formal parameters
  BEGIN
  RETURN var1 * var2;     !RETURN statement returns result
  END;                    !  and control to caller

Callers normally invoke functions by using the function identifiers in expressions.  For
example, an assignment statement in a procedure can invoke the preceding
MULT_FUNCTION, passing two actual parameters to it:

PROC caller;              !Declare CALLER
  BEGIN
  INT num1 := 5,
      num2 := 3,
      answer;
  answer := mult_function (num1, num2);
                          !Assignment statement invokes
  END;                    ! MULT_FUNCTION

For information on returning condition codes, see the RETURN statement in
Section 12, “Controlling Program Flow.”

Declaring FORWARD
Procedures

A FORWARD procedure declaration lets you call a procedure before you declare the
procedure.  You can then declare the procedure anywhere in the same compilation
unit.

To declare a FORWARD procedure, specify the FORWARD keyword in place of the
procedure body.  For example, you can declare PROC1 as a FORWARD procedure,
declare PROC2 which calls PROC1, and finally declare the body of PROC1:

PROC proc1 (param1, param2);    !Declare PROC1 as a FORWARD
    INT .param1, param2;         ! procedure
    FORWARD;

PROC proc2 MAIN;                !Declare PROC2
  BEGIN
  INT i1 := 1;
  CALL proc1 (i1, 2);           !Call PROC1
  END;

PROC proc1 (param1, param2);    !Declare the real PROC1
    INT .param1, param2;
  BEGIN
  param1 := param1 - param2;
  END;
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Declaring EXTERNAL
Procedures

An EXTERNAL procedure declaration lets the current compilation unit call a
procedure that is declared in another compilation unit.  The other compilation unit can
be a system library, a user library, or a user file.

To declare an EXTERNAL procedure, specify the EXTERNAL keyword in place of the
procedure body:

PROC PROCESS_DEBUG_; EXTERNAL; !Declare EXTERNAL procedure

PROC issue_warning (param);
    INT param;
  EXTERNAL;                    !Declare EXTERNAL procedure

PROC a MAIN;
  BEGIN
  INT x, y, z;
  !Manipulate X, Y, and Z
  If x = 5 THEN CALL issue_warning (5);
                               !Call EXTERNAL procedure
  CALL PROCESS_DEBUG_;         !Call EXTERNAL procedure
  END;

Declaring VARIABLE
Procedures

For a VARIABLE procedure, the compiler treats all formal parameters as if they were
optional, even if some are required by the procedure's code.  If you add new
parameters to a VARIABLE procedure, all procedures that call it must be recompiled.

To declare a VARIABLE procedure, specify:

The data type of the return value (optional)
The keyword PROC
The procedure identifier
The formal parameter list, enclosed in parentheses
The keyword VARIABLE, followed by a semicolon
The formal parameter declarations, each followed by a semicolon
The procedure body—a BEGIN-END construct that can include data declarations,
subprocedure declarations, and statements

Following is an example of a VARIABLE procedure declaration:

PROC v (a, b) VARIABLE;        !Declare VARIABLE procedure
    INT a;                     !Declare formal parameters
    INT b;
  BEGIN
  !Lots of code
  END;

Checking for Actual Parameters

Each VARIABLE procedure must check for the presence or absence of actual
parameters that are required by the procedure's code.  The procedure can use the
$PARAM standard function to check for required or optional parameters.
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For example, the following VARIABLE procedure returns control to the caller if either
required parameter is absent.  Also the procedure provides a default 0 to use if the
optional parameter is absent.

PROC errmsg (msg, count, errnum) VARIABLE;
    INT .msg;                  !Required by your code
    INT count;                 !Required by your code
    INT errnum;                !Optional
  BEGIN
  IF NOT $PARAM (msg) OR       !Check for required parameters
     NOT $PARAM (count) THEN
     RETURN;                   !Return to caller if either
                               ! required parameter is absent
  IF NOT $PARAM (errnum) THEN  !Check for optional parameter
    errnum := 0;               !Use 0 if optional parameter
                               ! is absent
  !Process the error
  END;

Declaring EXTENSIBLE
Procedures

An EXTENSIBLE procedure lets you add new formal parameters to it without
recompiling callers unless the callers use the new parameters.  The compiler treats all
parameters of an EXTENSIBLE procedure as if they were optional, even if some are
required by the procedure's code.

To declare an EXTENSIBLE procedure, specify:

The data type of the return value (optional)
The keyword PROC
The procedure identifier
The formal parameter list, enclosed in parentheses
The keyword EXTENSIBLE, followed by a semicolon
The formal parameter declarations, each followed by a semicolon
The procedure body—a BEGIN-END construct that can include local data
declarations, subprocedure declarations and statements

Following is an example of an EXTENSIBLE procedure declaration:

PROC x (a, b, c) EXTENSIBLE;    !Declare EXTENSIBLE procedure
    INT a;
    INT(32) b;
    FIXED c;
  BEGIN
  !Process the parameter values
  END;

Checking for Actual Parameters

Each EXTENSIBLE procedure must check for the presence or absence of actual
parameters that are required by the procedure's code.  The procedure can use
$PARAM to check for required or optional parameters.
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In the following example, the EXTENSIBLE procedure returns control to the caller if
either required parameter is absent.  Also the procedure provides a default 0 to use if
the optional parameter is absent.

PROC errmsg (msg, count, errnum) EXTENSIBLE;
    INT .msg;                  !Required by your code
    INT count;                 !Required by your code
    INT errnum;                !Optional
  BEGIN
  IF NOT $PARAM (msg) OR       !Check for required parameters
     NOT $PARAM (count) THEN
     RETURN;                   !Return to caller if either
                               ! required parameter is absent
  IF NOT $PARAM (errnum) THEN  !Check for optional parameter
    errnum := 0;               !Use 0 if optional parameter
                               ! is absent
  !Process the error
  END;

Passing Parameters to
VARIABLE or EXTENSIBLE

Procedures

When you call a VARIABLE or EXTENSIBLE procedure, you can omit parameters
indicated as being optional in the called procedure.  You can pass or omit such
parameters unconditionally or conditionally.

Passing Parameters Unconditionally

To pass parameters or parameter pairs unconditionally, specify the parameter name in
the CALL statement parameter list.  To omit parameters or parameter pairs
unconditionally, use a place-holding comma for each omitted parameter or parameter
pair up to the last specified parameter.

Comments within a CALL statement can help you keep track of which actual
parameters you are omitting.  Here is an example:

PROC some_proc (index, error_num, length, limit, total)
  EXTENSIBLE;
    INT index, error_num, length, limit, .total;
  BEGIN
  !Lots of code
  END;

PROC caller_proc;
  BEGIN
  INT total;
  !Some code
  CALL some_proc (0, !error_num!, !length!, 40, total);
                             !Comments within CALL statement
                             ! identify omitted parameters
  !More code
  END;
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Passing Parameters Conditionally

As of the D20 release, you can pass a parameter or parameter pair to a VARIABLE or
EXTENSIBLE procedure based on a condition at execution time by using the
$OPTIONAL function.  $OPTIONAL is evaluated each time the encompassing CALL
statement is executed:

If the conditional expression is true, the actual parameter is passed.
If the conditional expression is false, the actual parameter is not passed.

In the following example, parameter pair S:I is passed because I equals 1, which is less
than 9.  Parameter J is not passed because J equals 1, which is not greater than 2.

PROC p1 (str:len, b) EXTENSIBLE;
    STRING .str;
    INT len;
    INT b;
  BEGIN
  !Lots of code
  END;

PROC p2;
  BEGIN
  STRING .s[0:79];
  INT i:= 1;
  INT j:= 1;
  CALL p1 ($OPTIONAL (i < 9, s:i),   !Pass S:I if I < 9.
           $OPTIONAL (j > 2, j) );   !Pass J if J > 2.
  END;

You can use $OPTIONAL and $PARAM when one procedure provides a front-end
interface for another procedure that does the actual work:

PROC p1 (i, j) EXTENSIBLE;
    INT .i;
    INT .j;
  BEGIN
  !Lots of code
  END;

PROC p2 (p, q) EXTENSIBLE;
    INT .p;
    INT .q;
  BEGIN
  !Lots of code
  CALL p1 ($OPTIONAL ($PARAM (p), p ),
           $OPTIONAL ($PARAM (q), q ));
  !Lots of code
  END;
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A called procedure cannot distinguish between a parameter that is passed
conditionally and one that is passed unconditionally.  The execution time is shorter,
however, when you pass or omit a parameter unconditionally.

To make your code portable to future software platforms, use $OPTIONAL for each
optional parameter when calling a VARIABLE or EXTENSIBLE procedure.

Converting VARIABLE
Procedures to
EXTENSIBLE

You can convert a VARIABLE procedure into an EXTENSIBLE procedure.  When you
do so, the compiler converts the VARIABLE parameter mask into an EXTENSIBLE
parameter mask.  Parameter masks are described later in this section.

Converting a VARIABLE procedure to EXTENSIBLE is the only way to add
parameters to the procedure without recompiling all its callers.  You can add new
parameters at the time you convert the procedure or later.

You can convert any VARIABLE procedure that meets the following criteria:

It has at least one parameter.
It has at most 16 words of parameters.
All parameters are one word long except the last, which can be a word or longer.

The size of a formal reference parameter is one word if the address mode is standard;
the size is two words if the address mode is extended.

To convert an existing VARIABLE procedure to EXTENSIBLE, redeclare the procedure
and add the following information:

Any new formal parameters
The keyword EXTENSIBLE
The number of formal parameters in the VARIABLE procedure, specified as an
INT value in the range 1 through 15 and enclosed in parentheses

The following example converts a VARIABLE procedure and adds a new formal
parameter.  The value 3 in parentheses specifies that the procedure had three formal
parameters before the procedure was converted from VARIABLE to EXTENSIBLE:

PROC errmsg (msg, count, errnum, new_param) EXTENSIBLE (3);
                            !Add NEW_PARAM to parameter list
    INT .msg;
    INT count;              !Redeclare existing parameters
    INT errnum;
    INT new_param;          !Declare NEW_PARAM
  BEGIN
  !Do something
  END;
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Comparing
Procedures and
Subprocedures

Procedures and subprocedures are program units that can contain executable parts of
your program.  A subprocedure is declared inside a procedure.  A procedure can
contain any number of subprocedures, but a subprocedure cannot contain another
subprocedure.  Neither procedures or subprocedures can contain another procedure.

You use procedures for operations needed throughout a program;  procedures are
callable from anywhere in the program.  You use subprocedures for operations needed
within a procedure;  subprocedures are callable only from within the encompassing
procedure.

Procedures and subprocedures can declare formal parameters and receive data from
other procedures and subprocedures.  The same procedure or subprocedure can
process different sets of data.  The system allocates a private data area for each
activation of a procedure or subprocedure and deallocates that area when control
returns to the caller.

When a procedure or subprocedure calls a procedure (or when a subprocedure calls a
subprocedure), the system saves the environment of the caller and restores it when the
called procedure or subprocedure completes execution.

When a procedure calls a subprocedure, the caller’s environment remains in place
while the subprocedure executes.

Table 11-2 compares the characteristics of procedures and subprocedures.

Table 11-2.  Procedures and Subprocedures

Characteristic Procedure Subprocedure

Can have formal parameters Yes, except MAIN procedure Yes

Can be a function and return a value Yes Yes

Can be recursive; it can call itself Yes Yes

Private primary storage 127 words local storage 32 words sublocal storage

Private secondary storage Yes No

Scope of procedure or subprocedure Global Local

Scope of data Local Sublocal

Can refer to which level of variables Global or local Global, local, or sublocal

Attributes MAIN
VARIABLE
EXTENSIBLE
RESIDENT
CALLABLE
PRIV
INTERRUPT
LANGUAGE (D-series
system)

VARIABLE

Other options FORWARD
EXTERNAL

FORWARD
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Declaring and Calling
Subprocedures

To declare a subprocedure in its simplest form, specify:

The keyword SUBPROC
The identifier of the subprocedure, followed by a semicolon
A subprocedure body—a BEGIN-END construct that can contain sublocal data
declarations and statements

The following example declares MY_SUBPROC within MY_PROC.  A CALL statement
in MY_PROC then calls MY_SUBPROC:

PROC my_proc;                 !Declare MY_PROC
  BEGIN
  !Declare local data here

  SUBPROC my_subproc;         !Declare MY_SUBPROC
    BEGIN
    !Declare sublocal data here
    !Specify sublocal statements here
    END;                      !End MY_SUBPROC

  !Specify local statements here
  CALL my_subproc;            !Call MY_SUBPROC
  END;                        !End MY_PROC

You can declare FORWARD, VARIABLE, or function subprocedures in the same way
as described for procedures (but inside a procedure).

Including Formal
Parameters

Subprocedures have a 32-word storage area for all sublocal data including variables,
temporary results, parameters, and parameter mask if any.  In the following example,
MAIN_PROC contains subprocedures SUB1 and SUB2.  MAIN_PROC calls SUB2.
SUB2 calls SUB1 and passes parameters to it:

PROC main_proc MAIN;          !Declare MAIN_PROC
  BEGIN
  INT c := 0;

  SUBPROC sub1 (param1);      !Declare SUB1
      INT param1;             !Declare formal parameter
    BEGIN
    INT a := 5;
    INT b := 2;
    param1 := a + b + c;
    END;                      !End of SUB1

  SUBPROC sub2;               !Declare SUB2
    BEGIN
    INT var := 89;
    CALL sub1 (var);          !Call SUB1
    END;                      !End of SUB2

  CALL sub2;
  END;                        !End of MAIN_PROC
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Sublocal Variables Because each subprocedure has only a 32-word storage area for variables, declare large
arrays or structures at the global or local level and make them indirect.  In
subprocedures,  declare only pointers and directly addressed variables as follows:

Valid Sublocal Variables Example

Simple variables INT var;

Arrays INT array[0:5];

Read-only arrays INT ro_array = 'P' := [0,1,2,3,4,5];

Structures STRUCT struct_a;
    BEGIN
    INT a, b, c;
    END;

Simple pointers INT .simple_ptr;

Structure pointers STRING .struct_ptr (struct_a);

If you specify an indirection symbol (. or .EXT) when you declare sublocal arrays and
structures, the compiler allocates direct arrays and structures and issues a warning.

Invalid Sublocal Variables Example

Indirect arrays INT .EXT ext_array[0:5];

Indirect structures STRUCT .EXT ext_struct;
    BEGIN
    INT a, b, c;
    END;

Visibility of Identifiers Sublocal statements can normally refer to sublocal identifiers in the subprocedure,
local identifiers in the procedure, and global identifiers.  If, however, you declare the
same identifiers (such as A and B ) at the sublocal, local, and global levels, the
subprocedure can access only the sublocal identifiers (A and B):

INT a := 9;                   !Declare global A and B
INT b := 3;

PROC a_proc MAIN;             !Declare A_PROC
  BEGIN
  INT a := 4;                 !Declare local A and B
  INT b := 1;
  INT c;

  SUBPROC a_subproc (param);  !Declare A_SUBPROC
      INT param;
    BEGIN
    INT a := 5;               !Declare sublocal A and B
    INT b := 2;
    c := a + b + param;       !Access sublocal A and B
    END;                      !End A_SUBPROC

  a := a + b;                 !Access local A and B
  CALL a_subproc (a);
  END;                        !End A_PROC
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Sublocal Storage
Limitations

Because sublocal storage area is so limited, the way you use sublocal variables is as
important as how many you declare.

When a subprocedure is activated, the compiler allocates the subprocedure's
parameters, variables, and temporary results of expressions in the subprocedure’s
private storage area.  The compiler allocates each sublocal item at location S[0],
pushing previously allocated sublocal items to increasingly negative offsets from S[0].
If you attempt to access a sublocal item that is pushed beyond location S[–31], the
compiler issues an error.

To avoid problems, use just a few sublocal parameters and variables and avoid
complex expressions in subprocedures.  For example, avoid the following practice:

PROC main_proc MAIN;
  BEGIN
  SUBPROC sub_oops (f);        !Declare SUB_OOPS
      INT .f;
    BEGIN
    INT  i[0:24];              !Use 25 sublocal words
    f := 1;
    f := (f * (f * (f * (f * (f * (f * (f * (f *
         (f + 9) + 8) + 7) + 6) + 5) + 4) + 3) + 2) + 1);
    END;                       !Too many temporary values
  CALL sub_oops;
  END;
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Sublocal Parameter
Storage Limitations

The order in which a subprocedure passes parameters could result in a range violation
error.  The error occurs when an actual parameter of the subprocedure refers to a
sublocal variable located beyond S[–31] in the caller’s sublocal storage area.

The following example shows two subprocedure calls.  The first call passes actual
parameters in reverse order, causing an error:

PROC my_proc MAIN;
  BEGIN
  !Lots of local declarations
  SUBPROC sub1 (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s);
    INT         a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s;
    BEGIN
    END;
  SUBPROC sub2;
    BEGIN
    INT         A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S;
    CALL sub1  (S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A);
                                                 !Cause error
    CALL sub1  (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S);
                                                 !No error
    END;   !Actual parameters are shown in italics to
           !distinguish them from variables in the text.
  !Lots of code
  END;

In effect, here is what happens:  When SUB2 is activated, the compiler allocates each
variable at location S[0] in the order declared (from A through S) and pushes
preceding variables to increasingly negative offsets from S[0].  Part 1 of Figure 11-2
shows the sublocal allocation immediately after activation of SUB2.

The first time SUB2 calls SUB1, SUB2 passes parameters in reverse order from the
order of the variables.  The compiler allocates each actual parameter at S[0], in the
order specified (from S through A) and pushes preceding variables and parameters
away from S[0].  Each parameter (when allocated at S[0]), must access the
corresponding variable to receive its value.  For example, parameter S must receive the
value stored in variable S, and so on.  When parameter D is allocated at S[0], variable
D is allocated at S[–31] and is still accessible.  When parameter C is allocated at S[0],
however, variable C is pushed beyond S[–31], is not accessible, and an error results.
Part 2 of Figure 11-2 shows sublocal allocation at the point at which the error occurs.

The second time SUB2 calls SUB1, SUB2 passes parameters in the same order as the
variables, so each variable is accessible when the corresponding parameter is allocated
at S[0].  Part 3 of Figure 11-2, shows that every variable is accessible when the
corresponding parameter is allocated at S[0].
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Figure 11-2.  Sublocal Data Storage Limitations
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Using Parameters This subsection gives additional information about declaring, passing, and allocating
parameters of procedures and subprocedures.

For portability to future software platforms, treat formal parameters as spatially
unrelated in memory storage.

Declaring Formal
Parameters

Table 11-3 summarizes the formal parameter characteristics you can declare
depending on the kind of actual parameter your procedure expects.

Table 11-3.  Formal Parameter Specification

 Formal Parameter Characteristics

Actual Parameter Formal Parameter Parameter Type Indirection Referral

Simple variable Value or reference STRING *
INT
INT(32)
REAL
REAL(64)
FIXED(n)
FIXED(*)

Value, no;
reference,
yes

No

Simple variable Value UNSIGNED No No

Array or
simple pointer

Reference STRING
INT
INT(32)
REAL
REAL(64)
FIXED(n)

Yes No

Definition structure.
referral structure, or
structure pointer

Reference INT or STRING Yes Yes

Definition structure,*
referral structure, or
structure pointer

Reference STRUCT Yes Yes

Constant expression **
(including @identifier)

Value STRING
INT
INT(32)
UNSIGNED
REAL
REAL(64)
FIXED(n)

No No

Procedure Value PROC
PROC(32) ***

No No

* These features are not supported in future software platforms.
** The data type of the expression and of the formal parameter must match, except that you can

mix the STRING, INT, and UNSIGNED (1–16) data types, and you can mix the INT(32) and
UNSIGNED(17–31) data types.

*** PROC(32) is a D-series feature.
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Value parameters are described next, followed by reference parameters.

Using Value Parameters If a procedure or subprocedure declares a formal parameter as a value parameter,
callers in effect pass a copy of the actual parameter.  The called procedure or
subprocedure can modify the parameter as if it were a local or sublocal variable but
cannot modify the original variable in the caller’s scope.

The compiler allocates storage for parameters in the parameter area of the called
procedure or subprocedure.  For value parameters, the kind of parameter and the
parameter type determine the amount of space that is allocated.  Table 11-4
summarizes the amount of storage the compiler allocates for formal value parameters:

Table 11-4.  Value Parameter Storage Allocation

Formal Parameter Parameter Type Allocation Actual Parameter

Simple variable or
constant expression

STRING
INT *
UNSIGNED(1–16) *

Word Simple variable or
constant expression

Simple variable or
constant expression

INT(32) **
REAL
UNSIGNED(17–31)

Doubleword Simple variable or
constant expression

Simple variable REAL(64)
FIXED(*)
FIXED(n)

Quadrupleword Simple variable

Constant expression REAL(64)
FIXED(n)

Quadrupleword Constant expression

16-bit procedure address PROC—or its alias
PROC(16)

Word Procedure with 16-bit
address

32-bit procedure address PROC(32) Doubleword Procedure with 32-bit
address

*    An INT or UNSIGNED(16) actual parameter can be a standard address.
** An INT(32) actual parameter can be an extended address.

Simple Variables as Value Parameters

When you declare a simple variable as a formal value parameter, specify its parameter
type and identifier but omit any indirection symbol:

PROC my_proc (a, b, c);
    INT a, b, c;         !Declare value parameters
  BEGIN
  !Lots of code
  END;

Passing INT, INT(32), REAL, and REAL(64) simple variables as value parameters is
straightforward.  Passing STRING, FIXED, and UNSIGNED simple variables is
described in the following subsections.
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STRING Value Parameters.  Declare byte value parameters as INT simple variables where
possible because:

Passing STRING parameters by value is not portable to future software platforms.

The system places an actual STRING value in the right byte of a word as if the
value were an INT expression.

If you do declare and pass STRING value parameters, you can use the following
techniques for accessing the STRING parameter value:

The called procedure can declare a DEFINE that indexes to the parameter value:

PROC p (s);
    STRING s;
  BEGIN
  DEFINE str = s[1]#;       !Declare DEFINE STR
  IF str = "A" THEN ... ;   !Use STR instead of S
  END;

The called procedure can left shift the parameter value by eight bits:

PROC p (s);
    STRING s;
  BEGIN
  s := s '<<' 8;            !Eight-bit left shift of value
  !Lots of code
  END;

The caller can left shift the parameter value in the actual parameter list by eight
bits:

CALL proc1 (byte '<<' 8);

FIXED Value Parameters.  If a FIXED actual parameter has a different fpoint than the
formal parameter, the system applies the fpoint of the formal parameter to the actual
parameter.

If, however, you specify parameter type FIXED(*), the called procedure treats the
actual parameter as having an fpoint of 0.  That is, the system copies the content of the
actual parameter to the formal parameter without an fpoint.

UNSIGNED Value Parameters.  You can pass UNSIGNED parameters only as value
parameters.

Procedures as Value Parameters

You can specify procedures (but not subprocedures) as PROC or PROC(32) formal
parameters.
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PROC Value Parameters.   Specify a procedure as a formal PROC parameter if the actual
parameter is the address of:

A  C  small-memory-model routine
A FORTRAN routine compiled with the NOEXTENDEDREF directive
A TAL procedure or function procedure

For each actual PROC parameter, the compiler allocates a word of storage in the
parameter area of the called procedure.  The actual PROC parameter is a 16-bit address
that contains the PEP and map information of the passed procedure.

The following example contains the following procedures:

GREATER_THAN, which is passed as an actual PROC parameter
BUBBLE_SORT, which declares the formal PROC parameter
SORT, which calls BUBBLE_SORT and passes GREATER_THAN to it

LITERAL s = 10;
INT .a[0:s - 1] := [10,9,8,7,6,5,4,3,2,1];

INT PROC greater_than (a, b);  !Declare actual PROC parameter
    INT a, b;
  BEGIN
  IF a > b THEN RETURN -1
  ELSE RETURN 0;
  END;

PROC bubble_sort (array, size, compare_function);
    INT .array;
    INT size;
    INT PROC compare_function; !Declare formal PROC parameter
  BEGIN
  INT i, j, temp, limit;
  limit := size - 1;
  FOR i := 0 TO limit -1 DO
    FOR j := i + 1 TO limit DO
      IF compare_function (array[i], array[j]) THEN
      BEGIN
      temp := array[i];
      array[i] := array[j];
      array[j] := temp;
      END;
  END;

PROC sort MAIN;
  BEGIN
  CALL bubble_sort (a, s, greater_than);
  END;
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PROC(32) Value Parameters.  Specify a procedure as a formal PROC(32) parameter if the
actual parameter is the address of:

A  C  large-memory-model routine
A FORTRAN routine compiled with the EXTENDEDREF directive
A Pascal routine

For each actual PROC(32) parameter, the compiler allocates a doubleword of storage
in the parameter area of the called procedure.  The actual PROC(32) parameter is a
32 bit address (the high-order word contains the PEP and map information of the
passed routine;  the low-order word must contain a zero or a trap results).  For more
information, see Section 17, “Mixed-Language Programming,”

Procedures as Parameters That Have Parameters.  If a procedure declared as a formal
parameter has formal parameters of its own, you must ensure that its callers pass the
necessary actual parameters.  The compiler does not provide this check.  Callers must
prefix the identifier of each actual reference parameter with either:

The @ operator, which returns a standard address, either the address contained in
a pointer or the address of a nonpointer item

The $XADR standard function, which returns an extended address for a variable
that has a standard address

The following example shows use of both @ and $XADR:

PROC a (f);                    !Declare procedure to
    STRING .EXT f;             ! pass as actual parameter
  BEGIN
  !Lots of code
  END;

PROC hi (p);                   !Declare procedure to call
    PROC p;                    !Declare PROC formal parameter
  BEGIN
  STRING .s[0:7] := "Hi there";
  CALL p ($XADR (s));          !Use $XADR
  END;

PROC bye (p);                  !Declare procedure to call
    PROC p;                    !Declare PROC formal parameter
  BEGIN
  STRING .EXT s[0:6] := "Bye bye";
  CALL p (@s);                 !Use @ operator
  END;

PROC m MAIN;                   !Declare caller procedure
  BEGIN
  CALL hi (a);                 !Call procedures HI and BYE
  CALL bye (a);                ! and pass procedure A to both
  END;
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VARIABLE or EXTENSIBLE Procedures as Parameters.  When you call a VARIABLE or
EXTENSIBLE procedure declared as a formal parameter, include an actual parameter
list as usual.  For each omitted actual parameter, however, you must specify an empty
comma for each word of the parameter.  For example, to omit a FIXED parameter,
specify four empty commas, one for each word of the omitted quadrupleword.

In the actual parameter list, you must also include a parameter mask that indicates
which parameters are passed and which are omitted.

In the following example, the actual parameter list in the call to PARAM_PROC
includes:

Two empty commas, one for each word of omitted INT(32) parameter named P2.

A parameter mask (%B101, where 1 denotes a passed parameter and 0 denotes an
omitted parameter)

PROC var_proc (p1, p2, p3) VARIABLE;   !Declare VAR_PROC
    INT(32) p1, p2, p3;
  BEGIN
  !Lots of code
  END;

PROC ext_proc (p1, p2, p3) EXTENSIBLE; !Declare EXT_PROC
    INT(32) p1, p2, p3;
  BEGIN
  !Lots of code
  END;

PROC normal_proc (param_proc);         !Declare NORMAL_PROC
    PROC param_proc;
  BEGIN
  CALL param_proc (        !Call PARAM_PROC
                   0d,     !Pass parameter for p1
                   , ,     !Omit parameter for p2 (two words)
                  -1d,     !Pass parameter for p3
                  %B101);  !Pass parameter mask
  END;

PROC m MAIN;
  BEGIN
  CALL normal_proc (var_proc);
  CALL normal_proc (ext_proc);
  END;

“Parameter Masks” later in this section describes the format of VARIABLE and
EXTENSIBLE parameter masks.  Section 17, “Mixed-Language Programming”
describes the use of procedures as parameters in other languages.
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Addresses and Pointer Contents as Value Parameters

You can pass the address of a variable or the content of a pointer as an actual value
parameter.  The called procedure can then assign the address to a pointer.

In the actual parameter list, prefix the identifier of the variable or pointer with the @
operator:

INT .EXT array1[0:9];
INT .EXT array2[0:9];
INT .EXT ptr := @array2[9];

PROC move1 (x, y);
    INT(32) x;
    INT(32) y;
  BEGIN
  INT .EXT xptr := x;
  INT .EXT yptr := y;
  INT i;
  FOR i := 0 TO 9 DO
    yptr[i] := xptr[i];
  END;

PROC m1 MAIN;
  BEGIN
  CALL move1 (@array1, @ptr);  !Pass address of ARRAY1
  END;                         ! and content of PTR

The following example is equivalent to the preceding example:

INT .EXT array1[0:9];
INT .EXT array2[0:9];
INT .EXT ptr := @array2[9];

PROC move2 (x, y);
    INT .EXT x;
    INT .EXT y;
  BEGIN
  INT .EXT xptr := @x;
  INT .EXT yptr := @y;
  INT i;
  FOR i := 0 TO 9 DO
    yptr[i] := xptr[i];
  END;

PROC m2 MAIN;
  BEGIN
  CALL move2 (array1, ptr);
  END;
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Index Register Contents as Value Parameters

When you call a procedure or subprocedure, you can pass the content of an index
register as a value parameter.  If the called procedure or subprocedure expects a
reference parameter, the compiler issues a warning.  When the compiler encounters
the invocation, it saves the content of the index registers, evaluates actual parameters,
and branches to the called procedure or subprocedure.  On return to the caller, the
compiler restores the saved register content.

Passing the content of an index register as a parameter, however, is not portable to
future software platforms.  Also, if you accelerate your program for TNS/R systems,
the Accelerator requires that you provide additional information, as described in the
Accelerator Manual.

In support of existing programs, here are the steps for passing the content of an index
register:

1. Specify a USE statement to reserve an index register and give it a name.
2. Assign a value to the index register.
3. Specify a CALL statement to pass the index identifier as a value parameter.
4. Specify a DROP statement to free the index register.

Here is an example:

PROC some_proc (f);
    INT f;
  BEGIN
  !Lots of code
  END;

PROC m MAIN;
  BEGIN
  USE x;               !Reserve and name an index register
  x := 1;              !Assign a value to the index register
  CALL some_proc (x);  !Pass the index register content
  DROP x;              !Free the index register
  END;
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In the CALL statement, do not modify the content of an index register.  If you do so,
the index register contains the original (unmodified) content when control returns to
the caller, and the compiler emits an error message.  Avoid the following practice:

PROC some_proc (f);
    INT f;
  BEGIN
  !Lots of code
  END;

PROC m MAIN;
  BEGIN
  USE x;
  x := 1;              !X contains 1
  !Lots of code
  CALL some_proc (x := x + 2);
                       !Pass X; change its value to 3
                       !Upon return, X still contains 1
  DROP x;
  END;

If you must modify the content of an index register, assign a new value to the index
register before listing the index register in the CALL statement.  Here is an example:

PROC some_proc (f);
    INT f;
  BEGIN
  !Lots of code
  END;

PROC m MAIN;
  BEGIN
  USE x;
  x := 1;              !X contains 1
  !Lots of code
  x := x + 2;          !Assign new value to X
  CALL some_proc (x);  !Pass X
                       !Upon return, X contains 3
  DROP x;
  END;
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Using Reference
Parameters

A reference parameter is a formal parameter for which the caller passes the address of
a value.  The called procedure can access and modify the original value in the caller’s
scope.  Except in the case of definition structures, you declare formal reference
parameters as if they were simple pointers or structure pointers (by using an
indirection symbol).  When you list reference parameters in the actual parameter list,
however, omit any indirection symbol.

The compiler allocates storage for parameters in the parameter area of the called
procedure or subprocedure.  For reference parameters, the standard or extended
addressing mode determines the amount of space that is allocated.  Table 11-5
summarizes the amount of storage the compiler allocates for formal reference
parameters:

Table 11-5.  Reference Parameter Storage Allocation

Formal Parameter Parameter Type Allocation Actual Parameter

Simple pointer for
simple variable

STRING
INT
INT(32)
REAL
REAL(64)
FIXED(n)
FIXED(*)

Word (standard indirection) or
doubleword (extended
indirection)

Address of simple
variable

Simple pointer for
array

STRING
INT
INT(32)
REAL
REAL(64)
FIXED(n)

Word (standard indirection) or
doubleword (extended
indirection)

Address of array

Structure pointer or
indirect structure

STRING
INT
STRUCT

Word (standard indirection) or
doubleword (extended
indirection)

Address of
structure

Simple Variables as Reference Parameters

If a procedure expects a simple variable as an actual reference parameter, declare the
formal parameter as a simple pointer, preceding its identifier with an indirection
symbol.
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Arrays as Reference Parameters

If a procedure expects an array as an actual parameter, declare the formal parameter as
a simple pointer, preceding its identifier with an indirection symbol.

The following example declares two formal reference parameters (for array elements)
as simple pointers, one standard and the other extended:

PROC new_proc (array1, array2, elements_to_move);
    INT .array1;       !Declare simple pointers as formal
    INT .EXT array2;   ! parameters for array elements
    INT elements_to_move;
  BEGIN
  !Manipulate the parameters
  array1 ':=' array2 FOR elements_to_move ELEMENTS;
  END;

Another procedure calls the preceding procedure and passes two arrays as actual
parameters.   No indirection symbols precede the array identifiers in the CALL
statement:

PROC main_proc MAIN;
  BEGIN
  INT first[0:99];     !Declare arrays to pass
  INT second[0:99];

  CALL new_proc (first, second, 100);
                       !Call NEW_PROC; pass
  END;                 ! arrays by reference

Passing the Array Size.  When you pass an array, you also might need to pass the array
size or bounds information.  (The declaration of the formal parameter does not
provide such information.)

The following example passes array size information:

LITERAL array_size = 10;
INT .EXT array[0:array_size - 1];

PROC p (a, s);
    INT .EXT a;
    INT s;
  BEGIN
  INT i;
  INT n := s - 1;
  FOR i := 0 TO n DO
    a[i] := 0;
  END;

PROC m MAIN;
  BEGIN
  CALL p (array, array_size);    !Pass array size
  END;
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The following example passes array bounds information:

LITERAL array_lb = 0;
LITERAL array_ub = 9;
INT .array[array_lb:array_ub];

PROC zero (a, lb, ub);
    INT .a;
    INT lb;
    INT ub;
BEGIN
  INT i;
  FOR i := lb TO ub DO
    a[i] := 0;
  END;

PROC m MAIN;
  BEGIN
  CALL zero (array, array_lb, array_ub);
  END;                   !Pass lower and upper array bounds

Structures as Reference Parameters

Either definition structures or referral structures can be formal reference parameters.
You can treat them as if they were structure pointers.  For the address of the structure,
the compiler allocates one word for a standard indirect structure and two words for an
extended indirect structure.

Definition structures as parameters is described next, followed by referral structures as
parameters.  For portability to future software platforms, declare referral structures
(rather than definition structures) as parameters where possible.

Definition Structures as Parameters.  When you declare a definition structure as a formal
reference parameter, include an indirection symbol and a structure layout:

PROC proc_a (def_struct);        !Declare PROC_A
    STRUCT .EXT def_struct;      !Declare definition
      BEGIN                      ! structure as a
      INT a;                     ! formal parameter
      INT b;
      END;
  BEGIN
  !Process the parameter
  END;
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Referral Structures as Parameters.  When you declare a referral structure as a formal
parameter, include an indirection symbol and a referral (enclosed in parentheses) that
provides the structure layout.  The referral can be the identifier of an existing structure
or structure pointer.

In the following example, STRUCT_A is the referral in the formal parameter
declaration for REF_STRUCT:

STRUCT .EXT struct_a[0:99];     !Declare STRUCT_A
  BEGIN
  INT a;
  INT b;
  END;

PROC proc_a (ref_struct);       !Declare PROC_A;
    STRUCT .EXT ref_struct (struct_a);
  BEGIN
  !Process the parameter
  END;

PROC m MAIN;
  BEGIN
  CALL proc_a (struct_a);
  END;

Passing the Number of Structure Occurrences.  If the structure being passed has more than
one occurrence, you might need to pass the number of occurrences.  (The formal
parameter declaration of the structure does not provide such information.)

PROC proc_b (ref_struct, ub);
    INT .EXT ref_struct (struct_a);
    INT ub;
  BEGIN
  INT i;
  FOR i := 0 TO ub DO
    ref_struct[i].a := ref_struct[i].b := 0;
  END;

FIXED Reference Parameters

If the fpoint of an actual parameter does not match the fpoint of the formal parameter,
the compiler issues a warning.  The system then applies the fpoint of the formal
parameter to the actual parameter.
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Pointer Content as Reference Parameters

To pass the content of a pointer, prefix the pointer identifier with @ in the actual
parameter list.  The called procedure can then change the pointer content in the caller.
An example is:

INT .array1[0:99];      !Declare ARRAY1
INT .array2[0:99];      !Declare ARRAY2

PROC proc1 (wptr);
    INT .wptr;          !Declare WPTR (formal parameter)
  BEGIN
  wptr := @array2[0];   !Assign address of ARRAY2[0] to WPTR
  END;

PROC proc2 MAIN;
  BEGIN
  INT .my_ptr := @array1[0];
  !Declare MY_PTR; initialize it with address of ARRAY1[0]

  array1[0] := 100;
  array2[0] := 200;
  !MY_PTR = 100 before the following CALL statement
  CALL proc1 (@my_ptr);
  !MY_PTR = 200 after the preceding CALL statement

  !Avoid the following CALL statement:
  CALL proc1 (@array1);
  !ARRAY1 now refers to ARRAY2; previous ARRAY1 value is lost
  END;

Initializing Pointers Passed as Parameters

Before passing pointers as parameters, be sure they contain addresses:

INT .iptr;               !Declare IPTR
INT ivar := 0;           !Declare and initialize IVAR

PROC p (fiptr);
    INT .fiptr;          !Declare FIPTR
  BEGIN
  fiptr := 2;
  END;

PROC m MAIN;
  BEGIN
  CALL p (iptr);         !Not OK, IPTR is not initialized
  @iptr := @ivar;        !Assign address of IVAR to IPTR;
                         ! IPTR = 0 before the following call
  CALL p (iptr);         !OK, PTR now contains an address;
                         ! IPTR = 2 after the call
  END;
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Here is another example that shows the need to store addresses in pointers before
passing them as reference parameters:

STRUCT t (*);
  BEGIN
  INT i;
  !More structure items
  END;

STRUCT .x (t);
STRING .a (t);          !Uninitialized structure pointer
!or INT .a (t);
!or STRING .EXT a (t);
!or INT .EXT a (t);

PROC p (f);
    STRUCT .f (t);      !Formal reference parameter; the
!or STRUCT .EXT f(t);   ! corresponding actual parameter
!or STRING .f (t);      ! need not be declared in same way
!or STRING .EXT f (t);
!or INT .f (t);
!or INT .EXT f (t);
  BEGIN
  f.i := 3;
  END;

PROC m MAIN;
  BEGIN
  CALL p (a);           !Not OK, A is not initialized
  CALL p (x);           !OK, X is initialized
  @a := @x;             !Address of X is assigned to A
  CALL p (a);           !OK, A contains a value
  END;
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Reference Parameter Address Conversions

When you pass a reference parameter, its addressing mode should match that of the
formal parameter.  If not, the compiler converts the addressing mode of the actual
parameter to match that of the formal parameter.  When converting an address, the
compiler assumes that a STRING pointer contains a byte address and that a pointer of
any other type contains a word address.  In some conversions, part of the address is
lost.

Table 11-6 lists combinations of addressing modes and the kind of address that results
in each case.

Table 11-6.  Reference Parameter Address Conversions

Formal Parameter’s
Addressing Mode

Actual Parameter’s
Addressing Mode Converted Address of Actual Parameter

Standard byte Standard word Standard byte address *

Standard word Standard byte Standard word address **

Standard byte Extended word Standard byte address in segment 0 ***

Standard byte Extended byte Standard byte address in segment 0 ***

Standard word Extended word Standard word address in segment 0 ***

Standard word Extended byte Standard word address in segment 0 **   ***

Extended Standard Extended address

Extended word Extended byte No address conversion; the compiler issues a warning

* The most significant bit is lost.
** The left-or-right-byte specifier—bit 15 of a standard byte address, bit 31 of an extended byte

address—is lost or absent.  The converted address might access the wrong byte in a word.  The
compiler issues a warning.

*** The segment-number specifier—bits 2 through 14 of an extended address—is lost, so the
converted address defaults to segment 0, the current user data segment.  The compiler issues
a warning.

Parameter Pairs You can include formal parameter pairs when you declare a procedure or
subprocedure.  A parameter pair consists of two formal parameters connected by a
colon that together describe a single data type to some programming languages.  For
information on using parameter pairs, see Section 17, “Mixed-Language
Programming.”
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Procedure Parameter Area The system creates a private parameter area for each activation of a procedure.  Before
control passes to the called procedure, the system stores any actual parameter values
in the private parameter area.

For each activation of a procedure, the parameter area provides storage for:

Up to 32 named parameters with no limit on the number of words of parameters.
(The compiler generates code for accessing parameter words beyond L-31.)

One of the following parameter masks, if present:

A one-word or doubleword VARIABLE parameter mask

A one-word to eight-word EXTENSIBLE parameter mask, plus a word value
that represents the number of parameter words passed, stored in its negative
form

Subprocedure
Parameter Area

The system creates a private parameter area for each activation of a subprocedure.
Before control passes to the called subprocedure, the system stores any actual
parameter values in the private parameter area.

For each activation of a subprocedure, the parameter area provides storage for up to 30
words of parameters, less storage required for sublocal variables and for a word or
doubleword parameter mask, if present.

Scope of Formal
Parameters

The scope of an identifier is its visibility in the program; that is, the part of the
program from which the identifier is accessible.  Formal parameters have either:

Local scope if declared in a procedure
Sublocal scope if declared in a subprocedure

Normally, local statements can access global identifiers, and sublocal statements can
access local identifiers in the encompassing procedure and global identifiers.
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If the same identifier appears at the global, local, and sublocal levels, however, local
statements cannot access the global identifier, and sublocal statements cannot access
the local or global identifier:

INT a := 4;             !Declare global variables A and B
INT b := 1;

PROC p (a, b);
    INT a;              !Declare local formal parameters
    INT b;              !  A and B
  BEGIN
  INT c;                !Declare local variable C

  SUBPROC sub2 (b);
      INT b;            !Declare sublocal formal parameter B
    BEGIN
    c := b + 5;         !Access local C and sublocal B
    END;                ! (not global or local B)

  a := a + b;           !Access local A and B (not global
                        ! A and B)
  CALL sub2 (a);        !Call subprocedure; pass local A
  END;                  ! (not global A)
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Parameter Masks When a procedure calls a VARIABLE or EXTENSIBLE procedure, the compiler
provides a parameter mask and keeps track of which actual parameters are passed to
the procedure.

When a procedure calls a VARIABLE or EXTENSIBLE procedure that is declared as a
formal parameter, however, the compiler does not provide a parameter mask.  The
caller must provide the parameter mask as part of the CALL statement.  For an
example, see “Procedures as Value Parameters” earlier in this section.

The following subsections describe how the compiler formats and allocates
VARIABLE and EXTENSIBLE parameter masks for the TNS system.  (The format of
VARIABLE masks differ from that of EXTENSIBLE masks.)

VARIABLE
Parameter Masks

When a VARIABLE procedure is called, the compiler:

1. Allocates storage for each formal parameter in the called procedure’s parameter
area

2. Generates one of the following parameter masks:

A one-word mask for 16 or fewer formal parameters
A doubleword mask for 17 or more parameters

3. Initializes the mask bits to 0

4. Allocates storage for the parameter mask in the called procedure’s parameter area
as follows:

One-word mask—at location L[–3]
Doubleword mask—at location L[–3] for the low-order word and L[–4] for the
high-order word

5. Associates each formal parameter with a bit in the parameter mask, right justifying
the layout in the mask, so the last parameter corresponds to bit <15> of the low-
order word

6. Sets the bit for each passed parameter to 1
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VARIABLE Word Parameter Mask

If a VARIABLE procedure has 16 or fewer formal parameters, the compiler generates a
one-word mask.  It associates each formal parameter with a bit in the mask, right
justifying the layout so the last parameter corresponds to bit <15>.

In the following example, PROC_A has six formal parameters.  Procedure A_CALLER
calls PROC_A and passes three actual parameters to it.  Each empty comma in the
actual parameter list denotes an omitted parameter, regardless of size:

PROC proc_a (p1,p2,p3,p4,p5,p6) VARIABLE;
    INT p1,p2,p3,p4,p5,p6;
  BEGIN
  !Process the parameter values
  END;

PROC a_caller MAIN;
  BEGIN
  INT x, y, z;
  !Process the variables
  CALL proc_a (,x,y,,z);    !Call PROC_A; pass three
                            ! parameters (each empty comma
  END;                      ! denotes an omitted parameter)

Figure 11-3  shows the parameter mask for the preceding example.  In this case, bits
<0:9> are not used and contain zeros.  Bits corresponding to passed parameters each
show a 1, while bits corresponding to omitted parameters each show a 0.

Figure 11-3.  VARIABLE Word Parameter Mask

L [-3]:
Actual parameters:

 Formal parameters:

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P1
X

P2
Y

P3 P4
Z

P5 P6
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VARIABLE Parameter Area

Figure 11-4 shows the parameter area of PROC_A when called by A_CALLER in the
preceding example.  The figure shows:

Storage allocation for the formal parameters P1 through P6 of PROC_A
Storage of actual parameters X, Y, and Z  passed by A_CALLER
Storage of the parameter mask of PROC_A.

The value of the parameter mask (%000032) represents the bit settings for the actual
parameters (shown in Figure 11-3 earlier in this section).

Figure 11-4.  Parameter Area of a VARIABLE Procedure
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VARIABLE Doubleword Parameter Mask

If a VARIABLE procedure has more than 16 parameters, the compiler generates a
doubleword mask.  It allocates the high-order word of the mask in location L[–4] and
the low-order word of the mask in location L[–3].

The compiler associates each formal parameter with a bit in the mask, right-justifying
the layout so the last formal parameter corresponds to bit <15> of the low-order word.

In the following example, PROC_B has 18 formal parameters.  Procedure B_CALLER
calls PROC_B and passes five parameters to it:

PROC proc_b (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r) VARIABLE;
    INT a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r;
  BEGIN
  !Process the parameter values
  END;

PROC b_caller;
  BEGIN
  INT aa, dd, ee, ff, jj;
  !Lots of code
  CALL proc_b (aa,!bb!,!cc!,dd,ee,ff,!gg!,!hh!,!ii!,jj);
                           !Pass AA, DD, EE, FF, and JJ
                           ! (comments denote omitted
  END;                     ! parameters)

Figure 11-5  shows the doubleword parameter mask for the preceding example.  In this
case, bits <0:13> in the high-order word are not used and contain zeros.  Bits
corresponding to passed parameters each show a 1, while bits corresponding to
omitted parameters each show a 0.

Figure 11-5.  VARIABLE Doubleword Parameter Mask

L [-4]:
Actual parameters:

 Formal parameters:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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A B
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Actual parameters:

 Formal parameters:

0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0

C
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D
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E
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F G H I

JJ
J K L M N O P Q R
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EXTENSIBLE
Parameter Masks

When a procedure calls an EXTENSIBLE procedure, the compiler provides a
parameter mask and keeps track of which actual parameters are passed to the
procedure.

The format of the EXTENSIBLE parameter mask differs from the format of the
VARIABLE parameter mask.

When an EXTENSIBLE procedure is called, the compiler:

1. Allocates storage for each formal parameter in the called procedure’s parameter
area

2. Generates a one-word to eight-word parameter mask, depending on how many
words must be allocated to hold the formal parameters

3. Initializes the mask bits to 0

4. Allocates storage for the mask in the called procedure’s parameter area as follows:

Location L[–4] for the lowest order word of the mask, location L[–5] for the
second lowest order word if needed, and so on

Location L[–3] for the number of words of parameters in its negative form

6. Associates each word of the formal parameters with a bit in the mask, left justified,
so that the highest order word of the first parameter corresponds to bit <0> of the
lowest order word of the mask

7. Sets the bits associated with each passed parameter word to 1
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EXTENSIBLE Word Parameter Mask

If an EXTENSIBLE procedure has 16 or fewer parameter words, the compiler generates
a one-word mask.  The compiler associates each word in each formal parameter with a
bit in the parameter mask, left justifying the layout so the first parameter word
corresponds to bit <0>.

In the following example, PROC_C has seven formal parameters of varying lengths.
Procedure C_CALLER calls PROC_C and passes four actual parameters, totaling seven
parameter words:

PROC proc_c (a,b,c,d,e,f,g) EXTENSIBLE;
    INT     a,d,f,g;
    INT(32) b,e;
    FIXED   c;
  BEGIN
  !Code for processing
  END;

PROC c_caller;
  BEGIN
  INT aa, ff, gg;
  FIXED cc;
  !Code for processing
  CALL proc_c (aa,,cc,,,ff,gg);
  END;

Figure 11-6 shows the parameter mask for the preceding example.  In this case, bits
<12:15> are not used and contain zeros.  Bits corresponding to passed parameters each
show a 1, while bits corresponding to omitted parameters each show a 0.

Figure 11-6.  EXTENSIBLE Word Parameter Mask

L [-4]:
Actual parameters:

 Formal parameters:

341

1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0
AA
A B

CC
C D E

FF
F

GG
G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The compiler stores the number of parameter words passed (in its negative form) at
location L[–3].  For the preceding example, the value stored is –7.
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EXTENSIBLE Doubleword Parameter Mask

If an EXTENSIBLE procedure has more than 16 (but less than 33) parameter words, the
compiler generates a doubleword mask.  It associates each word of each formal
parameter with a bit in the mask, left justifying the layout so the first parameter word
corresponds to bit <0> of the low-order word.

In the following example, PROC_D has 12 formal parameters of varying lengths.
Procedure D_CALLER calls PROC_D and passes five actual parameters, totaling nine
parameter words.

PROC proc_d (a,b,c,d,e,f,g,h,i,j,k,l) EXTENSIBLE;
    INT     a,d,f,g,k,l;
    INT(32) b,e,h,i,j;
    FIXED   c;
  BEGIN
  !Do more work
  END;

PROC d_caller;
  BEGIN
  INT aa, ff, gg;
  FIXED cc;
  INT(32) jj;
  !Do some work
  CALL proc_d (aa,,cc,,,ff,gg,,,jj);
  END;

Figure 11-7 shows the parameter mask settings for the preceding example.  In this
case, bits <4:15> of the high-order word (L[–5]) are not used and contain zeros.  Bits
corresponding to passed parameters each show a 1, while bits corresponding to
omitted parameters each show a 0.

Figure 11-7.  EXTENSIBLE Doubleword Parameter Mask

L [-5]:
Actual parameters:

 Formal parameters:

L [-4]:
Actual parameters:

 Formal parameters:

342

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

JJ
J K L

1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0

AA
A B

CC
C D E

FF
F

GG
G H I

The compiler stores the number of passed parameter words (in its negative form) at
location L[–3].  For the preceding example, the value stored is –9.
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EXTENSIBLE Parameter Area

Figure 11-8 shows the parameter area of PROC_D when PROC_D is called by
D_CALLER in the preceding example.  The figure shows:

Storage allocation for the formal parameters of PROC_D

Storage of actual parameters passed by D_CALLER

Storage of the parameter mask of PROC_D

Storage of the number of parameter words passed
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Figure 11-8.  Parameter Area of EXTENSIBLE Procedure
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Procedure Entry Sequence

When an EXTENSIBLE procedure is activated, the procedure’s entry code loads
certain values onto the register stack.  Table 11-7 shows:

The values that the entry code loads onto the register stack
The RP setting that results

Table 11-7.  Entry Values Loaded Onto Register Stack

Kind of Procedure
Register
Stack Value Loaded

RP
Setting

EXTENSIBLE R[0] Number of parameter words expected 0

EXTENSIBLE, converted R[0] Number of parameters when procedure was
VARIABLE

R[1] Number of parameter words when procedure
was VARIABLE

R[2] Number of parameter words now expected 2

The procedure’s entry code then executes an ESE instruction, which uses the RP
setting to tell the cases apart.  ESE sets RP to 7 but does not save the values in R0
through R7.

For a converted VARIABLE procedure, ESE converts the mask format to the
EXTENSIBLE format.  ESE adds the needed bits and words and initializes them to 0.  It
does not initialize any extra words on the register stack caused by the stack movement.

For information on the RP setting and ESE instruction, see the System Description
Manual for your system.
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Using Labels Within a procedure, you can declare labels for use within the same procedure.  Labels
have local or sublocal scope only.

Labels are the only declarable objects that you need not declare before using them.  For
best program management, however, declare all labels.

Using Local Labels To declare and use local labels:

1. Declare the label identifier inside a procedure (in the local declarations) by
specifying the keyword LABEL and the label identifier; for example:

LABEL loc_label;          !Declare LOC_LABEL

2. Place the label identifier and a colon (:) preceding a statement in the same
procedure (but not in a subprocedure); for example:

loc_label:                 !Use the label for
a := 5;                    ! this statement

3. Reference the label in a GOTO statement located in the same procedure or in any
subprocedure contained in that procedure.

You can branch to local labels by using local or sublocal GOTO statements in the same
procedure.  In the following example, a local GOTO statement references a local label:

INT op1, op2, result;         !Declare global data
PROC p;
  BEGIN
  LABEL addr;                 !Declare label ADDR
  op1 := 5;
  op2 := 28;
addr:                         !Use label ADDR for
  result := op1 + op2;        ! this statement
  op1 := op2 * 299;
  !More code
  IF result < 100 THEN
    GOTO addr;                !Branch to label ADDR
  END;
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In the following example, sublocal GOTO statements reference local labels in the
encompassing procedure.  Future software platforms require that you declare local
labels to which sublocal GOTO statements refer:

PROC p;
  BEGIN
  LABEL a;      !Declare label A
  INT i;

  SUBPROC s;
    BEGIN
    !Lots of code
    GOTO a;     !This branch is portable to future
                ! software platforms; label A is declared
    GOTO b;     !This branch is not portable; label B is
                ! not declared
    END;

  !Lots of code
a : i := 0;
  !More code
b : i := 1;
  !Still more code
  END;

When a local label and a sublocal variable in a procedure have the same identifier and
that identifier is referenced within the subprocedure, the sublocal variable is accessed
instead of the label:

INT data;

PROC a;                        !Declare procedure A,
  BEGIN                        ! which has global scope.
  LABEL a;                     !Declare local label A.

  SUBPROC sp;
    BEGIN
    INT a;                     !Declare sublocal variable A.
    data := @a;                !Assign address of sublocal A,
                               ! not of procedure A or
    END;                       ! local label A.
a:
  CALL sp;
  END;
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Using Sublocal Labels To declare and use sublocal labels:

1. Declare the label identifier inside a subprocedure in the sublocal declarations; for
example:

LABEL sub_label;            !Declare SUB_LABEL

2. Place the label identifier and a colon (:) preceding a statement in the same
subprocedure:

sub_label:                  !Use the label for
a := 5;                     ! this statement

3. Reference the label in a GOTO statement located in the same subprocedure.

You can branch to sublocal labels by using GOTO statements in the same
subprocedure:

INT op1, op2, result;          !Declare global declarations
PROC p;
  BEGIN
  !Declare local variables
  LABEL exit;                  !Declare local label EXIT

  SUBPROC s;                   !Declare subprocedure
    BEGIN
    LABEL addr;                !Declare sublocal label ADDR
    op1 := 5;
    op2 := 28;
addr:                          !Use label ADDR for
    result := op1 + op2;       ! this statement
    IF result < 0 THEN         !If overflow, exit the
      GOTO exit;               ! subprocedure to label EXIT
    result := op2 * 2;
    !Lots of code
    IF result < 100 THEN       !If result < 100, go to
      GOTO addr;               ! label ADDR
    END;                       !End subprocedure
  !Lots of code
exit:                          !Use label EXIT for
  CALL s;                      ! this statement
  !More code
  END;                         !End procedure
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Using Undeclared Labels You need not declare labels before using them;  however, if a variable and an
undeclared label in the same scope have the same identifier and if you use the label
before you access the variable, the compiler issues an error message.

No error results from the following example because the assignment to the variable
occurs before the label is used:

INT data;

PROC p;
  BEGIN
  INT a;             !Declare local variable A

  SUBPROC sp;
    BEGIN
    data := @a;      !Assign address of local variable A
                     ! because sublocal label A is not
                     ! declared and not used yet
  a:                 !Use sublocal label A
    data := @a;      !Assign address of sublocal label A
    END;
  CALL sp;
  END;

Applying @ to a label name is not portable to future software platforms.
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Getting Addresses of
Procedures and
Subprocedures

To get the address of a procedure or subprocedure, prefix its identifier with @.  For
example, to assign the address of MY_PROC to MY_VAR, specify:

my_var := @my_proc;

When prefixed to procedure or subprocedure identifiers, @ yields 16-bit addresses as
follows:
Item Address Yielded by @ Operator

Procedure Procedure entry point (PEP) number of the procedure
LORed with code segment information

Subprocedure Word address of the subprocedure’s entry point in the
current code segment

The LOR operator performs a bit-wise logical OR operation on INT or STRING values
and returns a 16-bit result, as described in Section 5, “Using Expressions.”

You can get the PEP number, which is contained in bits <7:15> of the procedure’s
address, as follows:

PROC my_proc MAIN;             !Declare MY_PROC
  BEGIN
  INT pepnum;
  !Some code
  pepnum := @my_proc.<7:15>;   !Assign PEP number of MY_PROC
  !More code
  END;

You can get the code location of a subprocedure as follows:

PROC my_proc;
  BEGIN
  INT sub_loc;

  SUBPROC my_subproc;          !Declare MY_SUBPROC
    BEGIN
    !Some code
    sub_loc := @my_subproc;   !Assign address of MY_SUBPROC
    !More code
    END;

  END;

Applying @ to a procedure name and using PEP or XEP table entries are not portable
to future software platforms.
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Conditional statements let you provide a choice of paths in your program.  These
statements contain a condition, which lets the program select which path to take
during execution.

Some statements can also be executed repeatedly, applying a set of operations to
different data during each iteration.  A group of statements that can be executed
repeatedly is called a loop.  Each loop must contain a termination condition, which lets
the program decide whether to continue repeating the loop or to stop after a particular
iteration.

Other statements provide unconditional control over program flow.  They contain no
decision-making conditions but often follow, or are nested in, a conditional statement.

This section discusses conditional and unconditional control statements in the order
shown in Table 12-1.

Table 12-1.  Program Control Statements

Statement Type Operation

IF Conditional Conditionally selects one of two possible statements

CASE Conditional Selects a set of statements based on a selector value

WHILE Conditional Executes a pretest loop while a condition is true

DO Conditional Executes a posttest loop until a condition is true

FOR Conditional Executes a pretest loop n times

ASSERT Conditional Conditionally calls an error-handling procedure

CALL Unconditional Calls a procedure or subprocedure

RETURN Unconditional Returns from a procedure or subprocedure to the caller;  returns a
value from a function.  As of the D20 release, it can also return a
condition code value.

GOTO Unconditional Branches to a label within a procedure or subprocedure
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IF Statement The IF statement conditionally selects one of two statements.  The IF statement tests
the condition before selecting a statement.  If the condition is true, the THEN clause
executes.  If the condition is false, the ELSE clause executes, if present.

To specify an IF statement, include:

IF condition

Specifies a condition that, if true, causes the THEN clause to execute.  If false,  the
condition causes the ELSE clause to execute.  If no ELSE clause is present, the
statement following the IF statement executes.  The condition can be either:

A conditional expression

An INT arithmetic expression.  If the result of the arithmetic expression is not
0, the condition is true.  If the result is 0, the condition is false.

THEN statement

Specifies a statement to execute if the condition is true.   If you omit the statement
in the THEN clause,  no action occurs for the THEN clause.  The statement can be
any TAL statement.

ELSE statement (optional)

Specifies a statement to execute if the condition is false.  If the condition is false and
no ELSE clause is present, the statement following the IF statement executes.  The
statement can be any TAL statement.

For example, the following IF statement calls an error handler if VAR_ITEM contains a
nonzero value:

INT var_item;
!Some code here
IF var_item <> 0 THEN
  CALL error_handler;

The following example is equivalent to the preceding example:

IF var_item THEN
  CALL error_handler;

The following IF statement compares two arrays.  If the arrays are equal, the IF
statement assigns a 1 to ITEM_OK.  If they are not equal, it assigns 0 to ITEM_OK:

INT new_array[0:9];
INT old_array[0:9];
INT item_ok;
!Some code here
IF new_array = old_array FOR 10 WORDS THEN
  item_ok := 1            !No semicolon when followed by ELSE
ELSE
  item_ok := 0;
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IF Statement Execution The IF-THEN form executes as shown in Figure 12-1.

Figure 12-1.  IF-THEN Execution

IF

FALSE

; next-statement
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condition
TRUE

THEN statement

The IF-THEN-ELSE form executes as shown in Figure 12-2.

Figure 12-2.  IF-THEN-ELSE Execution
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IF-ELSE Pairing You can nest IF statements to any level.  In a nested IF statement, the innermost IF
clause pairs with the closest ELSE clause.  Formatting can make the IF-ELSE pairing
obvious or ambiguous.

The following side-by-side examples are equivalent.  In both cases, the ELSE clause
belongs to the second IF statement, but the pairing is clearer in the example on the left:

Recommended Format Unclear Format

IF expression1 THEN               IF expression1 THEN
  IF expression2 THEN             IF expression2 THEN stmt1
    stmt1                         ELSE stmt2;
  ELSE
    stmt2;

To override the default IF-ELSE pairing, you can use the BEGIN-END construct.  For
example, if you insert a BEGIN-END pair in the preceding example, the ELSE clause
belongs to the first IF clause rather than to the second IF clause:

IF expression1 THEN
  BEGIN                      !Begin compound statement
    IF expression2 THEN
      stmt1;
  END                        !End compound statement;
ELSE                         ! no semicolon before ELSE
    stmt2;
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CASE Statement,
Labeled

A labeled CASE statement consists of a selector and a series of case alternatives.   Each
alternative associates one or more case labels with a set of statements.  When the
selector matches a case label, the associated set of statements executes.

The unlabeled CASE statement is described in the TAL Reference Manual.

To specify a labeled CASE statement, include:

CASE selector OF BEGIN

Specifies a value that selects the case-alternative to execute.  The selector must be an
INT arithmetic expression; for example:

INT i;                    !Declare INT variable I
!Code to initialize I
CASE i OF BEGIN ...       !Selector is I

case-alternatives

Each case-alternative specifies a choice of statements to execute when the selector
matches a case-label.  You can specify any number of case-alternatives; at least one is
required.  Each case-alternative consists of:

case-labels ->

One or more INT constants in any order, separated by commas, followed by
->.  To include a case-label as a range of constants, specify the lowest and
highest values separated by two periods (..):

  2, 9, 4 .. 7, 11 ->     !Case labels 2, 4, 5, 6, 7,
                          ! and 9 for one alternative

statements

One or more statements to execute if the selector matches any case-label in this
alternative:

  2, 9, 4 .. 7 ->         !Case labels
    aa := cc + dd;        !When I is 2 or 9 or any of
    bb := cc – dd;        ! 4 through 7, execute these
                          ! statements

OTHERWISE –> statements

An optional clause that specifies optional statements to execute if the selector does
not match any case-label in the CASE statement.  If no OTHERWISE clause is
present and the selector does not match a case-label, a run-time error results.  So
always include the OTHERWISE clause, even if it contains no statements.

END

Specifies the end of the CASE statement.
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For example, this labeled CASE statement has four case-alternatives and the
OTHERWISE clause:

INT location;
LITERAL bay_area, los_angeles, hawaii, elsewhere;

PROC area_proc (area_code);       !Declare procedure
    INT area_code;                !Declare selector as
  BEGIN                           ! formal parameter
  CASE area_code OF               !Selector is AREA_CODE
    BEGIN
    408, 415 ->
      location := bay_area;
    213, 818 ->
      location := los_angeles;
    808 ->
      location := hawaii;
    OTHERWISE ->
      location := elsewhere;
    END;                          !End CASE statement
  END;                            !End AREA_PROC

Statement Forms
Generated by the Compiler

The compiler generates a branch table form or a conditional test form of the labeled
CASE statement, depending on the maximum range and number of case label values:

The compiler generates a branch table form if the maximum range (between the
smallest and largest case labels) is either:

Less than 257

Between 257 and 2048 inclusive and the approximate number of words of code
for the branch table form (maximum range  + 12) is no greater than the
approximate number of words of code for the conditional test form (number
of labels * 13 + 2)

In all other cases, the compiler generates a conditional test form.   If the statement
has more than 63 case labels, the compiler issues an error.

The branch table form is much faster than the conditional test form.

To improve the efficiency of the conditional test form, you can order the alternatives
from most common to least common.
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Directives and CASE
Statements

If a CASE statement contains many GOTO statements, you can use the OPTIMIZE
directive to reduce the size of the object code.  Use OPTIMIZE level 1 or 2 as follows:

In a program under development, use level 1.

In a stable program, use level 2, which optimizes code across statement
boundaries, so debugging is more difficult.

The CHECK directive does not affect the labeled CASE statement (as it does the
unlabeled CASE statement).

Labeled CASE
Statement Execution

Figure 12-3 shows how the labeled CASE statement executes.

Figure 12-3.  Labeled CASE Statement Execution
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WHILE Statement The WHILE statement is a repeating loop that executes a statement while a specified
condition is true.

To specify a WHILE statement, include:

WHILE condition

Specifies a condition that, if true, causes the loop to execute.  If the condition is
false, the loop does not execute.  The condition can be either:

A conditional expression

An INT arithmetic expression.  If the result of the arithmetic expression is not
0, the condition is true.  If the result is 0, the condition is false.

DO statement

Specifies a statement to execute while the condition is true.  The statement can be
any TAL statement.

For example, this WHILE loop continues while ITEM is less than LEN:

LITERAL len = 100;
INT .array[0:len - 1];
INT item := 0;

WHILE item < len DO          !WHILE statement
  BEGIN
  array[item] := 0;
  item := item + 1;
  END;
  !ITEM equals LEN at this point

The WHILE statement tests the condition before each iteration of the loop.  If the
condition is false before the first iteration, the loop never executes.  If the condition is
always true, the loop executes indefinitely unless a statement in the loop causes an
exit.  In the following example, a GOTO statement branches to a label outside the
WHILE statement when the IF condition is true:

WHILE -1 !true! DO
  BEGIN
  !Lots of code
  IF <condition> THEN GOTO exit_loop;
  !More code
  END;
exit_loop:                   !Label
!<statement>
!More code
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This WHILE loop increments INDEX until a nonalphabetic character occurs:

LITERAL len = 255;
STRING .array[0:len - 1];
INT index := -1;

WHILE (index < len - 1) AND
      ($ALPHA(array[index := index + 1]))
DO ... ;

Figure 12-4 shows the action of the WHILE statement.

Figure 12-4.  WHILE Statement Execution
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DO Statement The DO statement is a repeating loop that executes a statement until a specified
condition becomes true.  If the condition is always false, the loop repeats until a
statement in the DO loop causes an exit.

To specify a DO statement, include:

DO statement

Specifies a statement to execute until the condition becomes true.  The statement can
be any TAL statement.

UNTIL condition

Specifies a condition that, if false, causes the DO loop to continue.  If the condition
is true, the statement following this DO statement executes.  The condition can be
either:

A conditional expression

An INT arithmetic expression.  If the result of the arithmetic expression is not
0, the condition is true.  If the result is 0, the condition is false.

A DO statement always executes at least once because the compiler tests the condition
at the end of the loop.  Unless you have a special reason to use the DO statement, it is
safer to use the WHILE statement.

The following DO loop cycles through an array until each element is assigned a 0:

LITERAL len = 50;
LITERAL limit = len - 1;
INT i := 0;
STRING .array_a[0:limit];       !Declare array

DO                              !DO statement
  BEGIN
  array_a[i] := 0;              !Compound statement to
  i := i+1;                     ! execute in DO loop
  END
UNTIL i > limit;                !Condition for ending loop
!Rather than I = LEN

Figure 12-5 shows the action of the DO statement.
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Figure 12-5.  DO Statement Execution
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FOR Statement The FOR statement is a repeating loop that executes a statement while incrementing or
decrementing an index automatically.  The loop terminates when the index reaches a
limit value.  If the index is greater than the limit on the first test, the loop never
executes.

To specify a FOR statement, include:

FOR index :=

Specifies a value that increments or decrements automatically until it reaches a
specified value and terminates the loop.

In a standard FOR loop, index is the identifier of an INT simple variable, array
element, simple pointer, or structure data item.

In an optimized FOR loop, index is the identifier of an index register you have
reserved by using the USE statement.

initial-value

An INT arithmetic expression (such as 0) that initializes index.

limit

An INT arithmetic expression specified as either:

TO limit—Increments index each time the loop executes until index exceeds
limit

DOWNTO limit—Decrements index each time the loop executes until index is
less than limit

BY step

An optional clause for specifying an INT arithmetic expression by which to
increment or decrement index.  The default value is 1.

DO statement

Specifies the statement to execute each time through the loop.  The statement can be
any TAL statement.

For example, this standard FOR loop clears an array by assigning a space to each
element in the array:

LITERAL len = 100;
LITERAL limit = len - 1;
STRING .array[0:limit];
INT index;

FOR index := 0 TO limit DO       !Use default step of 1;
  array[index] := " ";           ! fill elements with spaces

FOR index := 4 TO limit BY 5 DO
  array[index] := "!";           !Replace every fifth space
                                 ! with exclamation point
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This standard FOR loop uses the DOWNTO clause to reverse a string from "BAT" to
"TAB":

LITERAL len = 3;
LITERAL limit = len - 1;
STRING .normal_str[0:limit] := "BAT";
STRING .reversed_str[0:limit];
INT index;

FOR index := limit DOWNTO 0 DO
  reversed_str[limit - index] := normal_str[index];

Nesting FOR Loops You can nest FOR loops to any level.  The following nested FOR loop treats
MULTIPLES as a two-dimensional array.  It fills the first row with multiples of 1, the
next row with multiples of 2, and so on:

INT .multiples[0:10*10-1];
INT row;
INT column;

FOR row := 0 TO 9 DO
  FOR column := 0 TO 9 DO
    multiples [row * 10 + column] := column * (row + 1);

Standard FOR Loops For index, standard FOR loops specify an INT variable.  Standard FOR loops execute as
follows:

When the looping terminates, index is one greater than limit if:

The step value is 1.
The TO keyword (not DOWNTO) is used.
The limit value (not a GOTO statement) terminates the looping.

limit and step are recomputed at the start of every iteration of the loop.
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Standard FOR Loop Execution

Figure 12-6 shows the action of the standard FOR loop.

Figure 12-6.  Standard FOR Loop Execution
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Optimized FOR Loops For index, optimized FOR loops specify a register reserved by a USE statement.
Optimized FOR loops execute faster than standard FOR loops;  they execute as
follows:

When the looping terminates, index is equal to limit.
limit is calculated only once, at the start of the first iteration of the loop.

You optimize a FOR loop as follows:

1. Before the FOR statement, specify a USE statement to reserve an index register.

2. In the FOR statement:

For index, use the identifier of the index register.
Omit the step value (thereby using the default value of 1).
For limit, use the TO keyword.

3. If you modify the register stack, save and restore it before the end of the looping.
(Modifying the register stack, however, is not portable to future software
platforms.)

4. After the FOR statement, specify a DROP statement to release the index register.
Do not drop the index register during the looping.

The following example contrasts a standard FOR loop with an equivalent optimized
FOR loop.  Both FOR loops clear the array by assigning a blank space to each element
in the array:

LITERAL len = 100;
LITERAL limit = len-1;           !Declare ARRAY to use
STRING .array[0:limit];          ! in both FOR loops
INT index;                       !Declare INDEX

FOR index := 0 TO limit DO       !Standard FOR loop;
  array[index] := " ";

USE x;                           !Reserve index register
FOR x := 0 TO limit DO           !Optimized FOR loop
  array[x] := " ";
DROP x;                          !Release index register

For more information on the USE and DROP statements, see the TAL Reference Manual.

Inclusion of procedure calls in the FOR loop slows down the loop because the
compiler must save and restore registers before and after each call.
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Optimized FOR Loop Execution

The execution of optimized FOR loops differs from standard FOR loops as follows:

When the looping terminates, index is equal to limit.
limit is calculated only once—at the start of the first time through the loop.

The following example compares the value of index in standard and optimized FOR
loops:

PROC a MAIN;
  BEGIN
  INT i, j, k;
  FOR i := 1 TO 10 DO k := i;    !Standard FOR loop
  k := i;                        !K is 11

  USE j;
  FOR j := 1 TO 10 DO k := j;    !Optimized FOR loop
  k := j;                        !K is 10

  DROP j;
  END;
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ASSERT Statement The ASSERT statement conditionally invokes the procedure named in an ASSERTION
directive.  It is a debugging or error-handling tool.

To specify the ASSERT statement, include:

ASSERT assert-level

Specifies an integer in the range 0 through 32,767, followed by a colon.  If the
assert-level is equal to or higher than the assertion level specified in the current
ASSERTION directive and if the condition is true, the compiler activates the
procedure specified in the ASSERTION directive.  If the assert-level is lower than
the assertion level, the procedure is not activated.

condition

An expression that tests a program condition and yields a true or false result.

For example, this ASSERT statement specifies an assert-level of 7 and the expression
$CARRY, which tests a program condition:

ASSERT 7 : $CARRY;

$CARRY is a standard function that tests the state of the carry indicator.  If the carry
indicator is on, $CARRY returns a true; if it is off, it returns a false.  The carry indicator
is set when a scan resulting from a SCAN or RSCAN statement is stopped by a 0.  It is
also set by some arithmetic operations.

Using ASSERT
with ASSERTION

You use the ASSERT statement with the ASSERTION directive as follows:

1. Place an ASSERTION directive in the source code where you want to start
debugging.  In the directive, specify an assertion-level and an error-handling
procedure such as the D-series PROCESS_DEBUG_ or the C-series DEBUG system
procedure.  The assertion-level is an integer in the range 0 through 32,767:

?ASSERTION 5, PROCESS_DEBUG_     !Assertion-level is 5

2. Place an ASSERT statement at places where you want to invoke the error-handling
procedure when an error occurs.  In the statement, specify an assert-level that is
equal to or higher than the assertion-level and specify an expression such as
$CARRY that tests a program condition:

ASSERT 10 : $CARRY;              !Assert-level is 10

3. During program execution, if an assert-level is equal to or higher than the current
assertion-level and condition is true, the compiler activates the error-handling
procedure.

4. After you debug the program, you can nullify all or some of the ASSERT
statements by specifying an ASSERTION directive with a higher assertion-level
than the ASSERT statements you want to nullify:

?ASSERTION 11, PROCESS_DEBUG_
     !Assertion-level nullifies assert-level 10 and below
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The following example activates PROCESS_DEBUG_ when an out-of-range condition
occurs:

?SOURCE $SYSTEM.SYSTEM.EXTDECS (PROCESS_DEBUG_)
?ASSERTION 5, PROCESS_DEBUG_
        !Assertion-level 5 activates all ASSERT conditions
SCAN array WHILE " " -> @pointer;
ASSERT 10 : $CARRY;
!Lots of code
ASSERT 10 : $CARRY;
!More code
ASSERT 20 : $OVERFLOW;
        !$OVERFLOW function tests for arithmetic overflow

Nullifying ASSERT
Statements

To make it easier to nullify all ASSERT statements that cover a particular condition, set
all such ASSERT statements to the same assert-level.  In the previous example, if you
specify an ASSERTION directive with an assertion-level of 11, you nullify the two
ASSERT statements that are set at 10.   If you specify an ASSERTION directive set to
30, you nullify all the ASSERT statements.
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CALL Statement You use the CALL statement to call a procedure, subprocedure, or entry-point
identifier, and optionally pass parameters to it.

To specify a CALL statement, you can include:

CALL identifier

Specifies the identifier of a procedure, subprocedure, or entry-point identifier.  As
of the D20 release, the CALL keyword is optional.

parameter-list

Specifies an optional list, enclosed in parentheses, of one or more comma-
separated actual parameters that you want to pass to the called procedure or
subprocedure.  The actual parameters in the list must correspond to the formal
parameters of the called procedure or subprocedure.

Calling Procedures
and Subprocedures

To call a procedure or subprocedure that has no formal parameters, simply include the
identifier of the procedure or subprocedure in the CALL statement:

CALL error_handler;

When a called procedure or subprocedure finishes executing, control returns to the
statement following the CALL statement that invoked the procedure or subprocedure.

To call a procedure or subprocedure that has formal parameters, include the identifier
of the procedure or subprocedure and a list of actual parameters in the CALL
statement:

CALL compute_tax (item, rate, result);

For VARIABLE or EXTENSIBLE procedures, some or all of the formal parameters are
optional.   When you call such a procedure, you can omit some or all of the optional
parameters:

Omitting Parameters Unconditionally

To omit some of the parameters or parameter pairs, use a place-holding comma for
each omitted parameter or parameter pair up to the last specified parameter or
parameter pair.  Here are examples of omitted parameters:

CALL extensible_proc (num, , char, , , eof);

CALL extensible_proc ( , , , , , x);

To omit all parameters, you can specify an empty parameter list or you can omit the
parameter list altogether:

CALL extensible_proc ( );

CALL extensible_proc;

In addition to place-holding commas, you can include comments to keep track of
omitted parameters:

CALL extensible_proc (num, !name!, char, !val!, !size!, eof);
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Omitting Parameters Conditionally

To omit a parameter or parameter pair conditionally, use the $OPTIONAL standard
function (D20 release or later) as described in Section 11, “Using Procedures.”

Calling Functions Callers usually invoke functions by using the function identifier in expressions, as
described in Section 11, “Using Procedures.”  A caller can also invoke functions by
using a CALL statement, in which case the caller ignores the returned value.

Calling Procedures
Declared as Formal

Parameters

Callers can call procedures declared as formal parameters.  If the called procedure is a
VARIABLE or EXTENSIBLE procedure, the caller must provide the appropriate
parameter mask.  For more information, see Section 11, “Using Procedures.”

Passing Parameter Pairs You can pass parameter pairs in the CALL statement, as described in Section 17,
“Mixed-Language Programming.”
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RETURN Statement The RETURN statement returns control to the caller.   If the invoked procedure or
subprocedure is a function, RETURN must return a result.  As of the D20 release,
RETURN can also return a program-specified condition code (CC).

The form of the RETURN statement depends on whether the return is from a function
or from a procedure or subprocedure that is not a function.

Returning From Functions A function should contain a RETURN statement and must return a result-expression to
the caller.  The result-expression can be any arithmetic or conditional expression of the
same data type as specified in the function declaration.  (A function can be a procedure
or a subprocedure.)

If a function lacks a RETURN statement, the compiler issues a warning but the
compilation can complete and the resulting object file can be run.  After the function
executes, it returns a zero.

The following function returns the result-expression 20 in a RETURN statement:

INT PROC a;
  BEGIN
  !Lots of code
  RETURN 20;                 !Return a result from a function
  END;

The following function contains two RETURN statements nested in an IF statement:

INT PROC other (nuff, more); !Declare function with type INT
    INT nuff;
    INT more;
  BEGIN
  IF nuff < more THEN        !IF statement
      RETURN nuff * more     !Return either of two
  ELSE                       ! results based on the
      RETURN 0;              ! condition NUFF < MORE
  END;
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Returning a Condition Code

As of the D20 release, if result-expression is any type except FIXED or REAL(64), a
function can return a cc-expression  and a result-expression.   cc-expression is an INT
expression whose numeric value specifies the condition code value to return to the
caller.  If the cc-expression is:

Less than 0 Set the condition code to less than (<)
Equal to 0 Set the condition code to equal (=)
Greater than 0 Set the condition code to greater than (>)

The following function returns a result and a condition code to inform its caller that
the returned value is less than, equal to, or greater than some maximum value:

INT PROC p (i);
    INT i;
  BEGIN
    RETURN i, i - max_val;   !Return a value and a
  END;                       ! condition code

If you call a function, rather than invoking it in an expression, you can test the
returned condition code:

INT PROC p1 (i);
    INT i;
  BEGIN
  RETURN i;
  END;

INT PROC p2 (i);
    INT i;
  BEGIN
  INT j := i + 1;
  RETURN i, j;
  END;

CALL p1 (i);
IF < THEN ... ;              !Test the condition code
CALL p2 (i);
IF < THEN ... ;              !Test the condition code
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The following procedure returns a condition code that indicates whether an add
operation overflows:

PROC p (s, x, y);
    INT .s, x, y;
  BEGIN
  INT cc_result;
  INT i;
  i := x + y;
  IF $OVERFLOW THEN cc_result := 1
               ELSE cc_result := 0;
  s := i;

  RETURN , cc_result;        !If overflow, condition code
  END;                       ! is >; otherwise, it is =

Returning From
Nonfunction Procedures

In procedures and subprocedures that are not functions, a RETURN statement is
optional.  If you include a RETURN statement, it cannot return a result.

The following procedure returns control to the caller when A is less than B:

PROC something;
  BEGIN
  INT a,
      b;
  !Manipulate A and B
  IF a < b THEN
    RETURN;                  !Return to caller
  !Lots more code
  END;

To return a condition code value, a nonfunction procedure or subprocedure must use
a RETURN statement that includes cc-expression.

In a main procedure, a RETURN statement stops execution of the program and returns
control to the operating system.
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GOTO Statement The GOTO statement unconditionally transfers program control to the statement that
is preceded by the specified label.

To specify a GOTO statement, include a label identifier after the GOTO keyword; for
example:

GOTO label_one;

Local Scope A local GOTO statement can refer only to a local label in the same procedure.  A local
GOTO statement cannot refer to a label in a subprocedure or in any other procedure.

In the following example, a local GOTO statement branches to a local label:

PROC p
  BEGIN
  LABEL calc_a;          !Declare local label
  INT a;
  INT b := 5;

calc_a :                 !Place label at local statement
  a := b * 2;
  !Lots of code
  GOTO calc_a;           !Local branch to local label
  END;

Sublocal Scope A sublocal GOTO statement can refer to a label in the same subprocedure or in the
encompassing procedure.  A sublocal GOTO statement cannot refer to a label in
another subprocedure.

In the following example, a sublocal GOTO statement branches to a local label:

PROC p;
  BEGIN
  LABEL a;               !Declare local label
  INT i;

  SUBPROC s;
    BEGIN
    !Lots of code
    GOTO a;              !Sublocal branch to local label
    END;

  !Lots of code
a :                      !Place label at local statement
  i := 0;
  !More code
  END;
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Usage Guidelines GOTO statements can make a program harder to understand and maintain, but they
are useful when you need to:

Branch to a common exit or common error-handling code after some condition is
met

Exit from the middle of a multidimensional search or loop after some condition is
met

Maximize program performance

For most other circumstances, use conditional control statements such as labeled
CASE, DO, IF, and WHILE.
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Special expressions let you perform specialized arithmetic or conditional operations.
This section describes the special expressions listed in Table 13-1.

Table 13-1.  Special Expressions

Expression Form Kind of Expression Description

Assignment Arithmetic Assigns the value of an expression to a variable

CASE Arithmetic Selects one of several expressions

IF Arithmetic Conditionally selects one of two expressions

Group comparison Conditional Does unsigned comparison of two sets of data

The result of an expression can be of any data type except STRING or UNSIGNED.
The compiler determines the data type of an expression from the data type of the
operands in the expression.  All operands in an expression must have the same data
type, with the following exceptions:

An INT expression can include STRING, INT, and UNSIGNED(1–16) operands.
The system treats STRING and UNSIGNED(1–16) operands as if they were 16-bit
values.  The system:

Puts a STRING operand in the right byte of a word and sets the left byte to 0.

Puts an UNSIGNED(1–16) operand in the right bits of a word and sets the
unused left bits to 0, with no sign extension.  For example, for an
UNSIGNED(2) operand, the system fills the 14 leftmost bits of the word with
zeros.

An INT(32) expression can include INT(32) and UNSIGNED(17–31) operands.
The system treats UNSIGNED(17–31) operands as if they were 32-bit values.  It
places an UNSIGNED(17–31) operand in the right bits of a doubleword and sets
the unused left bits to 0, with no sign extension.  For example, for an
UNSIGNED(29) operand, the system fills the three leftmost bits of the doubleword
with zeros.

In all other cases, if the data types do not match, use type transfer functions (described
in the TAL Reference Manual) to make them match.
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Assignment
Expression

The assignment expression assigns the value of an expression to a variable.

To use an assignment expression, specify:

The identifier of a variable

An assignment operator (:=)

An expression that represents a value of the same data type as the variable.  The
result of the expression becomes the result of the assignment expression.  The
expression can be either:

An arithmetic expression

A conditional expression (excluding a relational operator with no operands),
the result of which has data type INT.

For example, you can increment a variable by specifying an assignment expression in
an IF statement.  As long as A + 1 is not 0 in the following example, the condition is
true and the THEN clause executes:

IF (a := a + 1) THEN ... ;

You can use an assignment expression as an index.  In the following example, A is
incremented and accesses the next array element:

IF array[a := a + 1] <> 0 THEN ... ;

You can use an assignment expression in a relational form.  The following example
assigns the value of B to A, then checks for equality with 0:

IF (a := b) = 0 THEN ... ;

You can use assignment expressions to assign a value to multiple variables:

a := b := c := d := 0;
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CASE Expression The CASE expression selects one of several expressions.  You can nest CASE
expressions.  To use a CASE expression, specify:

CASE selector OF

Specifies an INT arithmetic expression that selects the expression to evaluate.

BEGIN expressions;

Specifies a choice of one or more expressions.  Separate successive expressions with
semicolons.  Each expression must be either:

An INT arithmetic expression

A conditional expression (excluding a relational operator with no operands),
the result of which has data type INT.

The compiler numbers each BEGIN expression consecutively, starting with 0.
When the selector matches the compiler-assigned number of a BEGIN expression,
the expression is evaluated.  The result of expression becomes the result of the
overall CASE expression.

OTHERWISE expression;  (optional)

Specifies an expression to evaluate if the selector does not select one of the BEGIN
expressions.  The OTHERWISE expression and the BEGIN expressions must have all
the same data type.  If you omit the OTHERWISE clause and an out-of-range case
occurs, results are unpredictable.

END

Specifies the end of the CASE expression.

For example, you can use a CASE expression to select the value resulting from one of
several expressions and assign it to variable X.  The expression selected depends on the
value of selector A:

INT x, a, b, c, d;
!Code to initialize variables

x := CASE a OF
       BEGIN
         b; !If A is 0, assign value of B to X.
         c; !If A is 1, assign value of C to X.
         d; !If A is 2, assign value of D to X.
         OTHERWISE –1; !If A is any other value,
       END; ! assign –1 to X.

The CASE expression resembles the unlabeled CASE statement except that the CASE
expression selects an expression, while the unlabeled CASE statement selects a
statement.  (The unlabeled CASE statement is described in the TAL Reference Manual.)
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IF Expression The IF expression conditionally selects one of two expressions, usually for assignment
to a variable.  To use an IF expression, specify:

IF condition

Specifies a condition that, if true, causes the result of the THEN expression to
become the result of the overall IF expression.  If the condition is false, the result of
the ELSE expression becomes the result of the overall IF expression.  The condition is
either:

A conditional expression

An INT arithmetic expression.  If the result of this expression is not 0, the
condition is true.  If the result is a 0, the condition is false.

THEN expression

Specifies an expression to evaluate if the condition is true.  The expression is either:

An INT arithmetic expression

A conditional expression (excluding a relational operator with no operands),
the result of which has data type INT.

ELSE expression (optional)

Specifies the expression to evaluate if the condition is false.  The expression is either:

An INT arithmetic expression

A conditional expression (excluding a relational operator with no operands),
the result of which has data type INT

For example, you can assign either of two arithmetic expressions to VAR depending on
the condition LENGTH > 0:

var := IF length > 0 THEN 10 ELSE 20;

You can include an IF expression, enclosed in parentheses, inside another expression:

var := index +
   (IF index > limit THEN var * 2 ELSE var * 3);

You can nest an IF expression within another IF expression:

var := IF length < 0 THEN -1
       ELSE IF length = 0 THEN 0
            ELSE 1;

The IF expression resembles the IF statement except that:

The THEN and ELSE clauses are both required in the IF expression.
The THEN and ELSE clauses contain expressions, not statements.
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Group Comparison
Expression

The group comparison expression compares a variable with another variable or with a
constant.  In general, to use a group comparison expression, specify these items:

A variable (var1) with or without an index

var1 can be a simple variable, array, simple pointer, structure, structure data item,
or structure pointer, but not a read-only array.

A relational operator.  All comparisons are unsigned regardless of whether you
use a signed or unsigned relational operator.  Relational operators are:

Signed: <, =, >, <=, >=, <>
Unsigned: '<', '=', '>', '<=', '>=', '<>'

An item to which to compare var1.  The item can be one of:

A variable (var2)—a simple variable, array, read-only array, simple pointer,
structure, structure data item, or structure pointer—followed by the FOR
clause

A constant—a number, a character string, or a LITERAL

A constant list

Group comparison expressions often appear in IF statements:

IF var_1 <> 0 FOR n BYTES THEN ... ;

Comparing a Variable
to a Constant List

To compare an array (but not a read-only array) to a constant list, specify the constant
list on the right side of the group comparison expression:

STRING array[0:3];
!Some code here
IF array = [ "ABCD" ] THEN ... ;
                              !Compare ARRAY to constant list

Comparing a Variable
to a Single Byte

To compare a variable to a single byte, enclose a single constant in brackets ([ ]) on the
right side of the group comparison expression.  If the variable has a byte address or is
a STRING structure pointer, the system compares a single byte regardless of the size of
the constant:

STRING var[0:1];
!Some code here
IF var[0] = [5] THEN ... ;    !Compare VAR to a single byte

In the preceding example, if you do not enclose the constant 5 in brackets (or if VAR
has a word address or is an INT structure pointer), the system compares a word,
doubleword, or quadrupleword as appropriate for the size of the constant.  The
following example shows the preceding IF statement with brackets omitted:

IF var[0] = 5 THEN ... ;      !Compare VAR to two bytes
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Comparing a Variable
to a Variable

To compare a variable to another variable, include the FOR clause in the group
comparison expression.  In the FOR clause, specify a count value—a positive INT
arithmetic expression that specifies the number of bytes, words, or elements you want
to compare.

Comparing Bytes

To compare bytes regardless of the data type of var2, specify the BYTES keyword
following the count value in the FOR clause of the group comparison expression.
BYTES compares the number of bytes specified by the count value.  If both var1 and
var2 have word addresses, however, BYTES generates a word comparison for
(count + 1) / 2 words.

For example, you can compare bytes between INT arrays:

LITERAL length = 12;                   !Number of array
                                       ! elements
INT word_array_one[0:length - 1];      !var1
INT word_array_two[0:length - 1];      !var2
INT byte_count;                        !count value (number
                                       ! of bytes to compare)
!Code to assign values to variables
IF word_array_one = word_array_two
    FOR byte_count BYTES THEN ... ;

Comparing Words

To compare words regardless of the data type of var2, specify the WORDS keyword
following the count value in the FOR clause of the group comparison expression.
WORDS compares the number of words specified by the count value.

For example, to compare words instead of doublewords between INT(32) arrays,
multiply LENGTH by 2 and include the WORDS keyword:

LITERAL length = 12;                   !count value (number
                                       !of words to compare)
INT(32) dblw_array_one[0:length - 1];  !var1
INT(32) dblw_array_two[0:length - 1];  !var2

!Code to assign values to arrays
IF dblw_array_one[0] = dblw_array_two[0]
    FOR 2 * length WORDS THEN ... ;
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Comparing Elements

When you compare elements between arrays, you can specify the ELEMENTS
keyword following the count value in the FOR clause of the group comparison
expression.  For example, you can compare doubleword elements between INT(32)
arrays:

INT(32) in_array[0:19];
INT(32) out_array[0:19];

!Code to assign values to arrays
IF in_array <> out_array FOR 20 ELEMENTS THEN ... ;

When you compare array elements (as in the preceding example), the ELEMENTS
keyword is optional but provides clearer source code.

When you compare structure or substructure occurrences, you must specify the
ELEMENTS keyword in the group comparison expression:

STRUCT struct_one[0:9];
  BEGIN
  INT a[0:2];
  INT b[0:7];
  STRING c;
  END;

STRUCT struct_two (struct_one)[0:9];

!Code to assign values to structures
IF struct_one = struct_two FOR 10 ELEMENTS THEN ... ;

Using the Next Address The next address is the address (returned by the group comparison expression) of the
first byte or word in var1 that does not match the corresponding byte or word in var2.

To use the next address, you can declare a simple pointer and then use its identifier
(prefixed by @) in the next-address clause in a group comparison expression.  Here is
an example of the next-address clause:

–> @next_addr_ptr

Here is an example of a group comparison expression that includes the next-address
clause:

array_one = array_two FOR 100 -> @next_addr_ptr ...
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The compiler does a standard comparison and returns a 16-bit next address if:

Both var1 and var2 have standard byte addresses
Both var1 and var2 have standard word addresses

The compiler does an extended comparison (which is slightly less efficient) and
returns a 32-bit next address if:

Either var1 or var2 has a standard byte address and the other has a standard word
address
Either  var1 or var2 has an extended address

Variables (including structure data items) are byte addressed or word addressed as
follows:

Byte addressed STRING simple variables
STRING arrays
Variables to which STRING simple pointers point
Variables to which STRING structure pointers point
Substructures

Word addressed INT, INT(32), FIXED, REAL(32), or REAL(64) simple variables
INT, INT(32), FIXED, REAL(32), or REAL(64) arrays
Variables to which INT, INT(32), FIXED, REAL(32), or REAL(64) simple
         pointers point
Variables to which INT structure pointers point
Structures

After an element comparison, the next address might point into the middle of an
element, rather than at the beginning of the element.

You can, for example, compare the contents of two arrays and then determine from the
next address the first element that does not match:

INT .s_array[0:11] := "$SYSTEM SYSTEM  MYFILE  ",
    .d_array[0:11] := "$SYSTEM USER    MYFILE  ",
    .ptr,
     n;

IF d_array = s_array FOR 12 –> @ptr THEN ... ;

The preceding comparison stops with element [4];  PTR contains the address of
D_ARRAY[4] shown below:

0 1 2 3 4 5 6 7 8 9 ...
$SYSTEM SYSTEM  MYFILE      !Content of S_ARRAY
$SYSTEM USER    MYFILE      !Content of D_ARRAY

To determine the number of array elements that matched, subtract the address of
D_ARRAY[0] from the address in PTR, using unsigned arithmetic:

n := @next_addr_ptr '-' @d_array;
                            !N gets 4 (fifth element)
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Testing the Condition
Code Setting

The system treats the items being compared as unsigned values.  After a group
comparison, you can test the condition code setting by using the following relational
operators (with no operands) in a conditional expression:

< CCL if var1 '<' var2
= CCE if var1 =  var2
> CCG if var1 '>' var2

The following example compares two arrays and then tests the condition code setting
to see if the value of the element in D_ARRAY that stopped the comparison is less than
the value of the corresponding element in S_ARRAY:

INT in_array[0:9];
INT out_array[0:9];

!Code to assign values to arrays
IF d_array = s_array FOR 10 –> ELEMENTS @ptr THEN
  BEGIN                     !They matched
    !Do something
  END
ELSE
  IF < THEN  ... ;          !PTR points to D_ARRAY element
                            ! that is less than the
                            ! corresponding S_ARRAY element
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When you run the TAL compiler, the input is a source file—a file that contains TAL
source text such as data declarations, statements, compiler directives, and comments.

The output from a compilation is an executable or bindable object file that consists of
relocatable code and data blocks.  You can bind object files with other object files into a
new executable or bindable object file.

This section describes:

The TAL compiler
Compiling source files
Binding object files
Compiling with source lists
Compiling with search lists
Compiling with relocatable data blocks
Compiling with saved global data
Collecting cross-references

The Compiler The TAL compiler process is integrated with two other processes—BINSERV and
SYMSERV.  You can govern all three processes by using compiler directives.

The compiler compiles source code, processes compiler directives, and starts BINSERV
and SYMSERV for additional processing.  The compiler also produces any listings that
result from the three processes.

Compiler directives let you select compilation options such as:

Using conditional compilation (IF directive)

Saving compiled global declarations for use in later compilations
(SAVEGLOBALS, USEGLOBALS, BEGINCOMPILATION, and SEARCH
directives)

Checking the syntax without producing an object file (SYNTAX directive)

BINSERV If compilation is successful and the SYNTAX directive is not in effect, BINSERV:

Constructs an object file

Resolves external references by locating pertinent code and data blocks in object
files listed in SEARCH directives and binding them into the object file

Produces binder statistics for inclusion in the compiler listings

You can do further binding by using Binder.

SYMSERV If you compile using the SYMBOLS directive, SYMSERV provides symbol-table
information to the object file for use by the Inspect product.  If you compile using the
CROSSREF directive, SYMSERV generates source-level cross-reference information for
your program.
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Compiling
Source Files

Figure 14-1 shows the source file as input to the compiler and the object file as output
from the compiler.

Figure 14-1.  Compiling a Source File Into an Object File

Source file Object fileTAL compiler
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The source file can include SOURCE directives that read in code from other source
files.  In effect, you can compile more than one source file into an object file, but the
input to the compiler is always a single source file.  The source file and the code that is
read in from other source files by SOURCE directives together compose a compilation
unit.

The compiler accepts information you specify in TACL commands (DEFINE, PARAM,
and ASSIGN) if you issue them before you run the compiler.  These commands are
described in Appendix E, “File Names and TACL Commands.”

Running the Compiler To run the compiler, issue a compilation command at the TACL prompt.  For example,
you can compile the source file MYSOURCE and have the object code sent to the object
file MYOBJECT as follows:

TAL /IN mysource/ myobject

Following are options you can specify in the compilation command.

IN File Option

In the compilation command, the IN file is the source file.  You can specify a file name
or a TACL DEFINE as described in Appendix E.  In the preceding example, the IN file
is MYSOURCE.

The IN file can be an edit-format disk file, a terminal, a magnetic tape unit, or a
process.  The compiler reads the file as 132-byte records.

If you omit the IN file and the TACL product is in interactive mode, the default file is
your home terminal.   In noninteractive mode, the default file is the TACL command
file.  For information about the TACL product, see the TACL Reference Manual.

OUT File Option

The OUT file receives the compiler listings.  The OUT file can be a disk file (not in edit
format), a terminal, a line printer, a spooler location, a magnetic tape unit, or a process.
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In an unstructured disk file, each record has 132 characters; partial lines are filled with
blanks through column 132.  You can specify a file name or a TACL DEFINE name.
The file must exist before you specify its name for the OUT file.  You can create the file
by using the File Utility Program (FUP).

The following example specifies a file named MYLIST as the OUT file:

TAL /IN mysource, OUT mylist/ myobject

The OUT file is often a spooler location, in this case, $S.#LISTS:

TAL /IN mysource, OUT $s.#lists/ myobject

If you specify OUT with no file, you suppress the listings:

TAL /IN mysource, OUT/ myobject

If you omit OUT and the TACL product is in interactive mode, the listings go to the
home terminal.  In noninteractive mode, the listings go to the current TACL OUT file:

TAL /IN mysource/ myobject

TACL Run Options

You can include one or more TACL run options in the compilation command, such as:

A process name
A CPU number
A priority level
The NOWAIT option

For example, you can specify CPU 3 and NOWAIT when you run the compiler:

TAL /IN mysource, CPU 3, NOWAIT/ myobject

Another run option you can specify is the MEM (memory) option, but the compiler
always uses 64 pages.  For information on all the TACL run options, see the RUN
command in the TACL Reference Manual.



Compiling Source files

Compiling Programs

14–4 096254 Tandem Computers Incorporated

Target File Option

The target file is the disk file that is to receive the object code.  You can specify a file
name or a TACL DEFINE name as described in Appendix E.

Previous examples sent the object code to a disk file named MYOBJECT:

TAL /IN mysource/ myobject

If you omit the target file, BINSERV creates a file named OBJECT on your current
default subvolume.  If an existing file has the name OBJECT or the name you specify,
BINSERV purges the file before creating the new target file.  If the existing file is
secured so BINSERV cannot purge it, BINSERV creates a file named ZZBInnnn, where
nnnn is a different number each time.

Compiler Directives

You can include one or more compiler directives in the compilation command.
Precede the directives with a semicolon and separate them with commas.

You can control the compilation listing.  For example, NOMAP suppresses the symbol
map, and CROSSREF produces cross-reference listings:

TAL /IN mysource/ myobject; NOMAP,CROSSREF

You can specify any directive in the compilation command except the following,
which can appear only in the source file:

ASSERTION
BEGINCOMPILATION
DECS
DUMPCONS
ENDIF
IF
IFNOT
PAGE
RP
SECTION
SOURCE

The following directives can appear only in the compilation command:

EXTENDTALHEAP
SQL with the PAGES option
SYMBOLPAGES
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Completion Codes
Returned by the Compiler

When the compiler compiles a source file, it either completes the compilation normally
or stops abnormally.  It then returns a process-completion code to the TACL product
indicating the status of the compilation.  Table 14-1 explains the process-completion
code values.

Table 14-1.  Completion Codes

Code Termination Meaning

0 Normal The compiler found no errors or unsuppressed warnings in the source file.
(Warnings suppressed by the NOWARN directive do not count.)  The object
file is complete and valid (unless a SYNTAX directive suppressed its
creation).

1 Normal The compiler found at least one unsuppressed warning.  (Warnings
suppressed by the NOWARN directive do not count.)  The object file is
complete and valid (unless a SYNTAX directive suppressed its creation).

2 Normal The compiler found at least one compilation error and did not create an
object file.

3 Abnormal The compiler exhausted an internal resource such as symbol table space or
could not access an external resource such as a file.  The compiler did not
create an object file.

5 Abnormal The compiler discovered a logic error during internal consistency checking
or one of the compiler’s server processes terminated abnormally.  The
compiler did not create an object file.

8 Normal The compiler could not use the object file name you specified, so it chose
the name reported in the summary.  The object file is complete and valid.

Binding Object Files You can compile source files into interim object files and then use Binder to bind the
interim object files into a new object file, as shown in Figure 14-2.

Figure 14-2.  Binding Object Files
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Binding can take place:

During a compilation session
After a compilation session
At run time (library binding)

Binding During
Compilation

During compilation, BINSERV constructs a master search list of object files from
SEARCH directives in the source file.  After a successful compilation, BINSERV binds
into the new object file any procedures from object files listed in the master search list
that resolve external references.

You can do further binding on the object file produced by BINSERV by using Binder
or the operating system.

Binding After Compilation After compilation, you can bind object files interactively by using Binder as described
in the Binder Manual.  For example, you can build a target file from separate object
files, display the content of object files, reorder target-file code blocks, produce
optional load maps and cross-reference listings, specify a user run-time library, and
modify the content of named global data blocks and code blocks in the target file.

Binding at Run Time You can build a library of procedures to share at run time among applications or to
extend an application’s code space.  At run time, the operating system binds the
library file to the program file.  You store the run-time library in a separate file, and
then associate the library file with your object file by using any of the following
methods:

A LIBRARY directive in the source file
The Binder SET LIBRARY command, described in the Binder Manual
The TACL RUN LIB command, described in the TACL Reference Manual

The LIBRARY directive lets you specify a user library to search before searching the
system library for satisfying external references.  LIBRARY can appear anywhere on
the compilation command or in the source code:

!Lots of code
?LIBRARY mylib
!More code
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Using Directives
in the Source File

Compiler directives let you:

Specify input source code
Control listings, generate the object code, and build the object file
Perform conditional compilation

A directive line in your source file can contain any number of compiler directives.  You
must start each new directive line and any continuation lines with a question mark (?)
in column 1.

The following directive line contains one directive:

?NOLIST

The following directive lines contain multiple directives:

?NOLIST, NOCODE, INSPECT, SYMBOLS, NOMAP, NOLMAP, GMAP
?CROSSREF, INNERLIST

The following directive line shows a continuation line for the argument list of a
directive:

?SEARCH (file1, file2, file3, file4,
?file5, file6)

If the list of arguments in a directive continues on subsequent lines, you must specify
the leading parenthesis of the argument list on the same line as the directive name:

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
? PROCESS_GETINFO_,
? PROCESS_STOP_)
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Using Directive Stacks Several directives have a compile-time directive stack on which you can push and pop
directive settings.  Directives that have directive stacks are:

CHECK
CODE
DEFEXPAND
ICODE
INNERLIST
INT32INDEX
LIST
MAP

Each directive stack is 32 levels deep.  The compiler initially sets all levels of each
directive stack to the off state.

Pushing Directive Settings When you push the current directive setting onto a directive stack, the current
directive setting of the source file remains unchanged until you specify a new directive
setting.

To push a directive setting onto a directive stack, specify the directive name prefixed
by PUSH.  For example, to push the current setting of the LIST directive onto the LIST
directive stack, specify PUSHLIST.  The other values in the directive stack move down
one level.  If a value is pushed off the bottom of the directive stack, that value is lost.

Popping Directive Settings To restore the top value from a directive stack as the current setting of the source file,
specify the directive name prefixed by POP.  For example, to restore the top value off
the LIST directive stack, specify POPLIST.  The remaining values in the directive stack
move up one level, and the vacated level at the bottom of the stack is set to the off
state.

Directive Stack Example In the following example:

1. LIST is the default setting for the source file.

2. PUSHLIST pushes the LIST directive setting onto the LIST directive stack.

3. NOLIST suppresses listing of sourced-in procedures.

4. POPLIST pops the top value off the LIST directive stack and restores LIST as the
current setting for the remainder of the source file:

!LIST is the default setting for the source file

?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
? PROCESS_GETINFO_, FILE_OPEN_, WRITEREADX, READX)

?POPLIST
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File Names as
Directive Arguments

The following directives accept names of disk files as arguments:

ERRORFILE
LIBRARY
SAVEGLOBALS
SEARCH
SOURCE
USEGLOBALS

A disk file name  consists of four parts, with each part separated by periods:

A D-series node name or a C-series system name
A volume name
A subvolume name
A file ID

Here is an example of a file name:

\mynode.$myvol.mysubvol.myfileid

Partial File Names You can omit any part of the file name except the file ID.  If you specify a partial file
name, the compiler uses the current default node (system), volume, and subvolume as
needed.

For the SEARCH, SOURCE, and USEGLOBALS directives, the compiler can also use
the  node (system), volume, and subvolume specified in TACL ASSIGN SSV (Search
SubVolume) commands.

Logical File Names The following directives accept a logical file name in place of a file name:

ERRORFILE
SAVEGLOBALS
SEARCH
SOURCE
USEGLOBALS

A logical file name is a TACL DEFINE name or a TACL ASSIGN name.

Appendix E gives more information on specifying disk file names, including those
specified in TACL  DEFINE and ASSIGN commands.
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Compiling With
SOURCE Directives

You can specify a SOURCE directive in a source file to read in source code from other
source files.  In the SOURCE directive, specify the source file name, followed by an
optional list of one or more section names enclosed in parentheses.  If you omit the list
of section names, the compiler reads in the entire file.

Section Names If you specify SOURCE with no section names, the compiler processes the specified
source file until an end of file occurs.  The compiler treats any SECTION directives in
the source file as comments.

If you specify SOURCE with section names, the compiler processes the source file until
it reads all the specified sections.  A section begins with a SECTION directive and ends
with another SECTION directive or the end of the file, whichever comes first.

The compiler reads the sections in order of appearance in the source file, not in the
order specified in the SOURCE directive.  If you want the compiler to read sections in
a particular order, use a separate SOURCE directive for each section and place the
SOURCE directives in the desired order.

Nesting Levels You can nest SOURCE directives to a maximum of seven levels, not counting the
original outermost source file.  For example, the deepest nesting allowed is as follows:

1. The MAIN file F sources in file F1.
2. File F1 sources in file F2.
3. File F2 sources in file F3.
4. File F3 sources in file F4.
5. File F4 sources in file F5.
6. File F5 sources in file F6.
7. File F6 sources in file F7.

Effect of Other Directives If LIST and NOSUPPRESS are in effect after a SOURCE directive completes execution,
the compiler prints a line identifying the source file to which it reverts and begins
reading at the line following the SOURCE directive.

You can precede SOURCE with NOLIST to suppress the listings of procedures to be
read in.  Place NOLIST and SOURCE on the same line, because the line containing
NOLIST is not suppressed:

?PUSHLIST, NOLIST, SOURCE $src.current.routines
!Suppress listings; read in external declarations of routines
?POPLIST

If USEGLOBALS is in effect, the compiler ignores all SOURCE directives until it
encounters BEGINCOMPILATION.  For more information on how these directives
interact, see “Compiling With Saved Global Data” later in this section.
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Including System
Procedure Declarations

You can use SOURCE directives to read in external declarations of system procedures
from the EXTDECS files.  In these files, the procedure name and the corresponding
section name are the same.  EXTDECS0 contains the current release version of system
procedures, for example, the D20 version.

In the following D-series example, a SOURCE directive specifies the current version of
system procedures.  A NOLIST directive suppresses the listings for the system
procedures.  Place NOLIST and SOURCE on the same line, because the line containing
the NOLIST directive is not suppressed:

?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0 (
?   PROCESS_DEBUG_, PROCESS_STOP_)
!Suppress listings; read in external declarations of
! current system procedures
?POPLIST

A D-series procedure in the same source file can then call the procedures listed in the
preceding SOURCE directive:

PROC a MAIN;
  BEGIN
  INT x, y, z, error;
  !Code for manipulating x, y, and z
  If x = 5 THEN CALL PROCESS_STOP_;
  CALL PROCESS_DEBUG_;          !Call procedures listed
  END;                          ! in SOURCE directive

To convert the two preceding examples to C-series examples, change the procedure
names PROCESS_STOP_ and PROCESS_DEBUG_ to STOP and DEBUG, respectively.
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Compiling With
Search Lists

You can share data and procedures between object files by specifying search lists of
object file names for resolving unsatisfied external references and validating parameter
lists at the end of the compilation session.

To create search lists of object files, use the SEARCH directive:

?SEARCH (file1, file2, file3)

Creating the
Master Search List

The compiler sends the search list from each SEARCH directive to BINSERV, the
compile-time binder process.  BINSERV appends the file names, in the order specified,
to the master search list for the current source file.

For example, if you specify the following SEARCH directives, the master search list is
in the order FILE2, FILE1, FILE3, and FILE4:

?SEARCH (file2, file1)
!Lots of code
?SEARCH (file3, file4)

Clearing the
Master Search List

You can clear the current master search list at any point in the source file.  BINSERV
uses only the files that remain on the search list at the end of compilation to resolve
external references.

To clear the master search list at any point, specify a SEARCH directive with no file
names.  For example, suppose you specify two search lists that comprise the master
search list.  You can then clear the master search list as follows:

?SEARCH (file1, file2)         !Specify search list

?SEARCH (file3)                !Add FILE3 to search list

?SEARCH                        !Clear master search list
                               ! of FILE1, FILE2, FILE3
!Lots of code
?SEARCH (file4, file5)         !Specify new search list;
                               ! master search list is
                               ! now FILE4 and FILE5
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Searching the
Master Search List

BINSERV searches the object files in the order in which they appear in the master
search list.   If a procedure or entry-point name that resolves an external reference
appears in more than one file, BINSERV uses only the first occurrence.  Thus, the order
in which you specify the files could be important.

Binding the
Master Search List

If the compilation is successful, BINSERV binds the new object file by using
procedures from object files in the master search list to resolve any unsatisfied
references in your program.  If procedures from object files in the search list contain
references to other external procedures or to data blocks, BINSERV tries to resolve
those from object files in the master search list.

This example shows SEARCH directives for external procedures:

?SEARCH partx            !Object file containing PROC_X
PROC proc_x;
  EXTERNAL;

?SEARCH party            !Object file containing PROC_Y
PROC proc_y;
  EXTERNAL;

PROC proc_z;
  BEGIN
  CALL proc_x;
  CALL proc_y;
  END;

Retrieving Global
Initializations

You can use SEARCH to retrieve global initialization values and template structure
declarations as described in “Compiling With Saved Global Data” later in this section.
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Compiling With
Relocatable Data

Blocks

When you compile modules of a program separately or bind TAL code with code
written in other languages, the binding process might relocate some of your global
data.  All global data to be shared with compilation units written in other languages
must be relocatable.

Declaring Relocatable
Global Data

You can declare blocked and unblocked relocatable global data (variables, LITERALs,
and DEFINEs).

Blocked global data declarations are those appearing within BLOCK declarations.
BLOCK declarations let you group global data declarations into named or private
blocks.  Named blocks are shareable among all compilation units in a program.  The
private block is private to the current compilation unit.  If you include a BLOCK
declaration in a compilation unit, you must assign an identifier to the compilation unit
by using a NAME declaration.

Unblocked global data declarations are those appearing outside a BLOCK declaration.
Such declarations are also relocatable and shareable among all compilation units in a
program.

If present in a compilation unit, global declarations must appear in the following
order:

1. NAME declaration
2. Unblocked global data declarations
3. BLOCK declarations
4. PROC declarations

Naming Compilation units

To assign an identifier to a compilation unit, specify the NAME declaration as the first
declaration in the compilation unit.  (If no BLOCK declaration appears in the
compilation unit, you need not include the NAME declaration.)   In the NAME
declaration, specify an identifier that is unique among all BLOCK and NAME
declarations in the target file.  The following example assigns the identifier
INPUT_MODULE to the current compilation unit.

NAME input_module;         !Name the compilation unit

Declaring Named Data Blocks

A named data block is a global data block that is shareable among all compilation
units in a program.  You can include any number of named data blocks in a
compilation unit.  To declare a named data block, specify an identifier in the BLOCK
declaration that is unique among all BLOCK and NAME declarations in the target file.
The following declaration assigns the identifier GLOBALS to the named data block:

BLOCK globals;             !Declare named data block
  INT .vol_array[0:7];     !Declare global data
  INT .out_array[0:34];
  DEFINE xaddr = INT(32)#;
  END BLOCK;
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As of the D20 release, a variable declared in a named data block can have the same
name as the data block.  Modules written in TAL can share global variables with
modules written in C by placing each shared variable in its own block and giving the
variable and the block the same name.  Here is an example of a variable named the
same as the data block:

BLOCK c_var;
  INT c_var;
  END BLOCK;

Declaring Private Data Blocks

A private data block is a global data block that is shareable only among the procedures
within a compilation unit.  You can include only one private data block in a
compilation unit.  The private data block inherits the identifier you specify in the
NAME declaration.  To declare a private global data block, specify the PRIVATE
option of the BLOCK declaration:

BLOCK PRIVATE;             !Declare private global data block
  INT term_num;            !Declare global data
  LITERAL msg_buf = 79;
  END BLOCK;

Specifying the Data Block Location

You can use the AT and BELOW clauses to control where Binder locates a block.  For
example:

AT (0)—to detect the use of uninitialized pointers
BELOW (64)]—to use XX (extended, indexed) machine instructions
BELOW (256)—to use directly addressed global data

For example, you can specify where to allocate data blocks as follows:

BLOCK ext_indexed_stuff BELOW (64);     !Specify location
  INT .EXT symbol_table[0:32760];
  INT .EXT error_table[0:16380];
  END BLOCK;

The following limitations apply to the AT and BELOW clauses:

Using the AT[0] option might cause conflicts if you:

Share data with compilation units written in other languages
Run your program in the CRE
Use 0D as nil for pointers

Some of the AT and BELOW clauses are not portable to future software platforms.
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Declaring Unblocked Data

Place all unblocked global declarations (those not contained in BLOCK declarations)
before the first BLOCK declaration.  Unblocked declarations are relocatable and
shareable among all compilation units in a program.

Here is an example of unblocked data declarations:

  INT a;
  INT .b[0:9];
  INT .EXT c[0:14];
  LITERAL limit = 32;

The compiler places unblocked data declarations in implicit primary data blocks.  As
of the D20 release, the compiler creates implicit data blocks as follows:

A data block named #GLOBAL for all unblocked declarations except template
structures.  A compilation unit can have only one #GLOBAL block.

A data block for each unblocked template structure declaration.  The data block
for a given template structure is given the template name prefixed with an
ampersand (&).

You can bind object files compiled with and without template blocks with no loss of
information.  You can use Binder commands to replace the #GLOBAL and template
blocks in the target file.

Referencing Declarations

A referral structure and the structure layout to which it refers can appear in different
data blocks.  The structure layout must appear first.

In all other cases, a data declaration and any data to which it refers must appear in the
same data block.  The following declarations, for example, must appear in the same
data block:

INT var;                !Declare VAR
INT .ptr := @var;       !Declare PTR by referring to VAR

Allocating Global
Data Blocks

When you compile a program, the compiler constructs relocatable blocks of code and
data that are bound into the object file.  The compiler:

Allocates each read-only array in its own data block in the user code segment in
which the array is referenced

Allocates all other variables in relocatable global data blocks in the user data
segment (except LITERALs and DEFINEs, which require no storage space)

In the user data segment, the compiler creates and names global data blocks that are
primary, secondary, or extended.
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Primary Relocatable Data Blocks

The compiler creates and names primary data blocks as follows:

Primary Block Compiler-Assigned Name

Implicit #GLOBAL

Implicit &template-name   (for each unblocked template structure)

Named The identifier specified in the BLOCK declaration

Private The identifier specified in the NAME declaration

The compiler allocates the following variables in primary data blocks:

Directly addressed variables

Standard or extended pointers (including those you declare and those the
compiler provides when you declare indirect arrays and structures)

The compiler associates the symbol information for the allocated variables with that
data block.   The compiler also associates the symbol information for any LITERALs,
DEFINEs, or read-only arrays declared in that data block, but allocates 0 words of
storage for such declarations.  If a global data block contains only LITERALs,
DEFINEs, or read-only arrays, the compiler creates a primary data block and
associates their symbol information with the data block, but allocates 0 words of
storage for the data block.

Size of Combined Primary Blocks.  After a binding session, the combined primary global
data blocks in the resulting object file must not exceed 256 words.

Secondary Relocatable Data Blocks

The compiler creates and names secondary data blocks as follows:

Secondary Block Compiler-Assigned Name

Implicit .#GLOBAL

Named The identifier specified in the BLOCK declaration, prefixed with a dot (.)

Private The identifier specified in the NAME declaration, prefixed with a dot (.)

Secondary data blocks contain the data of standard indirect arrays and standard
indirect structures.

Extended Relocatable Data Blocks

The compiler names the extended data blocks as follows:

Extended Block Compiler-Assigned Name

Implicit $#GLOBAL

Named The identifier specified in the BLOCK declaration, prefixed with $

Private The identifier specified in the NAME declaration, prefixed with $

Extended data blocks contain the data of extended indirect arrays and extended
indirect structures.
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Example of Data Blocks Created  by the Compiler

Table 14-2 shows the primary, secondary, and extended data blocks the compiler
creates from the example global data declarations, including the names (shown in
boldface) that the compiler gives them.

Table 14-2.  Data Blocks Created by the Compiler

                                               Data Blocks Created by the TAL Compiler

Example Declaration Primary Data Block Secondary Data Block Extended Data Block

Implicit
block INT a;

INT .b[0:9];
INT .EXT c[0:14];
INT(32) .d;
LITERAL lmt = 32;

#GLOBAL contains:
Variable A (1 word)
Pointer for B (1 word)
Pointer for C (2 words)
Simple pointer D (1 word)
LITERAL (0 words)

.#GLOBAL contains:

Data for B (10 words)

$#GLOBAL contains:

Data for C (15 words)

Named
block

BLOCK myglobals;
 INT g;
 INT .h[0:9];
 INT .EXT k[0:14];
 LITERAL one = 1;
 END BLOCK;

MYGLOBALS contains:
Variable I (1 word)
Pointer for J (1 word)
Pointer for K (2 words)
LITERAL (0 words)

.MYGLOBALS
contains:

Data for J (10 words)

$MYGLOBALS contains:

Data for K (15 words)

Private
block

NAME mysource;

BLOCK PRIVATE;
 INT x;
 INT .y[0:9];
 INT .EXT z[0:14];
 DEFINE xaddr =
   INT(32)#;
 INT ro_array = 'P'
   := [0,1];
 END BLOCK;

MYSOURCE contains:
Variable X (1 word)
Pointer for Y (1 word)
Pointer for Z (2 words)
DEFINE (0 words)

Read-only array (0 words)

.MYSOURCE contains:

Data for Y (10 words)

$MYSOURCE contains:

Data for Z (15 words)

Address Assignments

The compiler assigns each direct variable and each pointer an offset from the
beginning of the encompassing global data block.  Within the data block, it allocates
storage for each data declaration according to its data type and size.

Binder uses the address of the data block and the offset within the block to construct
addresses for indirect data in the secondary and extended storage areas.
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Allocation Example

Figure 14-3 shows the global storage allocation resulting from binding object files that
contain BLOCK declarations.  You can rearrange the primary block by using Binder
commands.  Secondary blocks must always follow the primary blocks.

Figure 14-3.  Allocating Global Data Blocks
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Sharing Global Data Blocks Because the length of any shared data block must match in all compilation units, it is
recommended that you declare all shareable global data in one source file.  You can
then share that global data block with other source files as follows:

1. In the source file that declares the data block, specify the SECTION directive at the
beginning of the data block to assign a section name to the data block.  The
SECTION directive remains in effect until another SECTION directive or the end
of the source file occurs:

NAME calc_unit;

?SECTION unblocked_globals         !Name first section
  LITERAL true   = -1,             !Implicit data block
          false  =  0;
  STRING read_only_array = 'P' := [ " ","COBOL",
                          "FORTRAN", "PASCAL", "TAL"];

?SECTION default                   !Name second section
  BLOCK default_vol;               !Declare named block
    INT .vol_array [0:7],
        .out_array [0:34];
    END BLOCK;

?SECTION msglits                   !Name third section
  BLOCK msg_literals;              !Declare named block
    LITERAL
      msg_eof   = 0,
      msg_open  = 1,
      msg_read  = 2;
      END BLOCK;                   !End msglits section

?SECTION end_of_data_sections

2. In each source file that needs to include the sections, specify the file name and the
section names in a SOURCE directive:

NAME input_file;

?SOURCE calcsrc(unblocked_globals) !Specify implicit block
?SOURCE calcsrc(default)           !Specify named block

3. If you then change any declaration within a data block that has a section name,
you must recompile all source files that include SOURCE directives listing the
changed data block.
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Directives for
Relocatable Data

The RELOCATE and INHIBITXX directives help you make sure that your global data
is relocatable.  These directives do not affect local and sublocal variables.

RELOCATE Directive

RELOCATE instructs the compiler and BINSERV to issue warnings if references to
nonrelocatable data occur.  RELOCATE can appear anywhere on the compilation
command or in the source file.  It is effective for the source code that follows it.

The following RELOCATE example shows base-address equivalencing, which declares
nonrelocatable data because it locates variables relative to the global, local, or sublocal
base address.

?RELOCATE
INT i = 'G' + 22;               !Nonrelocatable global data;
                                ! base-address equivalencing
!Some code
i := 25;                        !Compiler emits warning

For more information on base-address equivalencing and the RELOCATE directive,
see the TAL Reference Manual.

INHIBITXX Directive

INHIBITXX suppresses efficient addressing for extended pointers, extended indirect
array elements, and extended indirect structure items located within the first 64 words
of primary global storage.

INHIBITXX has no effect on data declared in BLOCK declarations with the AT (0) or
BELOW (64) option.  The compiler always generates efficient code for such BLOCK
declarations regardless of INHIBITXX.

If the default NOINHIBITXX is in effect, the compiler produces efficient addressing
that might become incorrect if binding relocates extended pointers, extended indirect
array elements, or extended indirect structure items outside the first 64 words.

The INT32INDEX directive overrides INHIBITXX or NOINHIBITXX.
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Specify INHIBITXX or NOINHIBITXX immediately before the global declarations to
which it applies.  The specified directive then applies to those declarations throughout
the compilation.  The following example shows how NOINHIBITXX generates
efficient addressing, while INHIBITXX suppresses efficient addressing:

!Default NOINHIBITXX in effect; assign NOINHIBITXX
! attribute to subsequent declaration.

STRUCT .EXT xstruct[0:9]; !XSTRUCT has NOINHIBITXX
  BEGIN                   ! attribute.
  STRING array[0:9];
  END;

INT index;
STRING var;
?INHIBITXX                !Assign INHIBITXX attribute to
                          ! subsequent declaration.
STRING .EXT xstruct2 (xstruct);
                          !XSTRUCT2 has INHIBITXX attribute.
                          !Preceding declarations are
                          ! allocated in #GLOBAL and
                          ! $#GLOBAL.

PROC my_proc MAIN;
  BEGIN
  @xstruct2 := @xstruct;
  var := xstruct[index].array[0];
                          !Generate efficient addressing
                          ! because XSTRUCT has NOINHIBITXX
                          ! attribute, but if Binder
                          ! relocates #GLOBAL beyond G[63],
                          ! the addressing is incorrect.

  var := xstruct2[index].array[0];
                          !Generate less efficient addressing
                          ! because XSTRUCT2 has INHIBITXX
                          ! attribute; the addressing is
                          ! correct even if Binder relocates
END;                      ! #GLOBAL.
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Compiling With
Saved Global Data

During program development or maintenance, you often need to change procedural
code or data without changing the global declarations.  You can save the global data in
a file during a compilation session and then use the saved global data during a
subsequent compilation.  You can shorten the compile time by not compiling global
declarations each time.

Saving Global Data To save the compiled global data declarations, use the SAVEGLOBALS directive.
SAVEGLOBALS causes the data declarations to be stored as follows:

Identifiers and data characteristics (including data type and kind of variable) in a
global declarations file

Initialization values (including addresses and constant lists) in the object file

Note Whenever you switch to a different version of the compiler, you must create a new global declarations file
by using SAVEGLOBALS.  Otherwise, an error message occurs when you compile to retrieve the saved
globals.  Each version of the compiler expects declarations in a different format.  (C30, D10, and D20, for
example, are different versions of the compiler.)

Retrieving Global Data After a SAVEGLOBALS compilation completes successfully, you can retrieve the
global data declarations and initializations in a subsequent USEGLOBALS compilation
by specifying the following directives:

Directive for Retrieving
Global Data Effect

USEGLOBALS Retrieves global data declarations; suppresses compilation of text lines
and SOURCE directives (but not other directives) until
BEGINCOMPILATION appears

SEARCH Retrieves global initialization values and template structures

BEGINCOMPILATION Begins compilation of text lines and SOURCE directives

Specify BEGINCOMPILATION between the last global data declaration or SEARCH
directive and the first procedure declaration, including EXTERNAL or FORWARD
declarations.  (You must recompile EXTERNAL or FORWARD procedure declarations
in the USEGLOBALS compilation.  SAVEGLOBALS does not save such declarations.)

Note If you specify SAVEGLOBALS and USEGLOBALS in the same compilation, the compiler issues an error
message and uses only the first of the two directives.

If you use CROSSREF with USEGLOBALS, the compiler does not pass Inspect and CROSSREF
symbols information for global identifiers to SYMSERV.
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Saved Global Data
Compilation Session

The following session shows how you can save and retrieve global data.  It also shows
how you can check the syntax of global data declarations and how to save and retrieve
such declarations.

Creating the Source File

Using an editor, you can create a source file, such as MYPROG, that includes
BEGINCOMPILATION and USEGLOBALS.

!Source file MYPROG

!If USEGLOBALS is active, the compiler ignores text lines
! and SOURCE directives (but not other directives) until
! BEGINCOMPILATION appears.

?SOURCE globfile
?SOURCE glbfile1 (section1, section2)
?SOURCE moreglbs
  INT ignore_me1;
  INT ignore_me2;

?BEGINCOMPILATION             !Compile code that follows
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS
?POPLIST

PROC my_first_proc;
  BEGIN
  !Lots of code
  END;

PROC my_last_proc;
  BEGIN
  !Lots of code
  END;

Saving the Global Data

The following compilation command compiles MYPROG and produces object file
MYOBJ.  The SAVEGLOBALS directive saves global declarations in file TALSYM and
the global initializations in object file MYOBJ:

TAL /IN myprog/ myobj; SAVEGLOBALS talsym

Retrieving the Saved Global Data

The following compilation command recompiles MYPROG and produces object file
NEWOBJ.  The USEGLOBALS directive retrieves the saved global declarations from
file TALSYM.  The SEARCH directive retrieves the global initializations from MYOBJ:

TAL /IN myprog/ newobj; USEGLOBALS talsym, SEARCH myobj
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Checking the Syntax of Global Data

The following compilation command compiles source file MYPROG but produces no
object file.  The SAVEGLOBALS directive saves global declarations in file TALSYM.
The SYNTAX directive checks the syntax of the global declarations:

TAL /IN myprog/; SAVEGLOBALS talsym, SYNTAX

You can then recompile and retrieve the saved global declarations (but not the saved
global initializations, because no object file was produced in the preceding
compilation):

TAL /IN myprog/; USEGLOBALS talsym, SYNTAX

Effects of Other Directives When you use the following directives in the SAVEGLOBALS compilation, they affect
subsequent USEGLOBALS compilations as follows:

Directive in
SAVEGLOBALS
Compilation Effect in Subsequent USEGLOBALS Compilations

SYNTAX Negates the need for using SEARCH in the USEGLOBALS compilation because
no object file was produced by the SAVEGLOBALS compilation

INHIBITXX Continues to inhibit generation of extended indexed instructions for extended
pointers located in the first 64 words of primary global area

INT32INDEX Continues to generate INT(32) indexes from INT indexes

PRINTSYM Continues to print symbols in the listing

SYMBOLS Continues to make symbols available for all data blocks that had symbols during
the SAVEGLOBALS compilation

These directives set the corresponding attribute in ensuing variable declarations.  The
compiler saves such information in the SAVEGLOBALS object file along with all the
other information it saves about each variable.
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Compiling With
Cross-References

The CROSSREF directive either:

Collects source-level cross-reference information produced during compilation
Selects the identifier classes for which you want to collect cross-references

The default is NOCROSSREF.

You can specify CROSSREF or NOCROSSREF in the compilation command or any
number of times anywhere in the source file.

Note If you use CROSSREF with USEGLOBALS, the compiler does not pass Inspect and cross-reference
symbols information for global identifiers to SYMSERV.

Selecting Classes You can specify that the compiler collects cross-reference information for one or more
of the following classes:

Class Description

BLOCKS Named and private data blocks

DEFINES Named text

LABELS Statement labels

LITERALS Named constants

PROCEDURES Procedures

PROCPARAMS Procedures that are formal parameters

SUBPROCS Subprocedures

TEMPLATES Template structures

UNREF Unreferenced identifiers

VARIABLES Simple variables, arrays, definition structures, referral
structures, pointers, and equivalenced variables

The default class list includes all classes except UNREF.  The CONSTANTS class is
available in the stand-alone Crossref product, but not in the CROSSREF directive.

You can make changes to the current class list at any point in the compilation unit.
When you specify parameters, CROSSREF and NOCROSSREF only modifies the class
list.  To start (or stop) the collection of cross-references, you must specify CROSSREF
(or NOCROSSREF) without parameters.  The compiler collects cross-references for the
class list in effect at the end of the compilation.
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You add or delete classes from the current class list as follows.  When you list more
than one class, enclose the list in parentheses.

To add classes to the current list, specify CROSSREF and list the classes you want
to add.  The following example adds the one missing class to the default list:

?CROSSREF UNREF

To delete classes from the current list, specify NOCROSSREF and list the classes
you want to delete.  The following example retains the procedure, subprocedure,
block, and template classes by deleting all other classes from the default list:

?NOCROSSREF (DEFINES,LABELS,LITERALS,PROCPARAMS,VARIABLES)

To add and delete classes, specify a CROSSREF that adds classes and a
NOCROSSREF that deletes classes:

?CROSSREF UNREF, NOCROSSREF LITERALS

Collecting
Cross-References

You can collect cross-reference information for individual procedures or data blocks.
When a CROSSREF without parameters appears, it starts collection of cross-references
at the beginning of a procedure or data block and remains in effect until a
NOCROSSREF without parameter appears.  CROSSREF and NOCROSSREF without
parameters do not modify the class list.

For each class in effect at the end of the compilation, CROSSREF without parameters
collects the following information:

Identifier qualifiers—structure, subprocedure, and procedure identifiers
Compiler attributes—class and type modifiers
The name of the host source file
The type of reference—definition, invocation, parameter, write, or other

To start collecting cross-references, specify CROSSREF without parameters.  To stop
collecting cross-references, specify NOCROSSREF without parameters.  For example,
you can stop the collection for the private data block, and then start the collection for a
procedure:

?CROSSREF         !Start collecting cross-references
NAME test;
  INT i;

?NOCROSSREF       !Stop cross-references for BLOCK
BLOCK PRIVATE;
  INT j;
  END BLOCK;

?CROSSREF         !Start cross-references for procedure
PROC p MAIN;
  BEGIN
  !Lots of code
  END;
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You can add and delete classes when you start the collection:

?CROSSREF, CROSSREF UNREF, NOCROSSREF VARIABLES
                  !Start collecting cross-references and
                  ! change the class list
NAME test;
  INT i;

?NOCROSSREF       !Stop cross-references for BLOCK
BLOCK PRIVATE;
  INT j;
  END BLOCK;

?CROSSREF, CROSSREF VARIABLES
                  !Start cross-references for procedure and
                  ! add a class to the class list
PROC p MAIN;
  BEGIN
  !Lots of code
  END;

For other cross-reference options, use the stand-alone Crossref product as described in
the Crossref Manual.  For example, stand-alone Crossref can collect cross-references
from source files written in one or more languages.

Printing Cross-References To print the collected cross-references in the compiler listing, LIST and NOSUPPRESS
(the defaults) must be in effect at the end of compilation.  CROSSREF collects cross-
references even if NOLIST is in effect for all or part of the compilation.  In the compiler
listing, the cross-reference list follows the global map and precedes the load maps.

In the following example, SUPPRESS suppresses part of the cross-reference listing, and
NOSUPPRESS resumes the listing for subsequent code:

!Default LIST and NOSUPPRESS are in effect.
?CROSSREF            !Collect (and list) cross-references
PROC p;
  BEGIN
  !Some code
  END;

?SUPPRESS            !Stop listing cross-references
PROC q;
  BEGIN
  !More code
  END;
?NOSUPPRESS          !Resume listing cross-references
!More code
!LIST and NOSUPPRESS are in effect at the end of compilation.
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The following example makes changes to the current class list and turns the collection
or listing of cross-references on and off:

!Default LIST and NOSUPPRESS are in effect

?CROSSREF, CROSSREF UNREF, NOCROSSREF VARIABLES
                   !Collect (and list) cross-references
NAME test;
  INT i;

?NOCROSSREF        !Stop collecting cross-references
BLOCK PRIVATE;
  INT j;
  END BLOCK;

?CROSSREF, CROSSREF VARIABLES
                   !Resume collecting (and listing)
                   ! cross-references
PROC p MAIN;
  BEGIN
  !Lots of code
  END;

?SUPPRESS          !Stop listing cross-references
PROC q;
  BEGIN
  !More code
  END;
?NOSUPPRESS        !Resume listing cross-references
!Lots more code
!LIST and NOSUPPRESS are in effect at the end of
! compilation.
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This section describes the TAL listing and gives brief samples of the information.  A
TAL listing can consist of:

Page header
Banner
Compiler messages
Source listing
Local or sublocal map
INNERLIST listing
CODE listing
ICODE listing
File map
Global map
Cross-reference listings
LMAP listings
Compilation statistics

Page Header The header for each page consists of:

The page number of the listing
The sequence number for the current source file
The name of the current source file
The date and time of compilation in the form yy-mm-dd hh:mm:ss (not shown)
An optional page heading caused by the PAGE directive or by the compiler

In a listing for multiple source files, the header for pages that contain load maps, cross-
references, and statistics shows the name and number of the first file.  Figure 15-1
shows the format of the header:

Figure 15-1.  Page Headers

Page No.  Source File   Source File Name      Optional Heading

Page 1       [1]        $VOL.PROG1.SOURCE1S
Page 2       [2]        $VOL.PROG1.SOURCE2S   MY ROOT SOURCE FILE
Page 3       [2]        $VOL.PROG1.SOURCE2S   MY ROOT SOURCE FILE
Page 4       [3]        $SHR.MSGXX.IMSGSHRS   INTERPROCESS MESSAGES
Page 59      [1]        $VOL.PROG1.SOURCE1S   GLOBAL MAP
Page 66      [1]        $VOL.PROG1.SOURCE1S   LOAD MAPS
Page 70      [1]        $VOL.PROG1.SOURCE1    BINDER AND COMPILER
                                              STATISTICS
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Banner The first page of the listing contains a banner, which consists of two lines that list the
compiler version and the copyright notice.  Figure 15-2 shows a sample  banner.

Figure 15-2.  Sample Banner

TAL - T9250D20 - (01JUN93)
Copyright Tandem Computers Incorporated 1976, 1978, 1981-1983, 1985,
1987-1993

Directives in
Compilation
Commands

The line following the banner shows the directives you specified in the compilation
command to run the compiler.  For example, if you issue the following compilation
command:

TAL /in mysrc, out mylst/ myobj; FMAP, ICODE

the line following the banner is:

? FMAP, ICODE

The compiler must process the EXTENDTALHEAP, SQL, and SYMBOLPAGES
directives before it processes any other directives.  On a D-series system, if you specify
any of these three directives in the compilation command along with other directives,
the compiler splits the command into two lines in the listing.  The first line lists
EXTENDTALHEAP, SQL, and SYMBOLPAGES, if present.  The second line lists the
remaining directives specified in the command.

For example, suppose you issue the following compilation command:

TAL /in .../ myobj; FMAP, SQL, ICODE, SYMBOLPAGES 4096

In a D-series listing, the directives listed in the preceding compilation command
appear on two lines as follows:

?       SQL,        SYMBOLPAGES 4096
? FMAP,      ICODE

In a C-series listing, the directives listed in the preceding compilation command
appear on the same line:

? FMAP, SQL, ICODE, SYMBOLPAGES 4096

After the list of directives specified in the compilation command, the compiler lists the
source text if the LIST directive is in effect.

Compiler Messages When the compiler detects unusual conditions, it issues diagnostic messages
interleaved with source statements.  BINSERV diagnostic messages appear during and
after the source listing.
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Source Listing If the LIST directive is in effect (the default), the source text is listed line by line.  Each
line consists of:

The edit-file line number
The code-address field
The lexical (nesting) level of the source text
The BEGIN-END pair counter
A text line from the source file

For example, here are two lines from a source listing:

  31.  000021  1  1    IF length THEN BEGIN
  32.  000023  1  2      CALL FILE_OPEN_ (array1, out_file);

413

Edit-file line number

Lexical level

Source text line

Code-address field

BEGIN-END counter

Edit-File Line Number An edit-file line number precedes each line of source text.  For text that is included in
response to a SOURCE directive, the edit-file line numbers correspond to the file
named in the SOURCE directive.

Code-Address Field The code address is a six-digit octal number.  Depending on the line of source text, it
represents an instruction offset or a secondary global count.

For a line of data declarations, the code-address value is a cumulative count of the
amount of secondary global storage allocated for the program.  The count is relative to
the beginning of the secondary global storage.  The beginning address is one greater
than the last address assigned to primary global storage.

For a line of instructions, the code-address value is the address of the first instruction
generated from the TAL source statement on the line.  Normally, the octal value is the
offset from the base of the current procedure; the instruction at the base has an offset
of zero.  Adding the offset to the procedure base address yields the code-relative
address of the instruction.  The procedure base address is listed in the entry-point load
map (described later in this section).

If a procedure or subprocedure has initialized data declarations, the compiler emits
code to initialize the data at the start of the procedure or subprocedure.  The offset or
code address listed for the first instruction is greater than one to allow for the
initialization code.
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If the ABSLIST directive is in effect, the compiler attempts to list the address for each
line relative to location C[0].  The limitations on the use of ABSLIST are given in the
directive description in the TAL Reference Manual.

Lexical-Level Counter The lexical-level counter is a single-digit value that represents the compiler’s
interpretation of the current source line.  The values have the following meaning:

Value Lexical Level

0 Global level

1 Procedure level

2 Subprocedure level

BEGIN-END Pair Counter The BEGIN-END pair counter indicates approximately the nesting of data elements
(such as structures and substructures) and compound statements (such as IF
statements, CASE statements, and CASE expressions).  For unlabeled CASE
statements, the counter also indicates the case selector.

To count BEGIN keywords and to match each with an END keyword in structure
declarations and in instructions that generate code, the compiler increments the
counter for each BEGIN and decrements it for each END.  The compiler displays the
value of the counter for each line of source text, except when it reports CASE selector
values.

When listing a CASE statement body, the compiler reports the case selector in the form
CEn, where n represents the case selector number.  The compiler prints this string in
the BEGIN-END pair counter column of the next line it displays when it has
recognized the corresponding CASE branch.  Because the compiler uses only one pass,
however, by the time the compiler can distinguish an unlabeled CASE statement from
a labeled one, it is usually too late to print the CE0 tag on the first line of case
alternative zero.  If case alternative zero constitutes only one line, the CE0 tag does not
appear at all.

Figure 15-3 shows part of a sample listing page that illustrates the BEGIN-END pair
counter.
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Figure 15-3.  Source Listing

                     ?ICODE, SYMBOLS, SAVEABEND, INSPECT
   2.  000000  0  0  NAME mymodule;
   3.  000000  0  0
   4.  000000  0  0  ?SOURCE outd
Source file:  [2]  $VOL.PROG1.OUTD      1993-04-22  09:22:45
   1.  000000  0  0  !Size declarations
   2.  000000  0  0
   3.  000000  0  0  BLOCK out_data;
   4.  000000  0  0  LITERAL
   5.  000000  0  0    outblklen = 1024,
   6.  000000  0  0    out_rec_len = 256;
   7.  000000  0  0  END BLOCK;
   5.  000000  0  0
Source file:  [1]  $VOL.PROG1.SOURCE1S  1993-05-13  19:18:07
         .
         .
  24.  000000  0  0  PROC myproc;
  25.  000000  1  0    BEGIN
  26.  000000  1  1    STRING array1[0:7] := [" TPR   "];
  27.  000004  1  1    INT array2[0:11];
  28.  000004  1  1    INT length, error;
         .
         .
  31.  000021  1  1    IF length THEN BEGIN
  32.  000023  1  2      CALL FILE_OPEN_ (array1, out_file);
  33.  000032  1  2      IF < THEN BEGIN
  34.  000033  1  3        CALL file_hndle (out_file, error);
         .
         .
  37.  000051  1  3        END;
  38.  000051  1  2      END
  39.  000051  1  1    ELSE BEGIN

Conditional
Compilation Listing

An asterisk (*) in column 10 marks statements not compiled because of a conditional
compilation directive (IF or IFNOT).
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Local or Sublocal Map If the MAP and LIST directives are in effect (the defaults), a map of local or sublocal
identifiers follows the corresponding source listing and gives information on the
identifier class of an object, its variable type, and addressing.  Table 15-1 lists the
column headings and possible values.  Only one of the columns named Addressing
Mode, Offset, or Value appears in the map.

Table 15-1.  Local/Sublocal Map Information

Column
Heading

Meaning Possible Value

Class The Identifier class of the item.
Variable (bytes-in-octal) denotes a
structure.

Variable
Variable  (bytes-in-octal)
Subproc
Entry
Label
Define
Literal

Type For a VARIABLE class item, the
data type or kind of structure.
STRUCT-I denotes an INT structure
pointer.

STRING
INT
INT(32)
REAL
REAL(64)
FIXED
STRUCT
STRUCT-I
SUBSTRUCT
TEMPLATE  (bytes-in-octal)

Addressing
Mode

The direct or indirect addressing
mode of the item.

Direct
Indirect

Offset The offset of a SUBPROC, ENTRY,
or LABEL, relative to the base of
the mapped PROC or SUBPROC.
For a nested SUBPROC, the base
corresponds to the current map.

%nnnnnn

Value The value of a LITERAL or the text
of a DEFINE truncated at the end of
the listing line.

LITERAL value
DEFINE text

Relative
Address

For data, the base (L+, L-, P+, S-,
or X) and the offset from the base in
octal

L+nnn  (local variable)
L–nnn   (local parameter)
P+nnn  (read-only array)
S–nnn  (sublocal parameter or variable)
X00n    (index register)
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Figure 15-4 shows a local map that corresponds to the following hash procedure:

INT PROC compute_hash (name, table_len);
    INT .name;
    INT(32) table_len;
  BEGIN
  INT int_table_len := $INT (table_len);
  INT hash_val := 0;
  USE name_index;
  USE name_limit;

  name_limit := name.<8:14>;
  FOR name_index := 0 TO name_limit DO
    hash_val := ((hash_val '<<' 3) LOR
    hash_val.<0:2>) XOR name[name_index];
  DROP name_index;
  DROP name_limit;
  RETURN $UDBL($INT (hash_val '*' 23971)) '\'
    int_table_len;
  END; !compute_hash

Figure 15-4.  Local Map

                                          Addressing        Relative
Identifier        Class        Type       Mode              Address

HASH_VAL          Variable     INT        Direct            L+002
INT_TABLE_LEN     Variable     INT        Direct            L+001
NAME              Variable     INT        Indirect          L-005
TABLE_LEN         Variable     INT(32)    Direct            L-004

INNERLIST Listing If the INNERLIST and LIST directives are in effect, the compiler lists the instruction
mnemonics generated for each statement after that statement.  If optimization is
performed, the compiler first lists the original code and then reports “Optimizer
replacing the last n instructions” and lists the optimized code.

Figure 15-5 shows a sample INNERLIST listing that corresponds to the previous hash
procedure.
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Figure 15-5.  INNERLIST Listing

                        ?INNERLIST
     1     000000  0  0 INT PROC compute_hash (name, table_len);
     2     000000  1  0     INT .name;
     3     000000  1  0     INT(32) table_len;
     4     000000  1  0   BEGIN
     5     000000  1  1   INT int_table_len := $INT (table_len);
     6     000000  1  1   INT hash_val := 0;
     7     000000  1  1   USE name_index;
000000  1  LDD    L-004
000001  0  STAR       0
000002  1  LDI     +000
000003  7  PUSH     711
     8     000004  1  1   USE name_limit;
     9     000004  1  1
    10     000004  1  1   name_limit := name.<8:14>;
000004  0  LOAD L-005,I
000005  0  LRS       01
000006  0  ANRI    +177
000007  7  STAR       6
    11     000010  1  1   FOR name_index := 0 TO name_limit DO
000010  0  LDI     -001
000011  0  STAR       7
Optimizer replacing the last 2 instructions.with next 1
000010  7  LDXI  -001,7
000011  0  LDRA       6
000012  0  BUN     +000
    12     000013  1  1     hash_val := ((hash_val '<<' 3) LOR
    13                      hash_val.<0:2>) XOR name[name_index];
000013  1  LOAD   L+002
000014  1  LLS       03
000015  2  LOAD   L+002
000016  2  LRS       15
000017  1  LOR
000020  2  LOAD L-005,I,7
000021  1  XOR
000022  0  STOR   L+002
000023  7  BOX   -011,7
    14     000024  1  1   DROP name_index;
    15     000024  1  1   DROP name_limit;
    16     000024  1  1   RETURN $UDBL ($INT (hash_val '*' 23971)) '\'
    17                      int_table_len;
000024  0  LDI     +000
000025  1  LOAD   L+002
000026  2  LDLI    +135
000027  2  ORRI     243
000030  2  LMPY
000031  1  STAR       1
000032  2  LOAD   L+001
000033  1  LDIV
000034  0  STRP       0
000035  0  EXIT     006
    18     000036  1  1   END; !compute_hash
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CODE Listing If the CODE and LIST directives (the defaults) are in effect, the compiler produces an
octal code listing following the local map if one exists.

Figure 15-6 shows a sample CODE listing that corresponds to the previous hash
procedure.  The octal address in the leftmost column is the offset from the procedure
base.  (If ABSLIST is in effect, the compiler attempts to list addresses relative to the
code segment.)  Each octal address is followed by eight words of instructions to the
end of the procedure.

Figure 15-6.  CODE Listing

Address  Octal Instruction Words

000000   060704  000110  100000  024711  140705  030101  006177  000116
000010   103777  000136  010410  040402  030003  040402  030115  000011
000020   143705  000012  044402  013767  100000  040402  005135  004243
000030   000202  000111  040401  000203  000100  125006

ICODE Listing If the ICODE and LIST directives are in effect, the compiler produces an instruction
code mnemonic listing.  Figure 15-7 shows a sample ICODE listing that is equivalent to
the CODE sample.

Figure 15-7.  ICODE Listing

Line  Address  Instruction Mnemonics

9.    000000   1 LDD   L-004    0 STAR      0  1 LDI    +000  7 PUSH  711
10.   000004   0 LOAD  L-005,I  0 LRS      01  0 ANRI   +177  7 STAR  6
11.   000010   7 LDXI   -001,7  0 LDRA      6  0 BUN    +010
13.   000013   1 LOAD  L+002    1 LLS      03  2 LOAD  L+002  2 LRS   15   1 LOR   2 LOAD
                                                                                    L-005,I,7
      000021   1 XOR            0 STOR  L+002  7 BOX    -011,7
15.   000024   0 LDI    +000    1 LOAD  L+002  2 LDLI   +135  2 ORRI  243  1 LMPY  2 STAR  1
      000032   2 LOAD  L+001    1 LDIV         0 STRP      0  0 EXIT  006

Global Map If the GMAP, MAP, and LIST directives are in effect, the global map lists all identifiers
in the compilation unit.  If  the NOMAP directive appears at the end of the source file,
the compiler suppresses the global map but not the local maps. Figure 15-8 shows
sample entries of a global map.
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Figure 15-8.  Global Map

Identifier     Class        Type        Class-Specific Information

PROCESS_STOP_  PROC                     EXTERNAL
ABENDPARAM     DEFINE                   OPTIONS.<10:10>
AB_OPENERR     DEFINE                   %B00000000001D
ACCESS_JNK     DEFINE                   ASSIGN.OPTION1.<05:05>
ACCESS_INFO    VARIABLE     TEMPLATE,402
 1  INCL_LEN          0,2   INT
 1  AC                2,2   INT
AC_INFO_DEF    DEFINE                   BEGIN  INT INCL_LEN; INT AC[0:
ADD_           LITERAL      INT         %000021
ALL_FCB        DEFINE                   INT.$1[0:FSIZE-1]:=[FSIZE,%000
AP_BLOCK       BLOCK
AP_FILE_OK     PROC         INT         EXTERNAL
BLIST_CTL      VARIABLE,4   STRUCT      INDIRECT   BLST_P=001
COD_PTR        VARIABLE     INT(32)     DIRECT     AP_BLOCK+002
COMPRS         VARIABLE     INT         DIRECT     AP_BLOCK+011
DIMEN_INFO     VARIABLE     TEMPLATE,16
 1  NUM               0,2   INT
 1  DOUCE             2,2   INT
 1  DIM_T             4,12  SUBSTRUCT
     2 LOW_C          4,1   STRING
     2 UP_C           5,1   STRING
     2 LOW_B          6,4   INT(32)
     2 UP_B          12,4   INT(32)
FILE_GETINFO_  PROC                     EXTERNAL
FNAMECOLLAPSE  PROC                     EXTERNAL

In the preceding example, the C-series equivalent for the D-series PROCESS_STOP_
procedure is ABEND; for FILE_GETINFO_, it is FILEINFO.

File Name Map When the FMAP directive is in effect, the compiler prints the file map, starting with
the first file it encounters and reporting each file introduced by SOURCE directives
and TACL ASSIGN and DEFINE commands.  The file map shows the complete name
of each file and the date and time when the file was last modified.  Figure 15-9 shows
the file map format for a multisource file listing.

Figure 15-9.  File Name Map

FILE MAP BY ORDINAL

File No.    Date           Time           Source File

[1]         1992-12-31     15:30:14       $VOL.PROG1.SOURCE1S
[2]         1993-02-27     12:42:19       $VOL.PROG1.SOURCE2S
[3]         1993-02-29      2:32:34       $SHR.MSGXX.IMSGSHRS
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Cross-Reference
Listings

To collect cross-reference information, specify the CROSSREF directive without
parameters.  If LIST and NOSUPPRESS (the defaults) are in effect at the end of the
source file, the cross-reference listings follow the global map.  These listings are:

Source-file cross-reference listing (the first page)
Identifier cross-reference listing (subsequent pages)

Source-File
Cross-References

Figure 15-10 shows the format of a source-file cross-reference listing.  It gives the
following information for each source file in the compilation:

File sequence number in the compilation
File name from a TAL RUN command or a SOURCE directive
Name of the source file that contained the SOURCE directive if any
Edit-file line number of the SOURCE directive if any

Figure 15-10.  Source-File Cross-Reference Listing

CROSSREF CROSS-REFERENCE PROGRAM-T9622D20 (01JUN93)           SYSTEM \X
Copyright Tandem Computers Incorporated 1982-1986, 1989-1993

File No.        Filename

 [1]            $VOL.PROG1.SOURCE1S
 [2]            $VOL.PROG1.SOURCE2S              SOURCE1S[1]      0.1
 [3]            $SYSTEM.SYSTEM.GPLDEFS           SOURCE2S[2]      2
 [4]            $VOL.PROG1.SOURCE4S              SOURCE1S[1]      7
 [5]            $SYSTEM.SYSTEM.EXTDECS           SOURCE1S[1]      8

Identifier Cross-References The identifier cross-reference listing gives the following information about each
specified identifier class:

Identifier qualifiers—structure, subprocedure, and procedure identifiers
Compiler attributes—identifier class and type
Host source file
Reference lines—type of references (read, write, declaration, or other)

Identifier Qualifiers

An item declared within a structure, subprocedure, or procedure can have from zero
to three levels of qualifiers (listed immediately following the identifier name).  Here is
an example that shows the ordering of qualifier levels:

OF mystruct   OF mysubproc   OF myproc
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The qualifier field varies according to the following rules:

If an identifier has no qualifier, it is a global item.

GLOBAL_X

If an identifier has one qualifier, it is declared in a global structure or in a
procedure.

ITEM_A   OF GLOB_STRUCT_OR_PROC

If an identifier has two qualifiers, it is declared in either a structure or
subprocedure within a procedure.

ITEM_B   OF LOC_STRUCT_OR_SUBPROC   OF PROC_P

If an identifier has three qualifiers, it is declared in a structure within a
subprocedure within a procedure.

ITEM_C   OF SUBLOC_STRUCT   OF SUBPROC_Q   OF PROC_P

Compiler Attributes

Compiler attributes are class (as specified in the CROSSREF directive) and type
modifiers as listed in Table 15-2.

Table 15-2.  Compiler Attributes

Class Modifiers

BLOCK None

DEFINE None

ENTRY Type

LABEL None

LITERAL Type

PROC Type, EXTERNAL

SUBPROC Type

TEMPLATE None

VARIABLE Type, DIRECT or INDIRECT

UNDEFINED None

Types that apply to the ENTRY, PROC, SUBPROC, and LITERAL classes are STRING,
INT, INT(32), REAL, REAL(64), and FIXED.  Type FIXED includes the scale if it is
nonzero.

Types that apply to the VARIABLE class are those listed in Table 15-2 plus STRUCT,
SUBSTRUCT, STRUCT-I, STRUCT-S and UNSIGNED.
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Host Source File

The abbreviated edit-file name of the host source file appears on the same line as the
identifier name.  The sequence number assigned to the source file appears in brackets.
The line number where the declaration starts accompanies the file name.  An example
is:

SOURCE1S[23]  137

Reference Lines

Reference lines include an entry for each reference in the compilation.  For each
reference line except read references, an alphabetic code indicates the type of
reference.  Codes are D (definition), I (invocation), P (parameter), W (write), and M
(other).  Refer to the Crossref Manual for additional information.

Identifier Cross-Reference Example

The identifier cross-reference pages begin with the format shown in Figure 15-11.  The
header line (only on the first page of references) lists the total number of symbols
referenced and the total number of references.

Figure 15-11.  Identifier Cross-Reference Listing

152 TOTAL SYMBOLS COLLECTED WITH 61 TOTAL REFERENCES COLLECTED

ALLOCATE_CBS          DEFINE                   GPLDEFS[3]     15     GPLDEFS[3]  198
ALLOCATE_FCB          DEFINE                   GPLDEFS[3]     27     SOURCE2S[2]   5
ASSIGN_BLOCKLENGTH    INT LITERAL              GPLDEFS[3]     81     GPLDEFS[3]   81.1   135
DEFAULT_VOL           INT DIRECT VARIABLE      SOURCE4S[4]     2     SOURCE1S[1]  14 W
MESSAGE OF STARTUP    INT INDIRECT VARIABLE    SOURCE1S[1]    12     SOURCE1S[1]   11 D    14
MSG_CLOSE             EXTERNAL PROC            SOURCE4S[4]    10     SOURCE1S[1]  28 I
RUCB                  INT INDIRECT VARIABLE    SOURCE2S[2]     5     SOURCE1S[1]  18 P

LMAP Listings Depending on the LMAP directive option in effect, BINSERV produces one of the
following maps:

Directive Kind of Load Map

LMAP Same as LMAP ALPHA, the default

LMAP ALPHA Procedures and data blocks, ordered by name (the default)

LMAP LOC Procedures and data blocks, ordered by starting address

LMAP XREF Procedure and data-block cross-references for the object file

LMAP * Procedures and data blocks, ordered by name and by starting address, plus
cross-references for the object file
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Entry-Point Load Map The entry-point load map gives information about each procedure entry point.  Table
15-3 describes the information in each column of the map.

Table 15-3.  Entry-Point Load Map Information

Column Meaning

SP Code segment number specifier for the entry point

PEP Sequence number of the entry point in the Procedure Entry Point (PEP) table

BASE Base address of the procedure defining the entry point

LIMIT End address of the procedure defining the entry point

ENTRY Address of executable code for the entry point

ATTRS Attributes of the entry point:  C (CALLABLE), E (ENTRY), I (INTERRUPT), M
(MAIN), P (PRIVILEGED), R (RESIDENT), V (VARIABLE), X (EXTENSIBLE)

NAME Entry-point name

DATE Date of compilation

TIME Timestamp of the compilation

LANGUAGE Source language of the procedure

SOURCE FILE File name of the source code for the procedure

Figure 15-12 shows the format of a sample entry-point load map by name.

Figure 15-12.  Entry-Point Load Map by Name

ENTRY POINT MAP BY NAME

SP  PEP  Base    Limit   Entry   Attrs  Name       Date     Time   Language  Source File

00  031  010345  043630  0010420        MY_PROC    11FEB93  18:13  TAL       $JNK.PRG1.SRCE1S
00  073  032224  032636  032224   V     ANY_PROC   11FEB93  10:29  TAL       $JNK.PRG1.SRCE2S
00  020  000736  001072  000736   M     MAIN_PROC  11FEB93  13:38  TAL       $JNK.PRG1.MAINS
00  367  131432  131441  131432   E     SORT_PROC  11FEB93  18:14  TAL       $JNK.PRG1.SORTS

Data-Block Load Maps BINSERV produces a data-block map and a read-only data-block map for primary and
secondary global blocks.  The data-block map lists the following kinds of data blocks:

Named blocks, listed by BLOCK declaration name
Private blocks, listed by NAME declaration name
#GLOBAL, .#GLOBAL, and $#GLOBAL implicit global data blocks
&template-name implicit global data blocks

The read-only data-block map lists global read-only arrays, listed by name.
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Table 15-4 describes the information that the data-block load map and the read-only
data-block load map give for each data block.

Table 15-4.  Data-Block Load Map Information

Column Meaning

BASE Base address of the block

LIMIT End address of the block (blank if block is empty)

TYPE Binder data-block type; for TAL code, only the common blocks and the two special
blocks, $EXTENDED#STACK and EXTENDED#STACK#POINTERS, can occur

MODE Word or byte addressing

NAME Data-block name

DATE Date of compilation in the form ddmmmyy

TIME Timestamp for the compilation in the form hh:mm

LANGUAGE Source language of the block

SOURCE FILE Edit-file name of the source file containing the block declaration

Figure 15-13 shows the format of a data-block load map by location.

Figure 15-13.  Data-Block Load Map by Location

DATA BLOCK MAP BY LOCATION

Base      Limit     Type      Mode    Name       Date       Time     Language   Source File

000000    000014    COMMON    WORD    GLOBAL_    11FEB93    13:38    TAL        $VOL.PRG.GLBS
000015    000015    COMMON    WORD    LIB_PUB

Figure 15-14 shows the read-only data-block map.  The leftmost column in this map
gives the code segment number specifier for each read-only array.

Figure 15-14.  Read-Only Data-Block Load Map by Location

READ-ONLY DATA BLOCK MAP BY LOCATION
CODE SPACE 00

SP    Base      Limit     Type      Mode   Name   Date      Time    Language   Source File

00    000025    000417    COMMON    WORD   HASH   11FEB93   10:48   TAL        $VOL.PRG.SRC1S
00    000055    000442    COMMON    WORD   TAB    11FEB93   10:48   TAL        $VOL.PRG.SRC1S
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Compilation Statistics The compiler prints compilation statistics at the end of each compilation.  If the
SYNTAX directive is in effect or if source errors occur, the compiler does not print any
other statistics.  Figure 15-15 shows the statistics emitted when source errors stop the
compilation.

Figure 15-15.  Compiler Statistics

PAGE 3   $TRMNL [0]                     BINDER AND COMPILER STATISTICS

  TAL - Transaction Application Language-T9250D20 - (01JUN93)
  Number of compiler errors =  5
  Last compiler error on page # 2 IN PROC C
  Number of unsuppressed compiler warnings = 1
  Number of warnings suppressed by NOWARN = 0
  Last compiler warning on page # 1
  Maximum symbol table space used was =       562 bytes
  Number of source lines= 22
  Compile cpu time = 00:00:45
  Total Elapsed time = 00:02:58

Object-File Statistics If an object file results from the compilation, the compiler prints the following
BINSERV statistics preceding the compiler statistics:

Name of the constructed object file
Timestamp of the constructed object file
Number of words of primary data area
Number of words of secondary data area
Number of code pages
Minimum number of data pages required for data space allocation
Number of resident pages required for total code space allocation
Number of extended data pages allocated
Top of stack location
Number of code segments
Number of binder warnings
Number of binder errors
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Figure 15-16 shows sample BINSERV statistics.

Figure 15-16.  Object-File Statistics

PAGE 91   \SYS.$VOL.SUBV.SRC [1]        BINDER AND COMPILER STATISTICS

BINDER - OBJECT FILE BINDER - T9621D20 - (01JUN93)           SYSTEM \X
Copyright Tandem Computers Incorporated 1982-1993

Object file name is $XVOL.XSUBVOL.OFILE
TIMESTAMP 1993-2-11 16:48:21

        45  Code pages

        64  Data page
         0  Resident code pages
         0  Resident data pages

       144  Top of stack location in words

         1  Binder Warnings
         0  Binder Errors

TAL - Transaction Application Language - T9250D20 - (01JUN93)
Number of compiler errors = 0
Number of unsuppressed compiler warnings = 0
Number of warnings suppressed by NOWARN = 0
Maximum symbol table space used was = 128338 bytes
Number of source lines = 6467
Compile cpu time = 00:01:32
Total Elapsed time - 00:07:47

Because the compilation unit includes SEARCH directives that cause previously
compiled object code to be bound with the source code, the number of source lines is
small compared to the generated code.

If a compilation ends due to a BINSERV error, the compiler prints statistics including
the BINSERV banner, the message “No object file created,” and the number of
BINSERV errors and warnings.
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Running Programs After the compiler produces an executable object file for your program, you can run
the program by using the TACL RUN command.  This command is summarized here
and described fully in the TACL Reference Manual.

In the RUN command, specify the name of an executable object file and run options if
any.  The following example runs an object file named MYPROG with no run options:

RUN myprog

Specifying Run Options When you run a program, you can include any of the TACL RUN command options.
Specify the run options in a comma-separated list, enclosed in slashes (/):

RUN myprog /IN myfile, LIB mylib/

Following are some commonly used options.

IN File Option

The IN file can, for example, be a terminal, a disk file, or a process.  Your program is
given the IN file name and can use the file as it wishes.  If you omit an IN file, your
program uses the default input file (normally the home terminal).  For example, you
can specify MYFILE as the IN file in the RUN command:

RUN myprog /IN myfile/

OUT File Option

The OUT file can, for example, be a terminal, a disk file, a printer, a spooler location, or
a process.  Your program is given the OUT file name and can use the file as it wishes.
If you omit an OUT file, the output goes to the default output device (normally the
home terminal).  For example, you can specify a spooler location as the OUT file in the
RUN command:

RUN myprog /OUT $s.#host/

LIB File Option

You can specify the name of a user library file to satisfy external references in the
program.  A library file is an object file that contains user-written procedures.  If you
specify a user library file in the RUN command, the system searches that library file
before searching the system library file.  For example, you can specify MYLIB as the
LIB file in the RUN command:

RUN myprog /LIB mylib/

Once you specify a user library file, the program uses it for all subsequent runs of the
program until you specify another library or LIB with no file name.  The latter means
that no user library file is used.
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MEM Pages Option

You can use the MEM (memory) option in the RUN command to increase the number
of memory pages for your program’s data.  For the MEM value, specify an integer in
the range 1 through 64.  For example, you can specify 40 memory pages in the RUN
command:

RUN myprog /MEM 40/

If you omit the MEM option or if the MEM value is less than the compile-time or bind-
time memory-pages value (described next), the system uses the larger value.

Compile-Time Memory-Pages Value.  In your source file or in the compilation command,
you can use the DATAPAGES directive to increase the number of memory pages.  For
example, you can specify 33 memory pages in your source file:

?DATAPAGES 33

In your source file, you can also increase the number of memory pages by calling the
C-series NEWPROCESS procedure or the D-series CREATE_PROCESS_  procedure
and passing a memory-pages parameter.

If you do not specify the number of memory pages or if you specify an insufficient
value, BINSERV allocates sufficient pages for global data and two times the space
needed for local data.

Bind-Time Memory-Pages Value.  In Binder, you can use SET command options to set the
memory-pages value as described in the Binder Manual.

NOWAIT Option

If you use the NOWAIT option, the program runs in NOWAIT mode, and the TACL
product does not pause while your program runs.  Instead, TACL displays a
command input prompt after sending the startup message to the new process.  You
can specify the NOWAIT option in the RUN command as follows:

RUN myprog /LIB mylib, NOWAIT/

If you omit the NOWAIT option, the program runs in WAIT mode, and the TACL
product pauses while the program runs.
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Passing Run-Time
Parameters

You can pass parameters to a program at run time in the RUN command.  The syntax
and meaning of the parameters are dictated by the program.  For example, you can run
the program AVERAGE and pass five parameters to the program as follows:

RUN average 8 99 571 28 5

You can group several words into a single parameter by enclosing them in quotation
marks; for example:

RUN mystery "The butler did it."

You can include a quotation mark as part of a parameter by using two quotation
marks; for example:

RUN books """Raw Deal"" by I. M. Poor"

Stopping Programs You can let a program execute until completion or until a run-time error stops the
program.  You can also stop a program before it completes execution in any of the
following ways:

If the program runs in NOWAIT mode, enter the STOP command at the TACL
prompt.

If the program runs in WAIT mode, press the BREAK key and enter the STOP
command at the TACL prompt.

In a C-series source file, call the STOP system procedure.  (STOP ends a process
normally and ABEND ends a process abnormally.)  Declarations for system
procedures are located in the EXTDECS file.

In a D-series source file written for a language-specific run-time environment
outside the CRE, call the PROCESS_STOP_ system procedure.

PROCESS_STOP_  replaces STOP and ABEND;  it ends a process normally or
abnormally depending on the parameter you specify, as described in the Guardian
Procedure Calls Reference Manual.

In a D-series source file written for the CRE, call the CRE_TERMINATOR_ routine,
described in the CRE Programmer’s Guide .

When a program stops, it can return a status message, a completion code value, and
additional information to the process that started it (usually a TACL product).

Run-Time Errors Some programming errors or program-usage errors are detected at run time rather
than at compile time (for example, arithmetic overflow TRAP#2).  The Guardian
Procedure Errors and Messages Manual lists system run-time diagnostic messages.  The
Guardian Programmer’s Guide provides information on error processing and error
recovery.
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Debugging Programs You can use the Inspect or Debug product to debug your program.  Debug is the
default debugger on the system; however, it displays values only by machine address
and only in octal or ASCII base.  For symbolic debugging, you can use the Inspect
product.

Using the Inspect Product In high-level Inspect mode, you can display values by variable name or statement
number.  In low-level Inspect mode, you can display values by machine address.  By
default, values display in decimal base.

You can step through your program a statement at a time or you can set breakpoints at
points in your program at which you want to suspend execution.  Each time your
program pauses, you can display values to determine what is happening during
execution.

Requesting the
Inspect Product

To request the Inspect product, use the INSPECT directive in the compilation.  To
request the high-level Inspect mode, use the SYMBOLS directive in the compilation.
SYMBOLS saves your program symbols in the object file for use in Inspect sessions.

You can specify the INSPECT and SYMBOLS directives in the compilation command
or in your source file.  The following example shows a directive line in a source file.

?INSPECT, SYMBOLS

Compiling the Source File When your source file is completed, you can compile the source file by issuing a
compilation command at the TACL prompt:

TAL /IN mysrc/ myprog

Starting the
Inspect Session

You can start the Inspect session and the object file by issuing the RUND (debugger)
command at the TACL prompt:

RUND myprog

Your program drops into high-level Inspect mode and suspends program execution
before the first instruction in your program executes.  While the program is
suspended, you can use Inspect commands to request breakpoints, step through the
program, display program results, and so on.
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Setting Breakpoints A breakpoint is a location within your program at which to suspend execution so you
can use Inspect commands to check results at that point.  Usually, you request at least
one breakpoint at the Inspect prompt before the first instruction in your program
executes.  For example, you can set an unconditional breakpoint at a statement or at an
edit line number.

If you set an unconditional breakpoint at a statement, the program suspends execution
before the first machine instruction generated for that statement executes.  The
following example sets a breakpoint at the eighth statement from the beginning of
MYPROC:

BREAK #myproc + 8 STATEMENTS

If you set an unconditional breakpoint at an edit line number, the program suspends
execution immediately before that line executes.  The following example sets a
breakpoint at edit line 21:

BREAK #21

You can also set conditional and other breakpoints as described in the Inspect Manual.

Stepping Through
a Program

At the Inspect prompt, before the first statement executes or when the program pauses
at a breakpoint, you can step through the program and execute a single statement at a
time.

1. To execute the first statement, enter:

STEP

2. To repeat the STEP command, press the Return key.

3. To set a temporary breakpoint two statements hence and resume execution, enter:

STEP 2 STATEMENTS

Displaying Values When the program suspends execution at a breakpoint, you can use the DISPLAY
command to display the values of variables.  You can shorten the command to its first
letter.  For example, to display the values of variables LENGTH, WIDTH, and DEPTH,
use either of the following commands:

DISPLAY length, width, depth

D length, width, depth

Stopping the
Inspect Session

To stop the Inspect session and your program, use the STOP command at the Inspect
prompt.  In high-level mode, enter STOP exactly as shown here:

STOP
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Sample Inspect Session This discussion presents a source file and shows the steps for running the object file in
an Inspect session.

Sample Source File

The sample source file is named MYSRC.  Figure 16-1 shows the source code in the
sample source file.

Figure 16-1.  Sample Source File

!This is a source file named MYSRC.

?INSPECT                      !Request symbolic debugger
?SYMBOLS                      !Save symbols in object file
                              ! for symbolic debugger
?NOLIST, SOURCE $system.system.extdecs (initializer)
                              !Include system procedure
                              ! without its listing
?LIST

PROC myproc MAIN;             !Declare procedure MYPROC
  BEGIN
  INT var1;                   !Declare variables
  INT var2;
  INT total;

  CALL initializer;           !Read the start-up message
  var1 := 5;                  !Assign value to VAR1
  var2 := 10;                 !Assign value to VAR2
  total := var1 + var2;       !Assign sum to TOTAL
  END;                        !End MYPROC
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Compiling the Sample Source File

To compile the sample source file into an object file, specify the source file name
(MYSRC) and an object file name (MYPROG):

TAL /IN mysrc/ myprog

Figure 16-2 shows the beginning of the compiler listing for the sample object file.

Figure 16-2.  Sample Compiler Listing

PAGE 1 [1]    $MYVOL.MYSUBV.MYSRC

TAL - T9250D20 - (01JUN93)
Copyright Tandem Computers Incorporated 1976, 1978, 1981–1983, 1985, 1987–1993

 1. 000000 0 0 !This is a source file named MYSRC.
 2. 000000 0 0
 3. 000000 0 0 ?INSPECT !Request symbolic debugger
 4. 000000 0 0 ?SYMBOLS !Request symbols in Object file
 5. 000000 0 0 ! for symbolic debugger
 6. 000000 0 0 ?NOLIST, SOURCE $system.system.extdecs (initializer)
 7. 000000 0 0 !Include system procedure
 8. 000000 0 0 ! without its listing
 9. 000000 0 0 ?LIST
10. 000000 0 0
11. 000000 0 0 PROC myproc MAIN; !Declare procedure MYPROC
12. 000000 1 0   BEGIN
13. 000000 1 1   INT var1; !Declare variables
14. 000000 1 1   INT var2;
15. 000000 1 1   INT total;
16. 000000 1 1
17. 000000 1 1   CALL initializer; !Read the start-up message
18. 000006 1 1   var1 := 5; !Assign value to VAR1
19. 000010 1 1   var2 := 10; !Assign value to VAR2
20. 000012 1 1   total := var1 + var2; !Assign sum to TOTAL
21. 000016 1 1   END; !End MYPROC
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Running a Sample Inspect Session

The step numbers in the following Inspect session correspond to the interactive
operations shown in Figure 16-3.  In the figure, commands you enter are shown in
boldface.

1. To run your program in an Inspect session, enter the TACL RUND command at
the TACL prompt.  Specify the name of your object file and any appropriate run
options.  For the sample session, specify MYPROG:

RUND myprog

The Inspect product suspends program execution before the first instruction.  An
Inspect header message and prompt appears.  The prompt consists of the object
file name enclosed in hyphens if your program has symbols (or underscores if it
has no symbols).

2. You can set breakpoints at points where you want the program to pause.  For the
sample session, set a breakpoint at edit line 21, which is the END of the program:

BREAK #21

An Inspect message indicates the number, type, and location of the breakpoint.
The breakpoint will suspend execution before edit line 21 executes.

3. To run your program until the breakpoint, enter the RESUME command at the
Inspect prompt:

RESUME

When a breakpoint occurs, the program suspends execution.  An Inspect message
identifies the breakpoint.

4. You can now display object values or clear and set breakpoints.  Normally, you
can resume execution or step through the program until it reaches another
breakpoint.

For the sample session, display the value of variable TOTAL:

DISPLAY total

An Inspect message shows the value of TOTAL.

5. Normally, after your program executes correctly, you clear all breakpoints (for
example, by issuing the CLEAR * command).  For the sample session, clear the
breakpoint by specifying its number:

CLEAR 1

An Inspect message tells you the breakpoint is cleared.

6. You can now stop the Inspect session and return to the TACL prompt.  (In high-
level mode, do not abbreviate the STOP command.)

STOP



Debugging Programs

Running and Debugging Programs

096254 Tandem Computers Incorporated 16–9

Figure 16-3.  Running a Sample Inspect Session

1. 25> RUND myprog

INSPECT - Symbolic Debugger - T9673D20 - (01JUN93) . . .
Copyright Tandem Computers Incorporated 1983, 1985-1993
INSPECT
*175,08,111    MYPROG    #MYPROC.#6(MYSRC)

2. -MYPROG-BREAK #21

   Num Type  Subtype Location
  1 Code          #MYPROC.#21(MYSRC)

3. -MYPROG-RESUME

INSPECT BREAKPOINT 1: #21
175,08,111  MYPROG  #MYPROC.#21(MYSRC)

4. -MYPROG-DISPLAY total

TOTAL = 15

5. -MYPROG-CLEAR *

Breakpoint cleared: 1  Code    #MYPROC.#21(MYSRC)

6. -MYPROG-STOP

26>

If the results of the program are incorrect, correct the source file by using a text editor,
recompile the source file, and rerun the object file in an Inspect session.
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This section gives an overview of:

Mixed-language features provided by TAL
TAL and C guidelines
CRE guidelines for TAL programs

Mixed-Language
Features of TAL

You can use the following TAL features in mixed-language programs:

NAME and BLOCK declarations
Procedure declaration LANGUAGE attribute
Procedure declaration public name
PROC and PROC(32) parameter types
Parameter pairs
ENV directive
HEAP directive

NAME and BLOCK
Declarations

All global data to be shared with routines written in other languages must be
relocatable.  After binding, you should not depend on the data being located at a
particular location.

In TAL, you can use BLOCK declarations to group global data declarations into named
or private data blocks.  If a BLOCK declaration is present, a NAME declaration at the
beginning of the compilation unit must name the unit.  The identifiers of NAME and
BLOCK declarations must be unique among all NAME and BLOCK declarations in all
the compilation units in the program.  Here is an example of a NAME declaration:

NAME input_module;           !Name the compilation unit

A named data block is shareable among all compilation units in a program.  You can
declare any number of named data block in a compilation unit.  Here is an example of
a BLOCK declaration for a named data block (GLOBALS):

BLOCK globals;               !Declare named global data block
  INT .an_array[0:7];
  INT .another_array[0:34];
  INT(32) total;
  LITERAL msg_buf = 79;
  DEFINE xaddr = INT(32)#;
  END BLOCK;

A private data block is shareable only among routines within the same compilation
unit.  To declare a private data block, specify the PRIVATE keyword in place of the
data block identifier.   You can declare only one private data block in a compilation
unit.  The private data block inherits the identifier you specify in the NAME
declaration for the compilation unit.  Here is an example of a BLOCK declaration for a
private data block:

BLOCK PRIVATE;
  INT average;
  INT total;
  END BLOCK;
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You can specify the location of a named or private data block.   For more information,
see Section 14, “Compiling Programs.”

LANGUAGE Attribute Before calling an external routine, a TAL module must include an EXTERNAL
procedure declaration for the external routine.  If you are using a D-series TAL
compiler, you can use the LANGUAGE attribute in the declaration to specify that the
external routine is a C, COBOL85, FORTRAN, or Pascal routine.  For example, if the
external routine is a C routine, you can specify LANGUAGE C following the routine
identifier in the EXTERNAL procedure declaration:

PROC c_func                 !EXTERNAL procedure declaration
  LANGUAGE C;               !LANGUAGE attribute
  EXTERNAL;                 !EXTERNAL option

If the C, COBOL85, FORTRAN, or Pascal routine has formal parameters, the
LANGUAGE attribute follows the formal parameter list in the EXTERNAL procedure
declaration:

PROC c_func (a, b, c)       !Formal parameter list
  LANGUAGE C;               !LANGUAGE attribute
    STRING .a, .b, .c;      !Formal parameter declarations
  EXTERNAL;                 !EXTERNAL option

If you are not sure of the language, you can specify LANGUAGE UNSPECIFIED in the
EXTERNAL procedure declaration:

PROC some_proc              !EXTERNAL procedure declaration
  LANGUAGE UNSPECIFIED;     !LANGUAGE attribute
  EXTERNAL;                 !EXTERNAL option

Here are guidelines for specifying a EXTERNAL procedure declaration:

Always include the EXTERNAL keyword if you use the LANGUAGE attribute.
Specify no more than one LANGUAGE attribute in a declaration.
Omit the LANGUAGE attribute if the external routine is written in TAL.
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Public Name Before calling an external routine, a D-series TAL module can include an EXTERNAL
procedure declaration that specifies a public name for use in Binder.  In particular,
specify an external routine identifier as a public name when the identifier does not
conform to TAL rules.

In the EXTERNAL procedure declaration, specify an equal sign (=) and the public
name, enclosed in quotes, following the routine identifier:

PROC cobol_proc = "cobol-program-unit"  !Public name
  LANGUAGE COBOL;                       !LANGUAGE attribute
  EXTERNAL;

The public name must conform to the identifier rules of the language in which the
external routine is written.  For all languages except C, the TAL compiler upshifts all
public names automatically.  In the preceding example, the public name conforms to
COBOL rules.

If the external routine has formal parameters, the formal parameter list follows the
public name:

PROC cobol_proc = "cobol-program-unit"  !Public name
  (a, b, c)                             !Parameter list
  LANGUAGE COBOL;                       !LANGUAGE attribute
    STRING .a, .b, .c;                  !Parameter
                                        ! declarations
  EXTERNAL;
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PROC Parameter Type Specify a procedure as a formal PROC parameter in a TAL routine that expects one of
the following actual parameters:

A C small-memory-model routine
A FORTRAN routine compiled with the NOEXTENDEDREF directive
A TAL routine

TAL Receiving PROC Parameters

The following TAL routine declares a formal PROC parameter:

PROC tal_proc (param_proc);
    PROC param_proc;            !Formal PROC parameter
  BEGIN
  !Lots of code
  END;

The following callers can call a TAL routine that declares a formal PROC parameter:

C small-memory-model routines
COBOL85 routines
FORTRAN routines compiled with the NOEXTENDEDREF directive
TAL routines

When a caller lists an appropriate routine in the calling sequence, the caller’s compiler
passes the routine’s 16-bit address of PEP and map information.

TAL Passing PROC Parameters

A TAL routine can pass actual PROC parameters to any of the following routines:

C small-memory-model routines
FORTRAN routines compiled with the NOEXTENDEDREF directive
TAL routines

If the actual PROC parameter is a C or FORTRAN routine, specify an EXTERNAL
procedure declaration such as:

PROC c_func (param_proc) LANGUAGE C;
    PROC param_proc;           !Formal PROC parameter
  EXTERNAL;

Additional guidelines are provided later in this section in:

“TAL Routines as Parameters to C”
“C Routines as Parameters to TAL”



Mixed-Language Features of TAL

Mixed-Language Programming

096254 Tandem Computers Incorporated 17–5

PROC(32) Parameter Type Specify a procedure as a formal PROC(32) formal parameter in a TAL routine that
expects one of the following actual parameters:

A C large-memory-model routine
A FORTRAN routine compiled with the EXTENDEDREF directive
A Pascal routine

TAL Receiving PROC(32) Parameters

The following TAL routine declares a formal PROC(32) parameter::

PROC tal_proc (param_proc32);
    PROC(32) param_proc32;        !Formal PROC(32) parameter
  BEGIN
  !Lots of code
  END;

The following callers can call a TAL routine that declares a formal PROC(32)
parameter:

C large-memory-model routines
COBOL85 routines
FORTRAN routines compiled with the EXTENDEDREF directive
Pascal routines
TAL routines

When a caller lists an appropriate routine in the calling sequence, the caller’s compiler
passes the routine’s 32-bit address to the TAL compiler.  The high-order word of the
address contains PEP and map information;  the low-order word contains a zero.  If
the TAL compiler receives a 16-bit address instead, it converts the address to a 32-bit
address and passes the converted address to the called routine.

TAL Passing PROC(32) Parameters

A TAL routine can pass actual PROC(32) parameters to any of the following routines:

C large-memory-model routines
FORTRAN routines compiled with the EXTENDEDREF directive
Pascal routines
TAL routines

For each actual PROC(32) parameter, specify an EXTERNAL procedure declaration
such as:

PROC c_func (param_proc32) LANGUAGE C;
    PROC(32) param_proc32;         !Formal PROC(32) parameter
  EXTERNAL;

Additional guidelines and examples are provided later in this section in:

“TAL Routines as Parameters to C”
“C Routines as Parameters to TAL”
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Parameter Pairs A TAL parameter pair consists of two formal parameters (connected by a colon) that
together describe a single data type to FORTRAN or Pascal routines.  Some D-series
system routines require that callers pass actual parameter pairs (as described in the
Guardian Application Conversion Guide).

Table 17-1 lists the parameter types in other languages that correspond to the TAL
parameter pair.

Table 17-1.  Parameter Pair Type Correspondence

Language Type

C Not applicable

COBOL Not applicable

FORTRAN CHARACTER *length

Pascal FSTRING(*) or FSTRING(length)

Declaring Parameter Pairs

When you declare a TAL routine, you can include a parameter pair by specifying a
string parameter and a length parameter separated by a colon:

PROC in_procedure (astring:length) !Parameter pair
  LANGUAGE PASCAL;
    STRING .EXT astring;           !Declare string parameter
    INT     length;                !Declare length parameter
  EXTERNAL;

The string and length parameters of a parameter pair have the following
characteristics:

Parameter Pass By Formal Parameter Actual Parameter

String
parameter

Reference A standard or extended
STRING simple pointer

A STRING array or simple pointer declared
inside or outside a structure

Length
parameter

Value A directly addressed
INT simple variable

An INT expression that specifies the length,
in bytes, of the string parameter

If the called routine does not change the length of the string parameter, the length
parameter represents the maximum size, the initial size, or the current size of the
string parameter.
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Passing Parameter Pairs

The calling routine can pass parameter pairs to the called routine in a CALL statement.
For example, the calling routine can declare and pass a parameter pair to
IN_PROCEDURE (declared in the preceding example) as follows:

PROC caller;
  BEGIN
  LITERAL length = 5;
  STRING .EXT array[0:length - 1];
  !Some code here
  CALL in_procedure (array:length);
  END;

Modifying the String Length

If the called routine modifies the length of the string parameter, the called routine
must also provide an INT reference parameter in which it returns the new length of
the string.  This parameter can represent the length, in bytes, of the string parameter
before and after the routine modifies the length.  In that case, it is an input and output
parameter.  For example, you can declare the current-length parameter as follows:

PROC out_procedure (astring:max_length, current_length);
    STRING .EXT astring;    !Output or input/output parameter
    INT max_length;         !Input parameter
    INT .current_length;    !Output or input/output parameter
  BEGIN
  !Code to process ASTRING
  END;

The formal current-length parameter is a reference parameter, either a standard or
extended INT simple pointer.  It can be an input-output or output-only parameter:

Input-output parameter

Input The actual parameter is an INT simple variable that specifies the length
of the string parameter, in bytes, before the called routine processes the
string parameter.  When you list the simple variable in the calling
sequence, the compiler passes the compiler-assigned address of the
simple variable.

Output The called routine can process the string parameter and return the new
length of the string parameter to the calling routine.  The called routine
must ensure that the initial length and the new length are in the range 0
through the value of the maximum-length parameter.  (The compiler
does no range checking.)

Output-only parameter—The compiler ignores any initial parameter value.
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In the following example, the caller passes a parameter pair and the current-length
parameter to the procedure declared in the preceding example:

PROC out_proc_caller;
  BEGIN
  INT cur_len;            !Declare simple variable CUR_LEN
  LITERAL max_len = 20;
  STRING .name[0:max_len – 1];

  name ':=' "KENNETH";
  cur_len := 7;
  CALL out_procedure (name:max_len, cur_len);
  END;                    !Compiler passes address of CUR_LEN

Omitting Actual Parameter Pairs

If you want to omit an optional parameter-pair unconditionally in the actual
parameter list, substitute a comma for the omitted parameter pair.  You cannot omit
half of a parameter pair.

For example, suppose the called routine declares the optional parameter pair
VALUE2:VALUE3 as follows:

PROC some_procedure (value1, value2:value3, value4)
  EXTENSIBLE;
    INT value1;
    STRING .value2;   !First half of optional parameter pair
    INT value3;       !Other half of optional parameter pair
    INT .value4;

The caller can omit the optional parameter pair from its CALL statement, like this:

INT val_1, val_4;

CALL some_procedure (val_1, , val_4);
                      !Comma replaces omitted parameter pair

As of the D20 release, you can omit an optional parameter-pair conditionally.  Use the
$OPTIONAL standard function as described in Section 13, “Using Procedures.”

ENV Directive In TAL, you use the ENV directive to specify the run-time environment of a D-series
object file as described later in this section.  The run-time environment is either:

The CRE, which provides services for mixed-language programs

A C, COBOL, FORTRAN, Pascal, or TAL run-time environment outside the CRE

HEAP Directive In TAL, you can set the size of the user heap in the CRE, if ENV COMMON is also in
effect for the MAIN routine.  The user heap, named #HEAP, is a shared CRE resource
that all routines in your program can access directly or indirectly as described later in
this section.
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TAL and C Guidelines This subsection provides guidelines for writing programs composed of TAL and
Tandem C modules.  This discussion assumes that you have a working knowledge of
TAL and C and are familiar with the contents of the following manuals:

TAL Programmer’s Guide
TAL Reference Manual
C Reference Manual

This subsection discusses:

TAL and C identifiers
TAL and C data types
Memory models
TAL calling C
C calling TAL
Sharing data
Parameters and variables
Extended data segments

For information on calling TAL routines from another language, see the manual for
COBOL85, FORTRAN, or Pascal.

Using Identifiers TAL and C identifiers differ as follows:

TAL and C have independent sets of reserved keywords.
TAL identifiers can include circumflexes (^);  C identifiers cannot.
The C compiler is case-sensitive;  the TAL compiler is not case-sensitive.

To declare variable identifiers that satisfy both compilers:

Avoid using reserved keywords in either language as identifiers.
Specify TAL identifiers without circumflexes.
Specify C identifiers in uppercase.

You can declare TAL-only or C-only routine identifiers and satisfy both compilers by
using the public name option in:

Interface declarations in C
EXTERNAL procedure declarations in TAL

In Inspect sessions:

Use uppercase for TAL identifiers
Use the given case for C identifiers

In Binder sessions, use mode noupshift for lowercase C identifiers.
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Matching Data Types Use data types that are compatible between languages for:

Shared global variables
Formal or actual parameters
Function return values

Table 17-2 lists compatible TAL and C data types for each TAL addressing mode.

Table 17-2.  Compatible TAL and C Data Types

TAL Addressing Mode TAL Data Type C Data Type Notes

Direct STRING char

Direct INT short TAL INT signed range only

Direct INT(32) long

Direct FIXED(0) long long TAL FIXED(0) only

Direct REAL float

Direct REAL(64) double

Standard indirect (.) STRING char *
Standard indirect (.) INT short *
Standard indirect (.) INT(32) long *
Standard indirect (.) FIXED(0) long long *
Standard indirect (.) REAL float *
Standard indirect (.) REAL(64) double *

Extended indirect (.EXT) STRING extptr char * For extptr, see Note.

Extended indirect (.EXT) INT extptr short *
Extended indirect (.EXT) INT(32) extptr long *
Extended indirect (.EXT) FIXED(0) extptr long long *
Extended indirect (.EXT) REAL extptr float *
Extended indirect (.EXT) REAL(64) extptr double *

Note: In C, use extptr only in the parameter-type-list of an interface declaration to specify a
parameter type that is defined in TAL as an extended pointer.

Incompatibilities between TAL and C data types include the following:

TAL has no numeric data type that is compatible with C unsigned long.

TAL  UNSIGNED is not compatible with C unsigned short.  TAL UNSIGNED(16)
can represent signed or unsigned values.

For more information on C and TAL data types, see “Parameters and Variables” later
in this section.
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Memory Models A C program can use the small-memory model or the large-memory model,
depending on the amount of data storage required.  The large-memory model is
recommended and is the default setting.  All examples in this subsection illustrate the
large-memory model unless otherwise noted.

A TAL program can use any of the following memory combinations, depending on the
application’s needs:

The user data segment
The user data segment and the automatic extended data segment
The user data segment and one or more explicit extended data segments
The user data segment, the automatic extended data segment, and one or more
explicit extended data segments

The following table describes some aspects of memory usage by C and TAL programs.
The rightmost column refers to the upper 32K-word area of the user data segment.

Language
Memory
Model Addressing Data Storage

Upper 32K-Word
Area

C Small 16-bit 32K words Reserved

C Large 32-bit 127.5 megabytes Reserved

TAL Not
applicable

16-bit or
32-bit

64K words (without the CRE), plus
127.5 megabytes in each extended
data segment that is allocated.

Reserved only if
you use the CRE

Any TAL module that uses the upper 32K-word area of the user data segment cannot
run within a C object file that contains the MAIN routine.
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Calling C Routines
From TAL Modules

A TAL module must include an EXTERNAL procedure declaration for each C routine
to be called.  The following TAL code shows the EXTERNAL procedure declaration for
C_FUNC and a routine that calls C_FUNC.  ARRAY is declared with .EXT,  because
C_FUNC uses the large-memory model:

TAL Code                     C Code

INT status := 0;             short C_FUNC(char *str)
STRING .EXT array[0:4];      {
                                *str = 'A';
INT PROC c_func (a)             str[2] = 'C';
  LANGUAGE C;                   return 1;
    STRING .EXT a;           }
EXTERNAL;

PROC example MAIN;
  BEGIN
  array[2] := "B";
  status := c_func (array);
  array[1] := "B";
  END;

A C-series C module called by a TAL module has limited access to the C run-time
library.  If the C module needs full access to the C run-time library, you can either:

Modify the program to run in the CRE as described later in this section.

Specify a C MAIN routine that calls the original TAL MAIN routine as follows.

In the TAL module, remove the MAIN keyword from the TAL MAIN routine and
remove any calls to the INITIALIZER or ARMTRAP system procedure.  The TAL
module must also meet the requirements of the C run-time environment.

TAL Code                C Code

                         #include <stdioh> nolist
INT status := 0;
INT .EXT array[0:4];     tal void TALMAIN ( void );

INT PROC cfunc (a)       short CFUNC (short *num)
  LANGUAGE C;            {
    INT .EXT a;             printf("num B4=%d\n",*num);
EXTERNAL;                   num[0] = 10;
                            printf("num AF=%d\n",*num);
PROC talmain;               return 1;
  BEGIN                  }
  array[2] := 2;
  status :=              main ()   /* C MAIN routine */
      cfunc (array);     {
  END;                     TALMAIN ();
                         }
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Calling TAL Routines
From C Modules

A D-series C module has full access to the C run-time library even if the C module
does not contain the MAIN routine.   A C-series C module that does not contain the
MAIN routine cannot fully access the C run-time library.

When you code C modules that call TAL routines:

Include an interface declaration for each TAL routine to be called.
If a called TAL routine sets the condition code, include the talh header file.
If a called routine is a system procedure, include the cextdecs header file.

In C, interface declarations are comparable to EXTERNAL procedure declarations in
TAL.  To specify an interface declaration in C, include:

The keyword _tal (D-series code) or tal (C-series code)
The variable or extensible attribute, if any, of the TAL routine
The data type of the return value, if any, of the TAL routine
A routine identifier
A public name if the TAL identifier is not a valid C identifier
A parameter-type-list or, if no parameters, the keyword void
For extended pointers in the parameter-type-list, the keyword extptr before the
parameter type

The return type value can be any of the following:

Return Type Value Meaning

void The TAL routine does not return a value.

fundamental-type The TAL routine returns a value.  Specify one of, or a pointer
to one of, the character, integer, or floating-point types.

cc_status The TAL routine sets the condition-code register to CCL, CCE,
or CCG (defined in talh).

For information on calling TAL routines that both return a value and set a condition
code (CC), see the C Reference Manual.

Here are examples of interface declarations for calling TAL routines.  For D-series
code, prefix the tal keyword with an underscore):

_tal variable short SEGMENT_ALLOCATE_ (short, long,
                                       short *, short);

_tal variable cc_status SEGMENT_DEALLOCATE_ (short, short);

_tal variable cc_status READ (short, short *, short,
                              short *, long);

_tal extensible cc_status READX (short, extptr char *, short,
                              short *, long);

_tal void c_name = "tal^name" (short *);

After specifying an interface declaration, use the normal C routine call to access the
TAL routine.
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This example shows a large-memory-model C module that calls a TAL routine:

C Code

#include <stdioh> nolist

short arr[5];        /*stored in extended segment */
_tal void C_Name = "tal^name" (extptr short *);

void func1 (short *xarr)
{
  C_Name (xarr);
  printf ("xarr[2] after TAL = %d", xarr[2]);
}

main ()
{
  arr[4] = 8;
  func1 (arr);
}

TAL Code

PROC tal^name (a);
    INT .EXT a;          !32-bit pointer
  BEGIN
  a[2] := 10;
  END;



TAL and C Guidelines

Mixed-Language Programming

096254 Tandem Computers Incorporated 17–15

Sharing Data You can share global data in the user data segment between the following kinds of
TAL and C modules:

TAL modules that declare global variables having standard indirection (.)
C small-memory-model modules

You can share global data in the automatic extended data segment between the
following kinds of TAL and C modules:

TAL modules that declare global variables having extended indirection (.EXT)
C large-memory-model modules

In a large-memory-model C module, you can use the lowmem declaration to allocate a
C array or structure that can be represented by a 16-bit address if needed in a call to a
TAL routine or a system procedure.

Using pointers to share data is easier and safer than trying to match declarations in
both languages.  Using pointers also eliminates problems associated with where the
data is placed.

To share data by using pointers, first decide whether the TAL module or the C module
declares the data:

If the TAL module is to declare the data, follow the guidelines in “Sharing TAL
Data With C Using Pointers.”

If the C module is to declare the data, follow the guidelines in“Sharing C Data
With TAL Using Pointers.”

Sharing TAL Data With C Using Pointers

To share TAL global data with C modules, follow these steps:

1. In the TAL module, declare the data using C-compatible identifiers, data types,
and alignments.  (Alignments depend on byte or word addressing and variable
layouts as described in “Parameters and Variables” later in this section.)

When you declare TAL arrays and structures, use indirect addressing.

2. In the C module, declare pointers to the data, using TAL-compatible data types.

3. In the C module, declare a routine to which TAL can pass the addresses of the
shared data.

4. In the C routine, initialize the pointers with the addresses sent by the TAL module.

5. Use the pointers in the C module to access the TAL data.

The following example shows how to share TAL data with a large-memory-model C
module.  The TAL module passes to a C routine the addresses of two TAL arrays.  The
C routine assigns the array addresses to C pointers.
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C Code

short *c_int_ptr;            /* pointer to TAL data */
char *c_char_ptr;            /* pointer to TAL data */

short INIT_C_PTRS (short *tal_intptr, char *tal_strptr)
{                            /* called from TAL */
  c_int_ptr = tal_intptr;
  c_char_ptr = tal_strptr;
  return 1;
}

/* Access the TAL arrays by using the pointers */

TAL Code

STRUCT rec (*);
  BEGIN
  INT x;
  STRING tal_str_array[0:9];
  END;

INT .EXT tal_int_array[0:4];     !TAL data to share with C
STRUCT .EXT tal_struct (rec);    !TAL data to share with C

INT status := -1;

INT PROC init_c_ptrs (tal_intptr, tal_strptr) LANGUAGE C;
    INT .EXT tal_intptr;
    STRING .EXT tal_strptr;
  EXTERNAL;

PROC tal_main MAIN;
  BEGIN
  status := init_c_ptrs
                 (tal_int_array, tal_struct.tal_str_array);
  !Do lots of work
  END;

Sharing C Data With TAL Using Pointers

To share C global data with TAL modules, follow these steps:

1. In the C module, declare the data using TAL-compatible identifiers, data types,
and alignments.  (Alignments depend on byte or word addressing and variable
layouts as described in “Parameters and Variables” later in this section.)

C arrays and structures are automatically indirect.

2. In the TAL module, declare pointers to the data, using C-compatible data types.

3. In the TAL module, declare a routine to which C can pass the addresses of the
shared data.

4. In the TAL routine, initialize the pointers with the addresses sent by C.

5. Use the pointers in the TAL module to access the C data.
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This example shows how to share C data with a TAL module.  The C module passes
the addresses of two C arrays to a TAL routine.  The TAL routine assigns the array
addresses to TAL pointers.

C Code

#include <stdioh> nolist

short arr[5];                  /* C data to share with TAL */
char charr[5];                 /* C data to share with TAL */

_tal void INIT_TAL_PTRS ( extptr short *, extptr char * )
_tal void C_Name = "tal^name" (void);

void example_func( int *x )
{
  printf("x before TAL = %d\n", x[2] );
  C_Name( );
  printf("x after TAL = %d\n", x[2] );
}

main ()
{
  INIT_TAL_PTRS ( &arr[0], &charr[0] ); /* initialize ptrs */
    /* test pointer values */
  arr[0] = 8;
  example_func( arr );
  arr[2] = 18;
  charr[2] = 'B';
}

TAL Code

INT .EXT tal_int_ptr;                      !Pointer to C data
STRING .EXT tal_char_ptr;                  !Pointer to C data

PROC init_tal_ptrs (c_addr1, c_addr2);     !Called from C
    INT .EXT c_addr1;
    STRING .EXT c_addr2;
  BEGIN
  @tal_int_ptr := @c_addr1;
  @tal_char_ptr := @c_addr2;
  END;

PROC tal^name;
  BEGIN
  tal_int_ptr[0] := 10;
  tal_int_ptr[2] := 20;
  tal_char_ptr[2] := "A";
  END;
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Sharing TAL Data With C Using BLOCK Declarations

As of the D20 release, TAL modules can share global data with C modules by
declaring each shared variable in its own BLOCK declaration and giving both the
variable and the BLOCK the same name.  The C modules must also declare each
shared variable; the layout of the variable must match in both the TAL and C modules.

In the following example, a TAL module declares a variable within a BLOCK
declaration, and the C module declares the equivalent variable:

TAL Code                      C Code

NAME TAL_module;

BLOCK fred;
  INT .EXT fred;              int FRED;  /*all uppercase*/
  END BLOCK;

Because the preceding method requires that the layout of the corresponding TAL and
C declarations match, it is recommended that you share data by using pointers where
possible.

Parameters and Variables This subsection gives guidelines for declaring compatible TAL and C variables and
parameters.  These guidelines supplement those given in “Sharing Data” earlier in this
section.  The following topics are discussed:

STRING and char variables
Arrays
Structures
Substructures
Multidimensional arrays
Arrays of structures
Redefinitions and unions
Pointers
Enumeration variables
Bit-field manipulation
UNSIGNED variables and compacted bit fields
TAL routines as parameters
C routines as parameters

When you declare formal reference parameters, remember to use indirection as
follows:

If the caller is a small-memory-model C routine, use standard indirection (.) for the
TAL formal parameter.

If the caller is a large-memory-model C routine, use extended indirection (.EXT)
for the TAL formal parameter.
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STRING and char Variables

TAL STRING and C char simple variables each occupies one byte of a word.
Following are STRING and char compatibility guidelines:

Share variables of type TAL STRING and C char by using pointers.

Declare TAL STRING and C char formal parameters as reference parameters to
avoid the following value parameter incompatibility:

When you pass a STRING parameter to a C routine, the actual byte value
occupies the left byte of the word allocated for the C char formal parameter.

When you pass a char parameter to a TAL routine, the actual byte value
occupies the right byte of the word allocated for the TAL STRING formal
parameters.

For example, if you declare a TAL STRING formal parameter as a value parameter
rather than as a reference parameter, the TAL routine can access the C char actual
parameter only by explicitly referring to the right byte of the word allocated for the
STRING formal parameter:

PROC sample (s);
    STRING s;              !Declare TAL STRING parameter as a
  BEGIN                    ! value (not reference) parameter
  STRING dest;
  dest := s[1];            !Refer to right byte of word
  END:

Arrays

TAL and C arrays differ as follows:

Characteristic TAL Array C Array

Lower bound Any integer Always zero

Dimensions One dimension One or more dimensions

Direct or indirect Direct or indirect Indirect only

Byte or word addressing STRING arrays and extended
indirect arrays are byte
addressed;  all other arrays are
word addressed

char arrays and large-memory-
model arrays are byte
addressed; all other arrays are
word addressed

TAL structures can emulate multidimensional C arrays, as discussed in
“Multidimensional Arrays” later in this section.

To declare compatible TAL and C arrays:

Use data types and alignments that satisfy both compilers.
Declare TAL arrays that have a lower bound of 0.
Declare one-dimensional C arrays.
Declare indirect TAL  arrays.
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The following are compatible arrays in TAL and C (large-memory model):

TAL Code                      C Code

INT .EXT robin[0:9];          short robin [10];
INT(32) .EXT gull[0:14];      long gull [15];
STRING .EXT grebe[0:9];       char grebe [10];

Structures

All TAL and C structures begin on a word boundary.  Following are guidelines for
sharing TAL and C structures and passing them as parameters:

Specify the same layout for corresponding TAL and C structures.
Specify compatible data types for each item of both structures.
In TAL, pass structures by reference.
In C, use the & operator.
In TAL, a routine cannot return a structure as a return value.

The following TAL and C structures have compatible layouts:

TAL Code                        C Code

STRUCT rec (*);                 struct birdname
  BEGIN                         {
  INT x;                          short x;
  STRING y[0:2];                  char y[3];
  END;                          } robin[10];

STRUCT .EXT robin(rec)[0:9];

The following TAL and C structures have compatible layouts:

TAL Code                        C Code

STRUCT rec1 (*);                struct rec1
  BEGIN                         {
  STRING a, b, c;                 char a, b, c;
  END;                          };

The following TAL and C structures also have compatible layouts:

TAL Code                        C Code

STRUCT rec2 (*);                struct rec2
  BEGIN                         {
  STRING e;                       char e;
  INT y;                          short y;
  STRING g;                       char g;
  END;                          };
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Substructures

The TAL compiler allocates alignment of substructures on a byte or word boundary as
follows:

Each definition substructure occurrence is byte aligned if the first item it contains
begins on a byte boundary.

Each definition substructure occurrence is word aligned if the first item it contains
begins on a word boundary.

Each referral substructure occurrence is always word aligned.

C substructures always begin and end on word boundaries.

In this example, TAL referral substructure TSUB and C substructure CSUB have
compatible layouts:

TAL Code                        C Code

STRUCT rec1 (*);                struct rec1
  BEGIN                         {
  STRING a, b, c;                 char a, b, c;
  END;                          };

STRUCT rec3 (*);                struct rec3
  BEGIN                         {
  INT x;                          short x;
  STRING var;                     char var;
  STRUCT tsub (rec1);             struct rec1 csub;
  STRING f;                       char f;
  END;                          };

In this example, TAL definition substructure TSUB1 follows a STRING variable and
begins on a byte boundary.  The layouts of TSUB1 and CSUB1 are not compatible, so
you cannot share the substructures between the two languages:

TAL Code                        C Code

STRUCT rec4 (*);                struct rec4
  BEGIN                         {
  INT x;                          short x;
  STRING a;                       char a;
  STRUCT tsub1;                   struct
    BEGIN                         {
    STRING b,c,d;                   char b,c,d;
    END;                          } csub1;
  STRING e;                         char e;
  END;                          };

If you use the Data Definition Language (DDL) to describe your files, the byte-aligned
substructure layout is the only layout DDL cannot generate.  (DDL is described in the
Data Definition Language (DDL)Reference Manual.)
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You can ensure compatible layouts between TAL and C substructures as follows:

Declare TAL referral substructures rather than definition substructures.  Referral
substructures are always word-aligned.

If you must declare TAL definition substructures, either:

Use FILLER declarations as needed to begin and end TAL definition
substructures on word boundaries, as shown in TAL structure REC4  in the
example that follows.

Declare C structures that emulate the layout of a byte-aligned TAL
substructure, as shown in C structure REC5 in the second example that
follows.

In TAL structure REC4, each FILLER declaration inserts a pad byte before and after
the definition substructure TSUB2 so it begins and ends on a word boundary.  Thus,
the following TAL and C structures have compatible layouts and can be shared:

TAL Code                        C Code

STRUCT rec4 (*);                struct rec4
  BEGIN                         {
  INT x;                          short x;
  STRING a;                       char a;
  FILLER 1;
  STRUCT tsub2;                   struct
    BEGIN                         {
    STRING b,c,d;                   char b,c,d;
    END;                          } csub2;
  FILLER 1;
  STRING e;                        char e;
  END;                          };

In C structure REC5, three variables (not a substructure) emulate the byte-aligned
layout of TAL substructure ST.  Thus, the following TAL and C structures have
compatible layouts and can be shared:

TAL Code                        C Code

STRUCT rec5 (*);                struct rec5
  BEGIN                         {
  INT x;                          short x;
  STRING a;                       char a;
  STRUCT st;
    BEGIN
    STRING b;                     char stb;
    STRING c;                     char stc;
    STRING d;                     char std;
    END;
  STRING e;                       char e;
  END;                          };

STRUCT .EXT match (rec5);       struct rec5 match;
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Multidimensional Arrays

In C, you can declare multidimensional arrays.  In TAL, you can emulate
multidimensional arrays by declaring structures that contain arrays.

Here is an example of multidimensional arrays in TAL and C (large-memory model):

TAL Code                         C Code

STRUCT rec1 (*);
  BEGIN
  INT y[0:4];                    short cma[10][5];
  END;

STRUCT .EXT tma(rec1)[0:9];

!Sample access!                  /* sample access */
tma[8].y[3] := 100;              cma[8][3] = 100;

Arrays of Structures

If you specify bounds when you declare a TAL structure, you create an array of
structures.  The following TAL  and C arrays of structures are equivalent.  Each
declaration contains an array of ten structure occurrences:

TAL Code                        C Code

STRUCT cell (*);                struct cell
  BEGIN                         {
  INT x;                          short x;
  STRING y;                       char y;
  END;                          };

STRUCT .EXT tcell(cell)[0:9];   struct cell ccell [10];

PROC honey (c);                 void JOANIE
    INT .EXT c (cell);          (struct cell *);
EXTERNAL;
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Redefinitions and Unions

Variant records are approximated by TAL structure redefinitions and C unions.

A TAL redefinition declares a structure item that uses the same memory location as an
existing structure item.  The existing structure item can be a simple variable, array,
substructure, or pointer that:

Begins on a word boundary
Is at the same BEGIN-END level in the structure as the redefinition
Is the same size or larger than the redefinition

A C union defines a set of variables that can have different data types and whose
values alternatively share the same portion of memory.  The size of a union is the size
of its largest variable; the largest item need not come first.   A union always begins on
a word boundary.

Here is an example of TAL redefinitions and equivalent C unions:

TAL Code                      C Code

STRUCT mtns (*);              struct Mtns
  BEGIN                       { union {
  INT(32) tamalpais;              long Tamalpais;
  INT diablo = tamalpais;         short Diablo;
  STRING hamilton = diablo;       char Hamilton;} Calif_mtns;
  FIXED num;                    union {
  STRUCT cascade = num;           long long Num;
    BEGIN                         struct {
    INT ranier;                     short Ranier;
    INT sthelens;                   short StHelens;
    INT adams;                      short Adams;
    INT hood;                       short Hood; } Cascade;
    END;                          } Northern_mtns;
  END;                        };

STRUCT c_high (mtns);         struct Mtns High;

The following identifiers access equivalent structure items in the preceding example:

In TAL: c_high.diablo

In C: High.Calif_mtns.Diablo
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Pointers

Pointers contain memory addresses of data.  You must store an address into a pointer
before you use it.  In TAL and C pointer declarations, you specify the data type of the
data to which the pointer points.  You must use pointers when sharing global
variables.  You can pass pointer contents by value between TAL and C routines.

Differences between TAL and C pointers include the following:

TAL structure pointers can point to a byte or word address.

C structure pointers always point to a word address.  To pass a C structure pointer
to a TAL routine that expects a byte structure pointer, you must explicitly cast the
C pointer to type char.

TAL pointers are dereferenced implicitly.

C pointers are usually dereferenced explicitly.

Small-memory-model C routines use 16-bit pointers only.

Large-memory-model C routines use 32-bit pointers only, even if the pointers refer
to the user data segment.  In global structure declarations, you must specify
lowmem in the storage class of the declaration.

If a TAL routine expects a 16-bit pointer, the C pointer you pass must refer to an
object in user data space.

Here are examples of TAL and C pointers (large-memory model):

TAL Code                       C Code

STRUCT rec (*);                struct rec
  BEGIN                        {
  INT d;                       short d;
  INT .p (rec);                struct rec *p;
  END;                         };

BLOCK joe;
  INT .EXT joes (rec);          struct rec *JOE;
  END BLOCK;

PROC tonga (p);                void CALEDONIA
    INT .EXT p (rec);          (struct rec *p)
  BEGIN                        {
  !Lots of code                /* Lots of code */
  END;                         }

Each language can call the other, passing the address in the pointer by value:

TAL Code                        C Code

CALL caledonia (joes);           TONGA (joe);
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Here are examples of TAL and C structure pointers (large-memory-model) that
implement a linked list:

TAL Code                        C Code
STRUCT rec (*);                 struct rec
  BEGIN                         {
  INT x;                           short x;
  INT .EXT strptr (rec);           struct rec *p;
END;                            };

STRUCT .EXT joe (rec);          struct rec joe;

PROC callme (param1);           void f1 (struct rec *);
    INT .EXT param1 (rec);
EXTERNAL;
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Enumeration Variables

Using C enumeration constants, you can associate a group of named constant values
with an int variable.  A C enumeration variable occupies 16 bits of memory.  You
define all integer operations on them.  The C compiler provides no range checking, so
an enumeration variable can hold a value not represented in the enumeration.

A C routine can share an enumeration variable with TAL routines.  A TAL routine
cannot access the enumeration constants, but can declare LITERALs for readability.
For example:

TAL Code                      C Code

LITERAL no = 0,               enum choice {no = 0,
        yes = 3,                yes = 3,
        maybe = 4;              maybe = 4 };

BLOCK answer;                 enum choice ANSWER;
  INT answer_var;
  END BLOCK;

A C routine can pass enumeration parameters to TAL routines, placing the actual
value in a TAL INT variable.  For example:

TAL Code                      C Code

LITERAL no = 0,               enum choice {no = 0,
        yes = 3,                yes = 3,
        maybe = 4;              maybe = 4 };

                              enum choice answer;
PROC tal_proc (n);
    INT n;                    _tal void TAL_PROC (short);
  BEGIN
  !Lots of code               main ()
  IF n = yes THEN ... ;       {
  !Lots of code                 answer = yes;
  END;                          TAL_PROC (answer);
                                /* lots of code */
                              }
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Bit-Field Manipulation

You can manipulate bit fields in both TAL and C.

In TAL, you can use either:

Built-in bit-extraction and bit-deposit operations
Bit-wise operators LAND and LOR

In C, you can use either:

Bit-wise operators & (and) and | (or)
Defines

The following TAL bit-deposit operation and C bit-wise operation are equivalent:

TAL Code                      C Code

INT x := -1;                  short a = -1;
INT y := 0;                   short b = 0;
                              short temp = 0;
PROC example;
  BEGIN                       void example ()
  y.<0:2> := x.<10:12>;       {
  END;                           /* you can combine these */
                                 /* with wider margins */

                                 temp = a & 070;
                                 temp = temp << 10;
                                 b = (b & 017777)|temp;
                               }

Bit extractions and bit deposits are not portable to future software platforms.
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UNSIGNED Variables and Packed Bit Fields

In general, TAL UNSIGNED simple variables in structures are compatible with C
unsigned packed bit fields (which only appear in structures).  You cannot, however,
pass C bit fields as reference parameters to TAL routines.

The following UNSIGNED variables and C unsigned bit fields are compatible:

TAL Code                     C Code

STRUCT stuffed (*);          struct stuffed;
  BEGIN                      {
  INT x;                       int x;
  UNSIGNED(1) a;               unsigned a : 1;
  UNSIGNED(5) b;               unsigned b : 5;
  UNSIGNED(3) c;               unsigned c : 3;
  UNSIGNED(4) d;               unsigned d : 4;
  UNSIGNED(9) e;               unsigned e : 9;
  UNSIGNED(2) f;               unsigned f : 2;
  END;                       };

STRUCT packed (stuffed);     struct stuffed PACKED;

When the WIDE pragma is not specified, the C compiler normally packs adjacent bit
fields in a 16-bit word.  When the WIDE pragma is specified, the C compiler normally
packs adjacent bit fields in a 32-bit word.

TAL UNSIGNED(1–16) and C bit fields of like size are compatible.  TAL
UNSIGNED(17–31) and C bit fields of like size are compatible.

The TAL compiler always packs adjacent UNSIGNED simple variables in 16-bit words
as follows:

It starts the first UNSIGNED variable on a word boundary.

It packs each successive UNSIGNED variable in the remaining bits of the same
word as the preceding UNSIGNED variable if:

The variable contains 1 to 16 bits and fits in the same word
The variable contains 17 to 31 bits and fits in the same word plus the next
word

If an UNSIGNED variable does not fit in the same word or doubleword, the
compiler starts the variable on the next word boundary.

The operator you use determines whether UNSIGNED values are signed or unsigned:

UNSIGNED(3) x;               !TAL code
UNSIGNED(3) y;

IF x + y ... ;               !Signed operation
IF x '+' y ... ;             !Unsigned operation

UNSIGNED arrays that contain 8-bit or 16-bit elements are compatible with C arrays
that contain elements of like size.  UNSIGNED arrays that contain 1-bit, 2-bit, or 4-bit
elements are incompatible with C arrays.
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TAL Routines as Parameters to C

You can call C routines and pass TAL routines as parameters.  You can pass any TAL
routine except EXTENSIBLE or VARIABLE routines as parameters.

A passed TAL routine can access the routine’s local variables and global TAL
variables.  The passed routine can contain subprocedures, but they cannot be passed as
parameters.

If you call a large-memory-module C routine, the EXTERNAL procedure declaration
for the C routine must specify the PROC(32) parameter type in the parameter
declaration.  When you pass the PROC(32) parameter to the C routine, the compiler
passes a 32-bit address that contains PEP and map information in the high-order word
and a zero in the low-order word.

If you call a small-memory-module C routine, the EXTERNAL procedure declaration
for the C routine must specify the PROC parameter type in the parameter declaration.
When you pass the PROC parameter to the C routine, the compiler passes a 16-bit
address that contains PEP and map information.

In the following example, a large-memory-model C module contains C_FUNC, which
expects a TAL procedure as a parameter.  The TAL module contains:

An EXTERNAL procedure declaration for C_FUNC
TAL_PARAM_PROC, a routine to be passed as a parameter to C_FUNC
TAL_CALLER, a routine that calls C_FUNC and passes TAL_PARAM_PROC as a
parameter
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C Module

 /* C function that accepts TAL routine as a parameter */

void C_FUNC (short (*F) (short n))
{
  short j;
  j = (*F)(2);
  /* lots of code */
}

TAL Module

PROC c_func (x) LANGUAGE C;  !EXTERNAL procedure declaration
                             ! for C routine to be called
    INT PROC(32) x;          !Parameter declaration
  EXTERNAL;

INT PROC tal_param_proc (f); !Procedure to be passed as a
    INT f;                   ! parameter to C_FUNC
  BEGIN
  RETURN f;
  END;

PROC tal_caller;             !Procedure that calls C_FUNC
  BEGIN                      ! and passes TAL_PARAM_PROC
  !Lots of code
  CALL c_func (tal_param_proc);
  !Lots of code
  END;

PROC m MAIN;
  BEGIN
  CALL tal_caller;
  END;
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C Routines as Parameters to TAL

You can call TAL routines and pass C routines as parameters.  You can call a TAL
entry-point identifier as if it were the routine identifier.  C routines cannot be nested.

When a called TAL routine in turn calls a C routine received as a parameter, the TAL
routine assumes that all required parameters of the C routine are value parameters.
The TAL compiler has no way of checking the number, type, or passing method
expected by the C routine.  If the C routine requires a reference parameter, the TAL
routine must explicitly pass the address by using:

The @ operator for a small-memory-model parameter
The $XADR standard function for a large-memory-model parameter

In the following example, a C large-memory-model module contains C routine
C_PARAM_FUNC, which is to be passed as a parameter.  The TAL module contains:

An EXTERNAL procedure declaration for C_PARAM_FUNC
TAL_PROC, which expects C_PARAM_FUNC as a parameter
TAL_CALLER, which calls TAL_PROC and passes C_PARAM_FUNC as a
parameter

TAL Module

INT i;
STRING .EXT s[0:9];

PROC c_param_func (i, s)   !EXTERNAL procedure declaration
  LANGUAGE C;              ! for C routine expected as
    INT i;                 ! a parameter
    STRING .EXT s;         !Extended indirection for large-
  EXTERNAL;                ! memory-model

PROC tal_proc (x);         !TAL routine that expects
    PROC(32) x;            ! a large-memory-model C routine
  BEGIN                    ! as a parameter
  CALL x (i, $XADR (s));
  END;

PROC tal_caller;
  BEGIN
  CALL tal_proc (c_param_func);
  END;

PROC m main;
  BEGIN
  CALL tal_caller;
  END;

C Module

void C_PARAM_FUNC (short i, char * s)
{                          /* C routine to be passed as */
                           /* a parameter to TAL_PROC   */
}
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When you pass a large-memory-model C routine as a parameter, the compiler passes a
32-bit address that contains PEP and map information in the high-order word and a
zero in the low-order word.  When you pass a small-memory-model C routine as a
parameter, the compiler passes a 16-bit address that contains PEP and map
information.

Extended Data Segments In addition to the user data segment, you can store data in:

The automatic extended data segment
One or more explicit extended data segments

You should use only the automatic extended data segment if possible.  You should not
mix the two approaches.  If you must use explicit segments and the automatic
segment, however, follow guidelines 4 and 11 in “Explicit Extended Data Segments”
later in this section.

Automatic Extended Data Segment

The TAL compiler allocates the automatic extended data segment when a TAL
program declares arrays or structures that have extended indirection.

The C compiler allocates the automatic extended data segment for all large-memory-
model modules.

Explicit Extended Data Segments

TAL modules and large-memory-model C modules can allocate and deallocate
extended data segments explicitly.  Since the advent of the automatic extended data
segment, however, programs usually need not use explicit extended data segments.
The information in this subsection is provided to support existing programs.

To create and use an explicit extended segment, you call system procedures.  You can
allocate and manage as many extended segments as you need, but you can use only
one extended segment at a time.  You can access data in an explicit extended segment
only by using extended pointers.   The compiler allocates memory space for the
extended pointers you declare.  You  must manage allocation of the data yourself.

Here are guidelines for using explicit extended segments:

1. Declare an extended pointer for the base address of the explicit extended segment.

2. To allocate an explicit extended segment and obtain the segment base address, call
SEGMENT_ALLOCATE_.

3. To make the explicit extended segment the current segment, call
SEGMENT_USE_.

4. If the automatic extended segment is already in place, SEGMENT_USE_ returns
the automatic extended segment's  number.  Save this number so you can later
access the automatic segment again.

5. C requires special treatment for SEGMENT_USE_, which returns a value and sets
the condition code.  (See the C Reference Manual.)
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6. You must keep track of addresses stored in extended pointers. When storing
addresses into subsequent pointers, you must allow space for preceding data
items.  (See “Managing Data Allocation in Extended Segments” in Appendix B.)

7. To refer to data in the current segment, call READX or WRITEX .

8. To move data between extended segments, call MOVEX.

9. To manage large blocks of memory, call DEFINEPOOL, GETPOOL, and
PUTPOOL.

10. To determine the size of a segment, call SEGMENT_GETINFO_.

11. To access data in the automatic extended segment, call SEGMENT_USE_ and
restore the segment number that you saved at step 4.

12. To delete an explicit segment that you no longer need, call
SEGMENT_DEALLOCATE_.

For information on using these system procedures, see the Guardian Programmer's
Guide and the Guardian Procedure Calls Reference Manual.

If you do not restore the automatic extended data segment before you manipulate data
in it, any of the following actions can result:

An assignment statement is beyond the segment's memory limit and causes a trap.

All assignments within range occur in the hardware base and limit registers of the
automatic extended segment.  Data in the currently active extended segment is
overwritten.  The error is undetected until you discover the discrepancy at a later
time.

The C code runs until it accesses an invalid address or accesses an inaccessible
library routine.

You get the wrong data from valid addresses in the explicit extended data
segment.
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In Example 17-1, a large-memory-model C routine calls a TAL routine that
manipulates data in an explicit extended segment and then restores the automatic
extended segment.  When control returns to the C routine, it manipulates data in the
restored automatic extended segment:

Example 17-1.  D-Series TAL and C Extended Segment Management (Page 1 of 2)

TAL Code

INT .EXT array[0:10];       !Allocated in the automatic
                            ! extended data segment ID 1024D
INT .EXT arr_ptr;

?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0 (
?     PROCESS_DEBUG_, DEFINEPOOL, GETPOOL,
?     SEGMENT_ALLOCATE_, SEGMENT_USE_, SEGMENT_DEALLOCATE_)
?POPLIST

PROC might_lose_seg;
  BEGIN
  INT status := 0;
  INT old_seg := 0;
  INT new_seg := 100;
  INT(32) seg_len := %2000D; !1024D

  array[0] := 10;         !Do work in automatic segment

  status := SEGMENT_ALLOCATE_ (
                   new_seg, seg_len, , , , , arr_ptr);
             !Allocate an explicit extended data segment;
             !store segment base address in ARR_PTR
  IF status <> 0 THEN CALL PROCESS_DEBUG_;

  Status := SEGMENT_USE_ (new_seg, old_seg, arr_ptr);
             !Make the explicit extended data segment current
  IF status <> 0 THEN CALL PROCESS_DEBUG_;

  !Use DEFINEPOOL, GETPOOL to retrieve a block in the
  ! explicit extended data segment.

  arr_ptr[2] := 10;        !Do some work in the segment.

  !When you no longer need the explicit extended data
  ! segment, call SEGMENT_DEALLOCATE_.

  status := SEGMENT_USE_ (old_seg);
             !Restore the automatic extended data segment
  IF status <> 0 THEN CALL PROCESS_DEBUG_;

  END;
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Example 17-1.  D-Series TAL and C Extended Segment Management (Page 2 of 2)

C Code

#pragma symbols, inspect, strict

short arr[10];
char sarr[10];
char *s;

tal void MIGHT_LOSE_SEG (void);

main ()
{
   s = &sarr[0];
   *s = 'A';
   arr[0] = 10;
   MIGHT_LOSE_SEG ();   /* Call TAL routine, which uses the*/
                        /* explicit extended data segment */

/* next two statements depend on the automatic extended */
/* data segment being restored after the call to TAL */
   sarr[1] = *s;
   arr[1] = arr[0] + 5;
}

For a TAL example program that manages an explicit extended data segment, see
Appendix B, “Managing Addressing.”
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CRE Guidelines
for TAL

The CRE provides routines that support mixed-language programs compiled on
D-series compilers.  A mixed-language program can consist of C, COBOL85,
FORTRAN, Pascal, and TAL routines.  By using the CRE, each routine in your
program, regardless of language, can:

Use its run-time library without overwriting the data of another run-time library
Share data in the CRE user heap
Access the standard files (standard input, standard output, and standard log)

Without the CRE, only routines written in the language of the MAIN routine can fully
access their run-time library.  For example, if the MAIN routine is written in TAL, a
routine written in another language might not be able to use its own run-time library.

D-series C and Pascal routines run only in the CRE.  D-series COBOL85, FORTRAN,
and TAL routines can run in the CRE if you specify the ENV COMMON directive.
Such programs must also meet CRE, system, and language requirements.  The CRE
Programmer’s Guide describes CRE requirements and routines.

This section gives CRE guidelines for TAL programs.  It discusses the following:

General coding guidelines
Specifying a run-time environment
Setting the user heap size
Initializing the CRE
Terminating programs
Sharing standard files
Using $RECEIVE
Handling errors in CRE math routines

General Coding Guidelines All D-series language products except TAL have run-time libraries that call CRE
routines and system routines as needed.  TAL routines that meet CRE requirements
can call CRE routines (and system procedures) directly.

The following list summarizes some general guidelines for coding D-series TAL source
code for the CRE.  The subsections that follow this list give more information about
some of these guidelines:

For the MAIN routine, specify the following TAL directives:

The ENV directive with the COMMON attribute to request the CRE
The HEAP directive if any routine needs the user heap in the CRE

To run in the CRE, your program needs the TALLIB and CRELIB library files.

As of the D20 release, your program can manipulate saved startup, PARAM, and
ASSIGN messages by using the Saved Messages Utility (SMU) functions provided
by the CLULIB library file.

The first statement of the MAIN routine must call TAL_CRE_INITIALIZER_.  This
routine initializes the CRE and optionally saves the startup, PARAM, and ASSIGN
messages.
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To terminate execution, call CRE_TERMINATOR_,  which calls PROCESS_STOP_.
Do not call the PROCESS_STOP_, STOP, or ABEND system procedures.

For services provided by the CRE, call CRE routines.  For example, call CRE
routines to:

Open, manipulate, and close the standard files
Perform math or string operations

For services not provided by the CRE, call system procedures.  For example, call
system procedures to:

Create processes
Manage extended data segments

Do not call the ABEND, ARMTRAP, PROCESS_STOP_ , or STOP system
procedure, because of probable conflict with TAL_CRE_INITIALIZER_  and
CRE_TERMINATOR_.

Do not call the INITIALIZER system procedure or read the startup message from
$RECEIVE itself, because of probable conflict with TAL_CRE_INITIALIZER_  and
CRE_TERMINATOR_.

If you use sequential I/O (SIO) procedures (such as WRITE^FILE, SET^FILE, and
READ^FILE), resolve how to remove any calls to the INITIALIZER procedure.
The Guardian Programmer’s Guide describes how you use the SIO and
INITIALIZER procedures.

Do not use the DATAPAGES, EXTENDSTACK, or STACK directive.  (The
compiler automatically allocates 64K words of memory space for the user data
segment.)

Do not write data to areas in the user data segment that are reserved for use by the
CRE;  that is, do not use:

Locations G[0] or G[1]
The upper 32K-word area

Your program can access $RECEIVE by calling either CRE routines only or system
procedures only, as described in “Accessing $RECEIVE” later in this section.

When an error occurs in a CRE routine, the CRE returns control to the calling TAL
routine without taking any action.  The TAL routine must explicitly handle all
errors except certain errors detected by the CRE routines.

If a CRE math routine detects an error, the calling TAL routine must manage the
trap enable bit of the environment register to control program behavior.
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 Specifying a Run-Time
Environment

To specify the intended run-time environment of a D-series TAL compilation unit, use
the ENV directive.   To execute in the intended environment, the routines must also
meet the requirements of the intended run-time environment.

The attributes of the ENV directive are:

ENV Attribute Intended Run-Time Environment

COMMON The CRE.

OLD A COBOL or FORTRAN run-time environment outside the CRE.

NEUTRAL None;  the program relies primarily on system procedures.

You can include the ENV directive in the TAL compilation command or in the
compilation unit before any declarations.  The ENV directive can appear only once
during a compilation.

For example, you can specify ENV on a directive line and include the COMMON
attribute:

?ENV COMMON

If you compile without the ENV directive, all routines in the compilation unit have the
ENV NEUTRAL attribute.

ENV COMMON  Directive

An object file can run in the CRE if the MAIN routine has the ENV COMMON
attribute and if all routines meet CRE requirements.  If ENV COMMON is in effect, all
routines in the compilation unit (except routines in object files listed in SEARCH
directives) have the ENV COMMON attribute.

SEARCH directives can list object files compiled with any ENV attribute except OLD.
Each routine in a SEARCH file retains its original ENV attribute.

When a compilation unit contains a MAIN routine and ENV COMMON is in effect,
the compiler allocates special CRE data blocks and initializes certain fields of those
data blocks.  These data blocks, listed in Table 17-3, are reserved for use by the CRE.

Table 17-3.  CRE Data Blocks

Data Block Name Location

Basic control block #CRE_GLOBALS At G[0] and G[1] of the user data segment.

Master control block #MCB In the upper 32K-word area of the user data
segment.

CRE heap #CRE_HEAP Last block in the upper 32K-word area of the user
data segment.   (This heap differs from the CRE
user heap block named #HEAP.)

Using Binder, you can bind an object file compiled with ENV COMMON to any object
file except those compiled with ENV OLD.  Each routine in the new object file retains
its original ENV attribute.
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ENV OLD Directive

An object file compiled with ENV OLD can run in a COBOL85 or FORTRAN run-time
environment outside the CRE (if the object file meets the requirements of the run-time
environment).

When ENV OLD is in effect, all routines in the compilation unit (except routines in
object files listed in SEARCH directives) have the ENV OLD attribute.  SEARCH
directives can list object files compiled with any ENV attribute except COMMON.
Each routine in a SEARCH file retains its original ENV attribute.

Using Binder, you can bind a TAL object file compiled with ENV OLD to any object
file (regardless of language) except those compiled with ENV COMMON.  Each
routine in the new object file retains its original ENV attribute.

A D-series TAL program compiled with ENV OLD can run on a C-series system.  To
debug the program with the Inspect product, however, your system must be a release
level C30.06 or later

ENV NEUTRAL Directive

An object file compiled with ENV NEUTRAL should not rely on any external services
except system procedures.

When ENV NEUTRAL is in effect, all routines in the compilation unit (except routines
in object files listed in SEARCH directives) have the ENV NEUTRAL attribute.
SEARCH directives can list object files compiled with ENV NEUTRAL or with no ENV
directive.  Each routine in the new object file has the ENV NEUTRAL attribute.

Using Binder, you can bind an object file compiled with ENV NEUTRAL to any object
file.  Each routine in the new object file retains its original ENV attribute.

ENV Directive Not Specified

An object file compiled without the ENV directive probably does not rely on any
external services except system procedures.

When no ENV directive is in effect, all routines in the compilation unit (except routines
in object files listed in SEARCH directives) have the ENV NEUTRAL attribute.
SEARCH directives can list object files compiled with any ENV attribute.  Each routine
in a SEARCH file retains its original ENV attribute.

Using Binder, you can bind an object file compiled without the ENV directive to any
object file.  Each routine in the new object file retains its original ENV attribute.
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The User Heap The user heap is a shared resource the CRE makes available to your routines,
regardless of language.  The user heap is in the block named #HEAP, which differs
from the CRE-reserved block named  #CRE_HEAP.

Binder allocates memory space for the user heap as follows:

If a TAL program contains a small-memory model C or Pascal module, the user
heap is the last global data block in the lower 32K-word area of the user data
segment.  (The last data block is located just below the user data stack.)

If a TAL program contains a large-memory-model C or Pascal module or contains
no C or Pascal routines, the user heap is the last data block in the automatic
extended data segment.

If the TAL program also uses explicit extended data segments, follow the
instructions given in “Explicit Extended Data Segments” earlier in this section.

Setting the User Heap Size

To set the size of the user heap, specify the HEAP directive in the TAL compilation
command or anywhere in the TAL module that contains the MAIN routine.  The size
specified in the last HEAP directive encountered in the TAL compilation takes effect.
The ENV COMMON directive must also be in effect.   If a TAL program invokes a
routine that needs the user heap, the HEAP directive is required.  The following TAL
directive line sets a user heap of 5 memory pages:

?HEAP 5

The heap size is the number of 2048-byte memory pages.  Specify an unsigned decimal
constant in one of the following ranges:

Memory
Model Range Notes

Small 0 through 31 The heap size you can specify depends on your use of the lower
32K-word area of the user data segment.

Large 0 through 32,767 When a program runs, the CRE increases the heap size as needed
up to the maximum size of the automatic extended segment.  Do
not set an arbitrarily large size because an equal amount of disk
space (for swapping) must be available.

Accessing the User Heap

Only C and Pascal routines can allocate and return user heap space.  To allocate and
return user heap space, C and Pascal routines call the following library routines:

Request C Library Routine Pascal Library Routine

Obtain heap space malloc NEW

Return heap space free DISPOSE
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Only C, Pascal, or TAL routines can access data in the user heap.  To access heap data,
a C, Pascal, or TAL routine assigns the address returned from malloc or NEW to a
pointer and uses the pointer in an expression.  All routines that need access to such
data must either:

Use the same data layout
Call a routine that accesses the data for you

COBOL85 and FORTRAN routines access heap data by calling C, Pascal, or TAL
routines.

In the following example, TAL routine DO_IT calls C routine GETSPACE.  GETSPACE
gets a block from the heap, stores a value in the first word of the block, and returns to
DO_IT a pointer that points to the data:

C Code

#include <stddef.h> nolist
#include <stdlib.h> nolist
int *GETSPACE (int nbytes)
{ int *p;
  p = (int *) malloc (nbytes);
  if ( p )
    *p = 100;
  return p;
}

TAL Code

INT(32) PROC tal_malloc = "GETSPACE" (nbytes) LANGUAGE C;
    INT nbytes;
  EXTERNAL;

PROC do_it;
  BEGIN
  INT .EXT t_ptr;
  @t_ptr := tal_malloc (1000);
  IF (@t_ptr = 0d) OR (t_ptr <> 100) THEN
    BEGIN
    !Handle error ...
    END;
  END;
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Including Library Files To run in the CRE, your program needs the TALLIB library file.  Your program can
also use the CRELIB and CLULIB library files.

TALLIB provides the TAL_CRE_INITIALIZER_ routine.  This routine is described in
the next subsection.

CRELIB provides routines that enable your routine to perform tasks such as the
following.  These routines are described in the CRE Programmer’s Guide:

Share files
Manipulate $RECEIVE
Terminate the CRE
Handle exceptions
Perform standard math functions
Manipulate strings
Manage memory blocks

CLULIB (as of the D20 release) contains SMU functions that enable your routine to
manipulate saved startup, ASSIGN, and PARAM message values.  These routines are
described in the CRE Programmer’s Guide.

The following table lists the files that your program must include depending on which
set of routines it uses.  The table also indicates the run-time environment in which you
can use the library routines.

Table 17-4.  Including Library and External Declaration Files

Library
File

Including Library
Routines

Routine
Prefix

Declaration File
to Source In

Run-Time
Environment

TALLIB SEARCH directive or
Binder command

TAL_ TALDECS CRE

CRELIB No action * CRE_ CREDECS CRE

CRELIB No action * RTL_ RTLDECS CRE

CLULIB SEARCH directive or
Binder command

SMU_ CLUDECS CRE, COBOL85,
FORTRAN, or TAL

* The CRELIB file is configured into the system library.

CREDECS and RTLDECS contain blocked global data declarations (that is, data
declared inside BLOCK declarations).  If you include blocked data declarations in a
compilation unit, a NAME declaration is required.  You must specify global
declarations in the following order:

1. NAME declaration

2. Unblocked global data declarations, if any

3. Blocked global data declarations from CREDECS, RTLDECS, and user code, if any

4. Procedure declarations
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The following example shows SEARCH directives for TALLIB and CLULIB, followed
by SOURCE directives for TALDECS, CREDECS, and CLUDECS:

?ENV COMMON
NAME cre_example;
?SEARCH $SYSTEM.SYSTEM.TALLIB
?SEARCH $SYSTEM.SYSTEM.CLULIB
?SOURCE $SYSTEM.SYSTEM.TALDECS (TAL_CRE_INITIALIZER_)
?SOURCE $SYSTEM.SYSTEM.CREDECS (CRE_TERMINATOR_)
?SOURCE $SYSTEM.SYSTEM.CLUDECS (SMU_ASSIGN_DELETE_)

You can specify the SEARCH directive in the command to start the compiler, instead
of in the source file.  Here is an example:

TAL /IN mysrc, OUT $s.#mylst, NOWAIT/ myprog;
        SEARCH $SYSTEM.SYSTEM.TALLIB

If you do not use the SEARCH directive for TALLIB and CLULIB, you can bind the
files into the object file by issuing Binder commands.  Here is an example:

ADD * FROM myprog
SELECT SEARCH $SYSTEM.SYSTEM.TALLIB
SELECT SEARCH $SYSTEM.SYSTEM.CLULIB
BUILD myprog

Initializing the CRE To initialize the CRE and optionally save system messages, call
TAL_CRE_INITIALIZER_ in the first statement of your MAIN routine.
TAL_CRE_INITIALIZER_ does the following actions:

It calls the ARMTRAP procedure and establishes a trap handler.
It optionally saves startup, ASSIGN and PARAM messages.
It determines the name of your program’s standard log.

The TALLIB file contains TAL_CRE_INITIALIZER_.  The TALDECS file contains the
external declaration for TAL_CRE_INITIALIZER_, as follows:

PROC TAL_CRE_INITIALIZER_ (options) EXTENSIBLE;
    INT options;                 !Input, optional
  EXTERNAL;

The OPTION parameter lets you save the startup, ASSIGN, and PARAM messages for
manipulation by your routine.  OPTION flags you can specify for the actual parameter
are provided in the CREDECS file in the INITIALIZATION section, as follows:

CRE^Save^all^messages
CRE^Save^startup^message
CRE^Save^assign^message
CRE^Save^param^message
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The following example initializes the CRE without saving messages:

?ENV COMMON
NAME initialize_CRE;
?SEARCH $SYSTEM.SYSTEM.TALLIB
?SOURCE $SYSTEM.SYSTEM.TALDECS (TAL_CRE_INITIALIZER_)

PROC mymain MAIN;
  BEGIN
  CALL TAL_CRE_INITIALIZER_;     !Initialize the CRE
  !Lots of code
  END;

The following example initializes the CRE and saves ASSIGN and PARAM messages
but not the startup message:

?ENV COMMON
NAME initialize_CRE;
?SEARCH $SYSTEM.SYSTEM.TALLIB
?SOURCE $SYSTEM.SYSTEM.TALDECS (TAL_CRE_INITIALIZER_)
?SOURCE $SYSTEM.SYSTEM.CREDECS (INITIALIZATION)

PROC mymain MAIN;
  BEGIN
  CALL TAL_CRE_INITIALIZER_
       (CRE^save^assign^message LOR CRE^save^param^message);
  !Lots of code
  END;

Your routine can manipulate the saved messages by calling SMU functions, as
described in the CRE Programmer’s Manual.

Terminating Programs At the end of execution:

1. A TAL module must call CRE_FILE_CLOSE_  for each file the TAL module has
opened.

2. The TAL module then must call CRE_TERMINATOR_ to clear the run-time
environment (as described in the CRE Programmer’s Guide).

3. CRE_TERMINATOR_  calls a run-time library termination routine for each
language in your program except TAL.

4. Each termination routine releases any resources and closes files used by routines
written in that language as follows:

It closes open standard files by calling CRE_FILE_CLOSE_.
It closes all other files by calling FILE_CLOSE_.

Each termination routine then passes control to CRE_TERMINATOR_.

5. CRE_TERMINATOR_  closes any remaining standard files, releases any system
resources used by the CRE, and calls PROCESS_STOP_.

6. PROCESS_STOP_  closes any remaining files left open by your program and
returns control to the operating system.
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Sharing the Standard Files To open and access standard input, output, and log files, a TAL routine must call CRE
routines directly.  The CRE provides the following routines for accessing the standard
files:

CRE_FILE_CLOSE_

CRE_FILE_CONTROL_

CRE_FILE_INPUT_

CRE_FILE_MESSAGE_

CRE_FILE_OPEN_

CRE_FILE_OUTPUT_

CRE_FILE_RETRYCHECK_

CRE_FILE_SETMODE_

CRE_HOMETERM_OPEN_

CRE_LOG_MESSAGE_

CRE_SPOOL_START_

The preceding CRE routines are described in the CRE Programmer’s Guide.   Some
examples are given in the following subsections.

Opening a Standard File

To request an open to a standard file, a TAL routine calls CRE_FILE_OPEN_.  For
example, to request an open to standard log , specify:

CALL CRE_FILE_OPEN_ (cre^standard^log);

As another example, to request an open to the standard output file, specify:

CALL CRE_FILE_OPEN_ (cre^standard^output);

CRE_FILE_OPEN_  does the following tasks:

If the file is closed, CRE_FILE_OPEN_  calls FILE_OPEN_.

FILE_OPEN_  opens the file and returns control to CRE_FILE_OPEN_.

CRE_FILE_OPEN_  grants the TAL routine a connection to the file open.

For each subsequent open request, CRE_FILE_OPEN_  grants a connection to the
same file open.
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Writing a Message to Standard Files

To write a record to standard log , a TAL routine calls CRE_LOG_MESSAGE_.  For
example, to write the content of a 15-character array named MSG to standard log, you
can specify:

CALL CRE_LOG_MESSAGE_ (msg:15);

To write a record to standard output , a TAL routine calls CRE_FILE_OUTPUT_.  For
example, to write the record "B" to standard output , you can specify:

STRING var;
var := "B";
CALL CRE_FILE_OUTPUT_ (cre^standard^output, var:1);

Closing Standard Files

To close standard files, a TAL routine calls CRE_FILE_CLOSE_.  For example, to close
standard log, specify:

CALL CRE_FILE_CLOSE_ (cre^standard^log);

As another example, to close standard output, specify:

CALL CRE_FILE_CLOSE_ (cre^standard^output);

Using Spooling

You can specify a spooler collector as the device for standard output or standard log.
For standard output, the CRE uses buffered spooling unless you specify otherwise.
For standard log, you cannot use buffered spooling.

To request an open to a spooler collector:

1. The TAL routine calls CRE_FILE_OPEN_.

2. If the spooler is closed, CRE_FILE_OPEN_  sets a flag that CRE_SPOOL_START_
has not been called.

3. If the flag in step 2 is set, other CRE standard-file routines (such as
CRE_FILE_OUTPUT_) call CRE_SPOOL_START_, which clears the flag and starts
the spooler with default settings.

To change the default settings, the TAL routine must call CRE_SPOOL_START_
directly and specify the new settings, such as the setting for multiple copies.

4. CRE_FILE_OPEN_  grants the TAL routine a connection to the spooler.

5. For each subsequent request, CRE_FILE_OPEN_  grants a connection to the same
spooler open.
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Accessing $RECEIVE $RECEIVE is a special file through which a routine can receive messages from the
operating system, from your backup process, or from another process.  Routines
written in any language supported by the CRE can read $RECEIVE.  The routines in a
program can access $RECEIVE by calling either CRE routines only or system
procedures only.

CRE  Routines

A program can use CRE routines to access $RECEIVE if the program accesses
$RECEIVE from:

TAL routines only
COBOL routines only
FORTRAN routines only
Both COBOL and TAL routines
Both FORTRAN and TAL routines

CRE  Routines for accessing $RECEIVE include:

Action CRE Routine

Request an open to $RECEIVE CRE_RECEIVE_OPEN_CLOSE_ with the open variant

Read messages from $RECEIVE CRE_RECEIVE_READ_

Reply to messages from $RECEIVE CRE_RECEIVE_WRITE_

If $RECEIVE is not open when the first request occurs, a CRE routine opens $RECEIVE
for exclusive access.  For each subsequent request, the CRE routine grants a connection
to the same file open.  For more information on the CRE routines, see the CRE
Programmer’s Guide.

System  Procedures

System procedures for accessing $RECEIVE include:

Action System Procedure

Request an open to $RECEIVE FILE_OPEN_

Read, and reply to, messages from
$RECEIVE

READUPDATE[X] and REPLY[X]

For more information on the system procedures, see the Guardian Programmer’s Guide
and the Guardian Procedure Calls Reference Manual.
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Handling Errors in
CRE Math Routines

The CRE provides libraries of math routines, such as sine and cosine routines, that
your program can call.

When a CRE math routine receives an invalid parameter or produces an invalid result,
an arithmetic fault occurs when control returns to the caller.  The caller’s run-time
library (except TAL) determines the program’s behavior.

A TAL caller can determine the effect of the error by setting or resetting the trap-
enable bit of the environment register.  You should ensure that the trap-enable bit is
appropriately set before your program calls a CRE math routine.

If traps are disabled when a CRE math routine detects an error, the system returns
control to the caller:

REAL r, s;
r := -1.0E0;

CALL disable_overflow_traps;    !A user-written routine that
s := RTL_SQRT_REAL32_(r);       ! disables overflow traps
IF $OVERFLOW THEN               !Control returns here; test
  BEGIN                         ! error in RTL_SQRT_REAL32_.
  CALL enable_overflow_traps;   !Enable overflow traps
  !Lots of code
  END;
CALL enable_overflow_traps;     !Enable overflow traps

If traps are enabled when a CRE math routine detects an error, the system returns
control to the current trap handler:

REAL r, s;
r := -1.0E0;

CALL enable_overflow_traps;     !A user-written routine that
s := RTL_SQRT_REAL32_(r);       ! enables overflow traps
IF $OVERFLOW THEN               !If RTL_SQRT_REAL32_ causes
  BEGIN                         ! overflow, the program does
  !Lots of code!                ! not reach this statement
  END;                          ! because control transfers
                                ! to the current trap handler

The Extended Stack The CRE supports the extended stack, which defines the following data blocks:

$EXTENDED#STACK

EXTENDED#STACK#POINTERS

These data blocks are described in Section 4, “Introducing the Environment.”
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CRE Sample Program Example 17-2 shows the source code of a D-series program written for the CRE.   This
program contains a TAL routine that calls a C routine, each of which displays a
greeting.

Example 17-2.  D-Series CRE Sample Program  (Page 1 of 2)

TAL Code

?SYMBOLS, INSPECT
?ENV COMMON

NAME talsrc;

!Source in CRE run-time library routines:
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM CREDECS (FILE)
?POPLIST
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM CREDECS (
?                                  TERMINATION)
?POPLIST
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM CREDECS (
?                                  CRE_FILE_CLOSE_,
?                                  CRE_FILE_OPEN_,
?                                  CRE_LOG_MESSAGE_,
?                                  CRE_TERMINATOR_)
?POPLIST

!Source in TAL run-time library routine:
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM TALDECS (
?                                  TAL_CRE_INITIALIZER_)
?POPLIST

PROC c_routine LANGUAGE C;
  EXTERNAL;                     !Declare EXTERNAL C routine

PROC talmain MAIN;
  BEGIN
  STRING .msg[0:13] := "Hello from TAL";

  CALL TAL_CRE_INITIALIZER_;
  CALL CRE_FILE_OPEN_ (cre^standard^log);
  CALL CRE_LOG_MESSAGE_ (msg:14);
  CALL c_routine;
  CALL CRE_FILE_CLOSE_ (cre^standard^log);
  CALL CRE_TERMINATOR_ (cre^completion^normal);
END;
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Example 17-2.  D-Series CRE Sample Program  (Page 2 of 2)

C Code

#pragma symbols, inspect
#include <stdioh> nolist

/*file name:  csrc */

void C_ROUTINE ()             /* C routine called by TAL */
{
  short result;
  short stderror = 2;
  short error = 0;

  result = fopen_std_file(stderror, error);
  if ((result == 0) || (result == 1))
    fprintf(stderr, "Hello from C\n");
}

After you compile the TAL and C source files, you must bind the object files and the
TAL and C run-time libraries into a new object file.   The resulting object file can then
run in the CRE, if the object file meets the requirements of the CRE.

For example, to bind object files named TALOBJ and COBJ and run-time library files
named TALLIB and CLARGE into a new object file named EXAMPLE, issue the
following Binder commands:

CLEAR
ADD * FROM talobj
ADD * FROM cobj
SELECT SEARCH $SYSTEM.SYSTEM.TALLIB
SELECT SEARCH $SYSTEM.SYSTEM.CLARGE
SELECT LIST * OFF
BUILD example!
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This appendix includes the following examples:

String-display sample program
String-entry sample program
Binary-to-ASCII conversion sample program
Modular programming example

String-Display
Programs

Example A-1 shows the source code for a string-display program that displays
"Hello, World" on the terminal.

Example A-1.  C- or D-Series String-Display Program

!Global data declarations:
INT .out_file_name[0:11];

?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (CLOSE,
?  INITIALIZER, OPEN, WRITEX)   !Include system procedures,
                                ! but suppress their listings
?POPLIST                        !Resume listing

PROC startup_proc (rucb, passthru, message, msglen, match)
      VARIABLE;                 !Declare STARTUP_PROC
    INT .rucb, .passthru, .message, msglen, match;
  BEGIN
  out_file_name ':=' message[21] FOR 12 WORDS;
                                !Move statement
  END;                          !End STARTUP_PROC

PROC myproc MAIN;               !Declare MYPROC
  BEGIN
  INT out_file_number;
  STRING .EXT buffer[0:79];     !Array for output message
  INT length;                   !Length of output message

  CALL INITIALIZER ( ! rucb !, ! passthru !, startup_proc,
     ! paramsproc !, ! assignproc !, ! flags ! );
                                !Get OUT file name
  CALL OPEN (out_file_name , out_file_number);
                                !Open OUT file; get number
  buffer ':=' "Hello, World";   !Move statement
  length := 12;                 !Assignment statement
  CALL WRITEX (out_file_number, buffer, length);
                                !Write message to OUT file
  CALL CLOSE (out_file_number); !Close OUT file
  END;                          !End MYPROC
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Example A-2 shows a C-series version of the previous string-display program.

Example A-2.  C-Series String-Display Program)

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (CLOSE, INITIALIZER,
?  MYTERM, OPEN, WRITE)         !Include system procedures,
                                ! but suppress their listings
?LIST                           !Resume listing

PROC myproc MAIN;               !Declare MYPROC procedure
  BEGIN
  !Data declarations
  INT termname[0:11];           !Terminal name
  INT filename;                 !File number for terminal
  STRING buffer[0:79];          !Array for output message
  INT length;                   !Variable for message length

  CALL INITIALIZER;             !Process startup
                                ! initialization
  CALL MYTERM (termname);       !Get terminal name
  CALL OPEN (termname, filenum); !Open terminal; get number
  buffer ':=' "Hello, World";   !Move statement
  length := 12;                 !Assignment statement
  CALL WRITE (filenum, buffer, length);
                                !Write message to terminal)
  CALL CLOSE (filenum);         !Close terminal
  END;                          !End MYPROC
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String-Entry Program This string-entry program opens the home terminal and then loops forever.  In each
loop iteration, the program:

1. Displays "ENTER STRING" and accepts a character string of up to 68 characters.

2. Scans the input string for an asterisk.  If an asterisk occurs, the program displays a
circumflex at the position of the first asterisk.

Example A-3 shows the D-series source code for the string-entry program.

Example A-3.  D-Series String-Entry Program

LITERAL maxlength = 68;         !Maximum length of BUFFER
INT termnum,                    !File number of home terminal
    left_side,                  !BUFFER address of first
                                ! character after prompt
    num_xferred,                !Number of bytes transferred
    count,                      !General-purpose variable
    asterisk;                   !Location of asterisk
STRING .buffer[0:maxlength],    !Input-output buffer
   .blanks[0:79] := 80 * [" "]; !Blanks for initialization
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0 (
?  PROCESS_GETINFO_, FILE_OPEN_, WRITEREADX, WRITEX)
?POPLIST

PROC main_proc MAIN;            !Declare MAIN_PROC
  BEGIN
  CALL PROCESS_GETINFO_ (
                 ,,,,,buffer:maxlength+1, num_xferred);
  CALL FILE_OPEN_(buffer:num_xferred, termnum);
  WHILE 1 DO                    !Infinite loop
    BEGIN
    buffer ':=' "ENTER STRING" -> left_side;
    CALL WRITEREADX (termnum, buffer, left_side '–' @buffer,
                   maxlength, num_xferred);
    buffer[num_xferred] := 0;   !Delimit the input
    SCAN buffer UNTIL "*" -> asterisk;
                                !Scan for asterisk
    IF NOT $CARRY THEN          !Asterisk found
      BEGIN
      buffer ':=' blanks FOR
         (count := asterisk '-' @buffer +
                 (left_side '-' @buffer)) BYTES;
      buffer[count] := "^";
      CALL WRITEX (termnum, buffer, count+1);
      END;                      !End of IF
    END;                        !End of WHILE
  END;                          !End of MAIN_PROC
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Example A-4 shows the C-series source code for the string-entry program.

Example A-4.  C-Series String-Entry Program

LITERAL maxlength = 68;         !Maximum length of BUFFER
INT termnum,                    !File number of home terminal
    left_side,                  !BUFFER address of first
                                ! character after prompt
    num_xferred,                !Number of bytes transferred
    count,                      !General-purpose variable
    asterisk;                   !Location of asterisk
INT .ibuffer[0:maxlength/2];
STRING .buffer := @ibuffer '<<' 1, !Input-output buffer
   .blanks[0:79] := 80 * [" "]; !Blanks for initialization
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0 (
?  MYTERM, OPEN, WRITEREADX, WRITEX)
?POPLIST

PROC main_proc MAIN;            !Declare MAIN_PROC
  BEGIN
  CALL MYTERM (ibuffer);
  CALL OPEN (ibuffer, termnum);
  WHILE 1 DO                    !Infinite loop
    BEGIN
    buffer ':=' "ENTER STRING" -> left_side;
    CALL WRITEREADX (termnum, buffer, left_side '–' @buffer,
                   maxlength, num_xferred);
    buffer[num_xferred] := 0;   !Delimit the input
    SCAN buffer UNTIL "*" -> asterisk;
                                !Scan for asterisk
    IF NOT $CARRY THEN          !Asterisk found
      BEGIN
      buffer ':=' blanks FOR
         (count := asterisk '-' @buffer +
                 (left_side '-' @buffer)) BYTES;
      buffer[count] := "^";
      CALL WRITEX (termnum, buffer, count+1);
      END;                      !End of IF
    END;                        !End of WHILE
  END;                          !End of MAIN_PROC
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Binary-to-ASCII
Conversion Program

This binary-to-ASCII conversion program performs a conversion function typical of
many algorithms in TAL.  The program converts a binary INT value to an ASCII (base
10) value with a maximum length of six characters including the sign, then returns the
converted character string and its length to the calling procedure.

Significant items in Example A-5 are keyed to the following discussion:

Item Discussion

!1! Comments preceding the procedure declaration describe the purpose of the
procedure.  For complex procedures, you can also summarize the input-output
characteristics and the main features of the algorithm.

!2! The formal parameter specifications define the parameters of the procedure.
Input parameters V and RJUST are value parameters, and output parameter
STG is a reference parameter.

!3! This local declaration reserves six bytes of memory for the buffer in which the
number is converted.  The declaration also initializes the first five bytes in the
buffer to blanks (using a repetition factor of 5) and sets the last byte to an
ASCII 0.  Thus, an input of 0 results in an output of five blanks and a 0, rather
than six blank characters.

!4! This IF statement deals with a negative INT binary number.  When it
encounters a negative number, it sets the negative value flag to 1 and takes the
absolute value of the number passed.

!5! This WHILE loop performs the conversion, character by character, writing each
byte to the buffer from right to left.

!6! This assignment statement converts the binary INT value to an ASCII (base 10)
value.  It illustrates an arithmetic expression that uses the standard procedure
$UDBL.  The statement performs a residue modulo 10 operation, then adds an
ASCII 0 to the value of each byte to fit in the numeric range.

!7! This IF statement uses the assignment form of an arithmetic expression as the
condition.

!8! This IF statement moves the resulting character string from the buffer into the
user’s target string.

!9! The RETURN statement returns to the calling procedure the number of
characters moved.
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Example A-5.  C- or D-Series Binary-to-ASCII Conversion Program

!1!  !INT PROC ASCII converts a binary INT value to an ASCII
     ! (base 10) value of up to six characters (including the
     ! sign) and returns the ASCII value and its length.

     INT PROC ascii (v, rjust, stg);
!2!      INT     v;          !INT value to convert
         INT     rjust;      !Right justify result flag
         STRING .stg;        !Target string
       BEGIN
!3!    STRING   .b[0:5] := [5*[" "],"0"];
       INT       n;          !String length
       INT       sgn := 0;   !Nonzero if V is negative
       INT       k := 5;     !Index for converted digit

!4!    IF v < 0 THEN         !Value is negative
         BEGIN
         sgn := 1;           !Set negative value flag
         v := -v;            !Take absolute value
         END;

!5!    WHILE v DO            !While a value is left . . .
         BEGIN               ! (equivalent to V <> 0)
!6!      b[k] := $UDBL(v) '\' 10 + "0";
                             !Convert a character
         v := v / 10;        !Compute remainder
         k := k - 1;         !Count converted character
         END;

       IF sgn THEN           !Number is negative
         BEGIN
         b[k] := "-";        !Insert the sign
         k := k - 1;         !Count it as a character
         END;

!7!    IF NOT (n:=5-k) THEN  !Check for an underflow
         n := 1;             !Return 1 character in that case

!8!    IF rjust THEN         !Move string to target
         stg[n-1] '=:' b[5] FOR n BYTES
                             !Reverse move if right justified
       ELSE
         stg ':=' b[6-n] FOR n BYTES;
                             !Otherwise forward move

!9!    RETURN n;             !Return string’s length
       END !ascii! ;



Modular Programming Example

Sample Programs

096254 Tandem Computers Incorporated A–7

Modular Programming
Example

This modular programming example illustrates how you can divide the code for a
program into separately compilable modules.  The program converts records in the
input file to a different format and length by reordering fields and adding fields to
records.  The example includes:

A brief description of program characteristics
Partial listings of module code
Load maps for the program file
Compilation statistics (compile and bind) for the program file

Selected listings show the handling of data and program structure. The content of
global data blocks appear only in the module that declares them.  In modules that
reference such blocks, NOLIST prevents the listing of the content of the blocks.

Compilation maps and statistics are not shown for each module.  Load maps show
global-data-block entries that do not exist after compilation, such as LITERALs.  The
mainline load map does not refer to these blocks.

Modular Structure The program consists of five modules, shown in Examples A-6a through A-6e.  Each
module performs a single operation.  The structure of the modules and their
procedures allows changes to one operation without the need to recompile the others.

Information is accessible across modules on an as-needed basis.  They share named
global data blocks and pass information as parameters and local data such as a simple
pointer to the locally declared record buffer.  The named global data block
DEFAULT_VOL contains shared run-time data.  Other named blocks declare structure
templates for record definitions and LITERAL declarations, which use no memory.

Procedures within a module share global data in private blocks.

The following table summarizes the blocks used by each module.  (The symbol (P)
denotes a private block.)

Module Name Blocks Defined Blocks Referenced

TPR_CONVERT RECORD_DEFS MSG_LITERALS

INITIALIZATION_MODULE DEFAULT_VOL

MESSAGE_MODULE MSG_LITERALS
MESSAGE_MODULE (P)

DEFAULT_VOL

IN_FILE_HANDLER IN_DATA
IN_FILE_HANDLER (P)

MSG_LITERALS
DEFAULT_VOL

OUT_FILE_HANDLER OUT_DATA
OUT_FILE_HANDLER (P)

DEFAULT_VOL
MSG_LITERALS
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File-Naming Conventions This modular program follows these file-naming conventions:

Source file names end with the character S.

Object file names correspond to source file names and end with O.  For instance,
the object file built from the source file INS is named INO.

Section names ending with D belong to a specific module.  For instance, IND is the
section that contains LITERAL declarations for INS.  Other section names are used
to provide a direct means for other source programs to copy individual procedures
when they need them.  The section names beginning with END_OF_ are used
solely to mark the ends of actual sections.

File names ending with P each contains external declarations of the procedures in
the module with the corresponding identifier.  A module that calls an external
procedure includes a SOURCE directive for the P file.  For instance, the source for
MESSAGE_MODULE is file MSGS, and source file MSGP declares each external
procedure in MSGS.  The modules that call MESSAGE_MODULE specify MSGP in
a SOURCE directive.

If any external declarations change, you must recompile both the P file and any
module that calls a changed external procedure.  The P file enables compile-time
consistency checking between procedure declarations and the corresponding external
declarations.

A module also uses a P file for its external procedure declarations.  Module xxxS uses a
SOURCE directive to specify xxxP, which contains external declarations for its
procedures.  (Otherwise, the consistency check is possible only during a later binding.)
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Compiling and Binding the
Modular Program

To compile each source file into an object file, you can issue the following compilation
commands  You need do all these steps only once:

TAL /IN inits/ inito
TAL /IN ins/ ino
TAL /IN outs/ outo
TAL /IN msgs/ msgo
TAL /IN converts/ converto

To bind the modular object files into a single object file, you can issue the following
Binder commands.  In this example, BINDS is the Binder IN file and the last five lines
represent the content of BINDS:

BIND / IN binds /

ADD * FROM converto
SELECT SEARCH (ino, outo, msgo, inito)
SELECT SEARCH $SYSTEM.SYSTEM.TALLIB
BUILD convert !
EXIT

You can then update the code or private data in a module such as INITS by issuing the
following commands:

TAL /IN inits/ inito
BIND / IN binds /

When you update a shared data block in a module, you must recompile all modules
that reference the updated data block.  Similarly, when you update the declarations of
a shared procedure, you must recompile all modules that reference the updated
procedure.

Source Modules The following source modules for the modular program illustrate how you can break a
program into manageable modules.  The source code for these modules are shown in
the remainder of this section:

Example Module Name Source File Name

A-6a.   Mainline Module TPR_CONVERT CONVERTS

A-6b.   Initialization Module INITIALIZATION_MODULE INITS

A-6c.   Input File Module IN_FILE_HANDLER INS

A-6d.   Output File Module OUT_FILE_HANDLER OUTS

A-6e.   Message Module MESSAGE_MODULE MSGS
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Mainline Module

Example A-6a shows the mainline module, which contains the MAIN procedure.  The
record-definition structures are not listed because they are translations of the Data
Definition Language (DDL) source code into TAL.

Example A-6a.  D-Series Mainline Module (Page 1 of 2)

!File name CONVERTS
NAME tpr_convert;

?PUSHLIST, NOLIST, SOURCE recdefs      !BLOCK RECORD_DEFS
?POPLIST
?PUSHLIST, NOLIST, SOURCE msgs (msglit)
?POPLIST                               !BLOCK MSG_LITERALS
              !Following are external procedure declarations:
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
?                                              PROCESS_STOP_)
?POPLIST
?PUSHLIST, NOLIST, SOURCE inp          !IN_FILE_HANDLER
?POPLIST
?PUSHLIST, NOLIST, SOURCE outp         !OUT_FILE_HANDLER
?POPLIST
?PUSHLIST, NOLIST, SOURCE msgp         !MESSAGE_MODULE
?POPLIST
?PUSHLIST, NOLIST, SOURCE initp        !INITIALIZATION_MODULE
?POPLIST

?SECTION out_init
PROC out_init (out_rec:out_rec_len);   !Initialize
    STRING .EXT out_rec (out_rec_def); ! output record
    INT out_rec_len;
  BEGIN
  IF out_rec_len '<>' 0 THEN
    out_rec ':=' [" "] & out_rec FOR out_rec_len '-' 1 BYTES;
  END;

?SECTION record_convert
PROC record_convert (in_rec, out_rec);
    STRUCT .EXT in_rec (in_rec_def);   !Convert between
    STRUCT .EXT out_rec (out_rec_def); ! two records
  BEGIN
  INT i;
  STRING .EXT ch_ptr;
  i := 0;
  @ch_ptr := @in_rec.name;             !Copy last name
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Example A-6a.  D-Series Mainline Module (Page 2 of 2)

  WHILE (i < $OCCURS(in_rec.name)) AND (ch_ptr <> ",") DO
    BEGIN
    @ch_ptr := @ch_ptr[1];
    i := i + 1;
    END;
  out_rec.name.last_name ':=' in_rec.name FOR i BYTES;

  IF ch_ptr = ',' THEN                 !Copy first name
    BEGIN
    @ch_ptr := @ch_ptr[1];             !Advance past comma
    out_rec.name.first_name ':=' ch_ptr FOR
      $OCCURS(in_rec.name) '-' i '-' 1 BYTES;
    END;
  out_rec.address ':=' in_rec.address  !Copy address
    FOR $OCCURS(in_rec.address) BYTES;
  END;

?SECTION convert
PROC convert;
  BEGIN
  INT     record_count := 0;
  STRUCT .in_buffer  (in_rec_def);
  STRUCT .out_buffer (out_rec_def);
  WHILE (read_in (in_buffer:$LEN(in_rec_def))) <> 1 !EOF! DO
    BEGIN                               !Read record,
                                        ! return EOF
    CALL out_init (out_buffer:$LEN(out_rec_def));
                                        !Initialize output
    CALL record_convert (in_buffer, out_buffer);
    CALL write_out (out_buffer:$LEN(out_rec_def));
    record_count := record_count + 1;
    END;  !Of WHILE loop
  !EOF
  CALL msg (msg_eof, record_count);
  END;  !Of CONVERT

?SECTION end_of_code_sections
PROC tprconv MAIN;
  BEGIN
  CALL file_init;                   !In INITIALIZATION_MODULE
  CALL convert;
  CALL close_all;
  END;
?NOMAP
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Initialization Module

Example A-6b shows the source code for the initialization module.  This module
defines a primary global data block, DEFAULT_VOL, which is accessible to all
procedures in the modules that declare the block for reference.

Example A-6b.  D-Series Initialization Module (Page 1 of 2)

!File name INITS
NAME initialization_module;

?SECTION default
BLOCK default_vol;                !Default volume, subvolume
  LITERAL file_name_max_len = 256;
  INT def_vol_subvol_len;
  STRING .def_vol_subvol[0:file_name_max_len - 1];
  END BLOCK;
?SECTION end_of_data_sections

              !Following are external procedure declarations:
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
?                                   OLDFILENAME_TO_FILENAME_)
?POPLIST
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
?                                                INITIALIZER)
?POPLIST
?PUSHLIST, NOLIST, SOURCE outp              !OUT_FILE_HANDLER
?POPLIST
?PUSHLIST, NOLIST, SOURCE inp                !IN_FILE_HANDLER
?POPLIST
?PUSHLIST, NOLIST, SOURCE msgp                !MESSAGE_MODULE
?POPLIST
?PUSHLIST, NOLIST, SOURCE initp        !INITIALIZATION_MODULE
?POPLIST                           ! (for consistency checks)
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Example A-6b.  D-Series Initialization Module (Page 2 of 2)

?SECTION startup
PROC startup (rucb, passthru, message, meslen, match)
  VARIABLE;
    INT .rucb, .passthru, .message, meslen, match;
  BEGIN
  INT .def_vol_subvol_internal_fmt[0:11] := [ 12 * ["  "] ];
  def_vol_subvol_internal_fmt ':=' message[1] FOR 8 WORDS;
  CALL OLDFILENAME_TO_FILENAME_(def_vol_subvol_internal_fmt,
                            def_vol_subvol:file_name_max_len,
                            def_vol_subvol_len);
  END;

?SECTION file_init
PROC file_init;
  BEGIN
  CALL INITIALIZER (,,startup);
  CALL msg_init;
  CALL in_file_init;
  CALL out_file_init;
  END;

?SECTION close_all
PROC close_all;
  BEGIN
  CALL in_close;
  CALL out_close;
  CALL msg_close;
  END;
?SECTION end_of_code_sections
?NOMAP
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Input File Module

Example A-6c shows the source code for the input file module, which contains all
procedures that manipulate the input file.  If you make I/O changes, only this module
needs to be recompiled.  The initialization module, for example, calls a procedure in
this module.  This module declares a private global data block, which is accessible only
to the procedures in this module.

Example A-6c.  D-Series Input File Module (Page 1 of 3)

!File name INS
NAME in_file_handler;

?PUSHLIST, NOLIST, SOURCE recdefs          !BLOCK RECORD_DEFS
?POPLIST
?PUSHLIST, NOLIST, SOURCE inits (default)  !BLOCK DEFAULT_VOL
?POPLIST
?PUSHLIST, NOLIST, SOURCE msgs (msglit)   !BLOCK MSG_LITERALS
?POPLIST

BLOCK PRIVATE;
  INT in_file;                             !Input file number
  END BLOCK;

              !Following are external procedure declarations:
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
?                                 FILE_CLOSE_, FILE_GETINFO_)
?POPLIST
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
?                              FILE_OPEN_, FILENAME_RESOLVE_)
?POPLIST
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
?                                       PROCESS_STOP_, READX)
?POPLIST
?PUSHLIST, NOLIST, SOURCE msgp               ! MESSAGE_MODULE
?POPLIST
?PUSHLIST, NOLIST, SOURCE inp               ! IN_FILE_HANDLER
?POPLIST                              ! (consistency checks)
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Example A-6c.  D-Series Input File Module (Page 2 of 3)

?SECTION in_file_init
PROC in_file_init;
  BEGIN
  INT in_file_name_len := 6;
  STRING .in_file_name[0:file_name_max_len - 1] :=
                                                [ "INFILE" ];
  INT status;
  status := FILENAME_RESOLVE_
              (in_file_name:in_file_name_len,
               in_file_name:file_name_max_len,
               in_file_name_len,
               !options!,
               !override_name:override_name_len!,
               !search:search_len!,
               def_vol_subvol:def_vol_subvol_len);
  IF status = 0 !OK! THEN
    BEGIN
    status := FILE_OPEN_(in_file_name:in_file_name_len,
                          in_file);
    IF in_file = -1 !unable to open file! THEN
      BEGIN
      CALL msg (msg_in_open, status);
      CALL PROCESS_STOP_ (!phandle!,
                          !specifier!,
                          !options!,
                          3 !Completion code ABEND!,
                          !...!);
      END;
    END   !STATUS = 0
  ELSE
    BEGIN
    CALL msg (msg_in_name, 0);
    CALL PROCESS_STOP_ (!phandle!,
                        !specifier!,
                        !options!,
                        3 !Completion code ABEND!,
                        !...!);
    END;  !STATUS <> 0
  END;  !Of procedure IN_FILE_INIT
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Example A-6c.  D-Series Input File Module (Page 3 of 3)

?SECTION read_in
INT PROC read_in (rec:rec_len);
    STRING .EXT rec;
    INT rec_len;
  BEGIN
  INT error;

  CALL READX (in_file, rec, rec_len);
  IF < THEN
    BEGIN
    error := FILE_GETINFO_ (in_file);
    CALL msg (msg_read, error);
    CALL PROCESS_STOP_ (!phandle!,
                        !specifier!,
                        !options!,
                        3 !Completion code ABEND!,
                        !...!);
    END
  ELSE
    IF > THEN RETURN 1
  ELSE
    RETURN 0;

?SECTION in_close
PROC in_close;
  BEGIN
  CALL FILE_CLOSE_ (in_file);
  END;
?SECTION end_of_code_sections
?NOMAP
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Output File Module

Example A-6d shows the source code for the output file module.  This module declares
a private global data block, which is accessible only to procedures in this module.
Some code that is parallel to code in the input file handler is not listed.

Example A-6d.  D-Series Output File Module (Page 1 of 3)

!File name OUTS
NAME out_file_handler;

?PUSHLIST, NOLIST, SOURCE recdefs          !BLOCK RECORD_DEFS
?POPLIST
?PUSHLIST, NOLIST, SOURCE inits (default)  !BLOCK DEFAULT_VOL
?POPLIST
?PUSHLIST, NOLIST, SOURCE msgs (msglit)   !BLOCK MSG_LITERALS
?POPLIST

BLOCK PRIVATE;
  INT out_file;
  END BLOCK;

               !Following are external procedure declarations
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
?                                 FILE_CLOSE_, FILE_GETINFO_)
?POPLIST
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
?                              FILE_OPEN_, FILENAME_RESOLVE_)
?POPLIST
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
?                                      PROCESS_STOP_, WRITEX)
?POPLIST
?PUSHLIST, NOLIST, SOURCE msgp
?POPLIST

?SECTION out_file_init
PROC out_file_init;
  BEGIN
  INT out_file_name_len := 7;
  STRING .out_file_name[0:file_name_max_len - 1]
                                            := [ "OUTFILE" ];
  INT status;
  status := FILENAME_RESOLVE_
                         (out_file_name:out_file_name_len,
                         out_file_name:file_name_max_len,
                         out_file_name_len,
                         !options!,
                         !override_name:override_name_len!,
                         !search:search_len!,
                         def_vol_subvol:def_vol_subvol_len);
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Example A-6d.  D-Series Output File Module (Page 2 of 3)

  IF status = 0 !FEOK! THEN
    BEGIN
    status := FILE_OPEN_ (out_file_name:out_file_name_len,
                          out_file);
    IF out_file = -1 !unable to open file! THEN
      BEGIN
      CALL msg (msg_out_open, status);
      CALL PROCESS_STOP_ (!phandle!,
                          !specifier!,
                          !options!,
                          3 !Completion code ABEND!,
                          !...!);
      END;
    END   !Of THEN clause
  ELSE
    BEGIN
    CALL msg (msg_out_name, 0);
    CALL PROCESS_STOP_   (!phandle!,
                          !specifier!,
                          !options!,
                          3 !Completion code ABEND!,
                          !...!);
    END;   !Of ELSE clause
  END;

?SECTION write_out
PROC write_out (rec:rec_len);
    STRING .EXT rec;
    INT rec_len;
  BEGIN
  INT error;
  CALL WRITEX (out_file, rec, rec_len);
  IF < THEN
    BEGIN
    error := FILE_GETINFO_ (out_file);
    CALL msg (msg_write, error);
    CALL PROCESS_STOP_   (!phandle!,
                          !specifier!,
                          !options!,
                          3 !Completion code ABEND!,
                          !...!);
    END;
  END;  !Of WRITE_OUT
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Example A-6d.  D-Series Output File Module (Page 3 of 3)

?SECTION out_close
PROC out_close;
  BEGIN
  CALL FILE_CLOSE_ (out_file);
  END;
?SECTION end_of_code_sections
?NOMAP

Message Module

Example A-6e shows the message module listing.  The terminal number in the private
global data block is is accessible only to procedures in this module.

Example A-6e.  D-Series Message Module (Page 1 of  3)

!File name MSGS
NAME message_module;

?SECTION msglit                   !Define BLOCK MSG_LITERALS
BLOCK msg_literals;
  LITERAL
    msg_eof      = 0,
    msg_in_open  = 1,
    msg_in_name  = 2,
    msg_read     = 3,
    msg_out_open = 4,
    msg_out_name = 5,
    msg_write    = 6;
  END BLOCK;
?SECTION end_of_data_sections

BLOCK PRIVATE;
  LITERAL term_name_max_len = 256;
  INT term_file_number;
  LITERAL msg_buf_end = 79;
  END BLOCK;

               !Following are external procedure declarations
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
?                                    FILE_CLOSE_, FILE_OPEN_)
?POPLIST
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
?                                   NUMOUT, PROCESS_GETINFO_)
?POPLIST
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (WRITEX)
?POPLIST
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Example A-6e.  D-Series Message Module (Page 2 of 3)

?SECTION msg_init
PROC msg_init;
  BEGIN
  INT term_name_len;
  STRING .term_name[0:term_name_max_len - 1];
  CALL PROCESS_GETINFO_(!process_handle!,
                        !file_name:max_len!,
                        !file_name_len!,
                        !priority!,
                        !moms_phandle!,
                        term_name:term_name_max_len,
                        term_name_len,
                        !...! );
  CALL FILE_OPEN_(term_name:term_name_len, term_file_number);
  END;

?SECTION msg
PROC msg (number, altnum);
  INT number, altnum;
  BEGIN
  STRING .buffer[0:msg_buf_end];
  STRING .bufptr := @buffer;
  CASE number OF
    BEGIN
    msg_eof ->
      buffer ':='  " *** End of File "         -> @bufptr;
    msg_in_open ->
      buffer ':='  " *** In file open failed " -> @bufptr;
    msg_in_name ->
      buffer ':='  " *** Bad in file name "    -> @bufptr;
    msg_read ->
      buffer ':='  " *** Read error "          -> @bufptr;
    msg_out_open ->
      buffer ':='  " *** Out file open failed "-> @bufptr;
    msg_out_name ->
      buffer ':='  " *** Bad out file name "   -> @bufptr;
    msg_write ->
      buffer ':='  " *** Write error "         -> @bufptr;
    OTHERWISE ->
      ;
    END;

    IF altnum <> 0 THEN
      BEGIN
      CALL NUMOUT (bufptr, altnum, 10, 5);
      @bufptr := @bufptr + 5;
      END;
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Example A-6e.  D-Series Message Module (Page 3 of 3)

  CALL WRITEX (term_file_number, buffer,
                                       @bufptr '-' @buffer);
  END;  !Of MSG

?SECTION msg_close
PROC msg_close;
  BEGIN
  CALL FILE_CLOSE_ (term_file_number);
  END;
?SECTION end_of_data_sections
?NOMAP

Compilation Maps
and Statistics

The following compilation maps and statistics are shown for the preceding modular
programming example:

Entry-point load map
Data-block load map
Statistics for the mainline compilation

Entry-Point Load Map

Figure A-1 shows the entry-point load map for the modular programming example:

Figure A-1.  Entry-Point Load Map for Modular Program

ENTRY POINT MAP BY NAME

SP    PEP    Base      Limit     Entry    Attr  Name             Date          Time     Lang   Source File

00    012    000737    000742    000737         CLOSE_ALL        1992-04-13    13:54    TAL    \XX.$VOL.PRG.INITS
00    004    000266    000331    000266         CONVERT          1992-04-13    13:54    TAL    \XX.$VOL.PRG.CONVERTS
00    011    000721    000736    000721         FILE_INIT        1992-04-13    13:54    TAL    \XX.$VOL.PRG.INITS
00    017    001133    001140    001133         IN_CLOSE         1992-04-13    12:59    TAL    \XX.$VOL.PRG.INS
00    015    000767    001050    000773         IN_FILE_INIT     1992-04-13    12:59    TAL    \XX.$VOL.PRG.INS
00    010    000421    000720    000421         MSG              1992-04-13    12:59    TAL    \XX.$VOL.PRG.MSGS
00    021    001147    001154    001147         MSG_CLOSE        1992-04-13    12:59    TAL    \XX.$VOL.PRG.MSGS
00    014    000751    000766    000751         MSG_INIT         1992-04-13    12:59    TAL    \XX.$VOL.PRG.MSGS
00    020    001141    001146    001141         OUT_CLOSE        1992-04-13    12:59    TAL    \XX.$VOL.PRG.OUTS
00    016    001051    001132    001055         OUT_FILE_INIT    1992-04-13    12:59    TAL    \XX.$VOL.PRG.OUTS
00    002    000022    000111    000022         OUT_INIT         1992-04-13    13:54    TAL    \XX.$VOL.PRG.CONVERTS
00    006    000340    000372    000340         READ_IN          1992-04-13    12:59    TAL    \XX.$VOL.PRG.INS
00    003    000122    000265    000122         RECORD_CONVERT   1992-04-13    13:54    TAL    \XX.$VOL.PRG.CONVERTS
00    013    000743    000750    000743    V    STARTUP          1992-04-13    13:52    TAL    \XX.PRG.INITS
00    005    000332    000337    000332    M    TPRCONV          1992-04-13    13:54    TAL    \XX.$VOL.PRG.CONVERTS
00    007    000373    000420    000373         WRITE_OUT        1992-04-13    12:59    TAL    \XX.$VOL.PRG.OUTS
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Data-Block Load Map

Figure A-2 shows the data-block load map for the modular programming example:

Figure A-2.  Data-Block Load Map for Modular Program

DATA BLOCK MAP BY NAME

Base Limit Type Mode Name Date Time Lang Source File

000005 000204 COMMON WORD .DEFAULT_VOL 1992-04-13 12:59 TAL \XX.$VOL.PRG.INITS
000003 000012 COMMON WORD DEFAULT_VOL 1992-04-13 12:59 TAL \XX.$VOL.PRG.INITS
000000 000000 COMMON WORD IN_FILE_HANDLER 1992-04-13 12:59 TAL \XX.$VOL.PRG.INS
000002 000002 COMMON WORD MESSAGE_MODULE 1992-04-13 12:58 TAL \XX.$VOL.PRG.MSGS
000000 COMMON WORD MSG_LITERALS 1992-04-13 12:58 TAL \XX.$VOL.PRG.INP
000001 000001 COMMON WORD OUT_FILE_HANDLER 1992-04-13 12:59 TAL \XX.$VOL.PRG.OUTS
000000 COMMON WORD RECORD_DEFS 1992-04-13 12:59 TAL \XX.$VOL.PRG.MSGS

Mainline Compilation Statistics

Figure A-3 shows the mainline compilation statistics for the mainline module of the
modular programming example:

Figure A-3.  Compilation Statistics for Mainline Module

BINDER - OBJECT FILE BINDER - T9621D20 - (01JUN93) SYSTEM \XX
Copyright Tandem Computers Incorporated 1982-1993

Object file \XX.$VOL.PRG.CONVERTO
TIMESTAMP  1993-04-13 17:44:49

         1  Code page

         1  Data page
         0  Resident code pages
         0  Extended data pages

         0  Top of stack location in words
         1  Code segment

         0  Binder Warnings
         0  Binder Errors

TAL - Transaction Application Language - T9250D20 - (01JUN93)
Number of compiler errors = 0
Number of unsuppressed compiler warnings = 0
Number of warnings suppressed by NOWARN = 0
Maximum symbol table space used was = 19944 bytes
Number of source lines = 5646
Compile cpu time - 00:00:01
Total elapsed time - 00:00:19
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This appendix discusses:

Extended pointer format
Accessing the upper 32K-word area of the user data segment
Creating and accessing an extended data segment
Accessing a code segment

The coding practices covered in this appendix predate automatic extended segment
management and are described here in support of existing programs.

Extended
Pointer Format

You can use an extended pointer to access the current user data segment, the system
data segment, or the current user code segment.  You must use an extended pointer to
access an extended data segment.

Figure B-1 shows the format of extended pointers.

Figure B-1.  Format of Extended Pointer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

High-order address word Low-order address word

A B Segment Page Word Byte

335

Table B-1 explains the meanings of the bits in shown in Figure B-1.

Table B-1.  Extended Pointer Format

Bits Meaning Values

<0> Absolute Mode specifier (A) 0 for nonprivileged use; 1 for privileged use

<1> Reserved (B) 0

<2:14> Segment specifier 0:1027 (relative extended address)
0:8191 (absolute extended address)

<15:20> Page specifier 0:63

<21:30> Word specifier 0:1023

<31> Byte specifier 0 in left byte; 1 in right byte
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The segment specifier in an extended pointer indicates which segment is being
accessed by the pointer:

Segment Specifier Segment

0 Current user data segment

1 System data segment if in privileged mode
User data segment if in nonprivileged mode

2 Current code segment

3 Current user code segment (read access only)

4–n Base address for the current extended data segment

An extended pointer, having 32 bits, can access byte addresses anywhere in a segment.
(The page, word, and byte fields together require 17 address bits.)  All extended
addresses are byte addresses.

Accessing the Upper
32K-Word Area

You can use the upper 32K-word area of the current user data segment if you are not
using the CRE.

To use the upper 32K-word area, you must use the DATAPAGES directive.  For
example, you can specify 33 pages for the user data segment.

DATAPAGES 33

To access the upper 32K-word area, you must declare a pointer and store an
appropriate address in it.  To access word addresses (but not byte addresses) in the
upper 32K-word area, you can use a standard (16-bit) pointer.  To access byte
addresses in that area, you must use an extended (32-bit) pointer.

Storing Addresses
in Simple Pointers

To store an address in a simple pointer, you can initialize the pointer when you
declare it, or you can assign an address to it in an assignment statement.

Initializing Simple Pointers

When you declare a simple pointer, you can initialize it with a standard (16-bit)
address or an extended (32-bit) address.  For example, you can initialize a simple
pointer with the first word address in the upper 32K-word area as follows:

INT .std_ptr := %100000;       !First 16-bit word address
                               ! in upper 32K-word area

You can initialize an extended simple pointer with the first extended byte address in
the upper 32K-word area as follows:

INT .EXT top_ptr := %200000D;  !First 32-bit byte address
                               ! in upper 32K-word area
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You can use the $XADR standard function to convert the 16-bit address contained in a
standard simple pointer to a 32-bit address with which to initialize an extended simple
pointer:

INT .std_ptr := %100000;   !Declare INT standard simple
                           ! pointer

INT .EXT ext_ptr := $XADR(std_ptr);
                           !Declare extended simple pointer
                           ! initialize it with 32-bit
                           ! address returned by $XADR for
                           ! INT item pointed to by STD_PTR

Assigning Addresses to Simple Pointers

Once you have declared a pointer, you can use assignment statements to assign an
address to the pointer.

You can assign to a standard simple pointer the first standard word address in the
upper 32K-word area of the current user data segment:

INT .std_ptr;              !Declare standard simple pointer

@std_ptr := %100000;       !Assign first word address
                           ! in upper 32K-word area

You can assign to an extended simple pointer the first extended byte address in the
upper 32K-word area of the current user data segment:

INT .EXT top_ptr;          !Declare extended simple pointer

@top_ptr := %200000D;      !Assign first byte address
                           ! in upper 32K-word area

You can use the $XADR standard function to return the extended address of an INT
item to which a standard simple pointer points and then assign the 32-bit address to
an extended simple pointer:

INT .EXT ext_ptr;          !Declare extended simple pointer

INT .std_ptr := %100000;   !Declare INT standard simple
                           ! pointer

@ext_ptr := $XADR(std_ptr);!Assign 32-bit address of
                           ! INT item returned by $XADR
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Storing Addresses
in Structure Pointers

You can store an address in a structure pointer either by initializing the pointer at
declaration or by assigning an address to it after declaration.

Initializing Structure Pointers

You can declare an extended structure pointer named EXT_STRUCT_PTR, specify a
referral named MY_STRUCT and then initialize the pointer with the first byte address
of the upper 32K-word area of the current user data segment as follows:

INT .EXT ext_struct_ptr (my_struct) := %200000D;
                           !First byte address in upper
                           ! 32K-word area

To associate an INT standard structure pointer with a template structure and initialize
the structure pointer with the first word address in the upper 32K-word area of the
current user data segment, specify:

STRUCT names (*);          !Declare template structure
  BEGIN
  INT array[0:11];
  END;

INT .struc_ptr (names) := %100000;
                           !Declare structure pointer;
                           ! initialize it with first word
                           ! address in upper 32K-word area

To associate an extended structure pointer with the structure pointer declared in the
preceding example and initialize the new structure pointer with the first byte address
in the upper 32K-word area of the current user data segment, specify:

STRING .EXT ex_strc_ptr (struc_ptr) := %200000D;
                           !Declare extended structure
                           ! pointer; initialize it with
                           ! first byte address in
                           ! upper 32K-word area

Assigning Addresses to Structure Pointers

Once you have declared a structure pointer, you can use an assignment statement to
assign an address to the structure pointer.

You can associate an INT structure pointer with a template structure and then assign
the first word address in the upper 32K-word area of the current user data segment to
the structure pointer:

STRUCT names (*);          !Declare template structure
  BEGIN
  INT array[0:11];
  END;

INT .struc_ptr (names);    !Declare STRUC_PTR

@struc_ptr := %100000;     !Assign first word address in
                           ! upper 32K-word area
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You can associate an extended structure pointer with the structure pointer declared in
the preceding example and then assign the first byte address in the upper 32K-word
area of the current user data segment to the new structure pointer:

STRING .EXT ex_strc_ptr (struc_ptr);
                           !Declare EXT_STRC_PTR

@ex_strc_ptr := %200000D;  !Assign first byte address in
                           ! upper 32K-word area

Managing Data Allocation
in Upper 32K-Word Area

When you declare pointers, the compiler allocates storage for the pointers, but you
must manage allocation for the data at the address contained in each pointer.  You
must remember which addresses you have used and the length of the item pointed to
by each pointer.  When you initialize subsequent pointers, you must allow enough
space for the previous items.  You can then use an assignment or move statement to
copy data to the address contained in the pointer.

For example, you manage standard allocation in the user data segment as follows:

PROC std;
  BEGIN
  STRING .EXT byte_ptr := %200000D;
                           !Initialize extended pointer with
                           ! first byte address in upper
                           ! 32K-word area for a 46-byte
                           ! string constant

  STRING .EXT str_ptr := @byte_ptr + 46D;
                           !Initialize extended pointer with
                           ! first free byte address in upper
                           ! 32K-word area
  byte_ptr ':='
         "This is a sample string to be scanned for an X";
                           !Move statement copies 46-byte
                           ! string constant to the byte
                           ! address stored in BYTE_PTR
  !Lots of code
  END;

Assigning Data to Simple Pointers

You can assign a value to the 32-bit byte address contained in an extended simple
pointer:

INT .EXT ep := %200000D;   !Declare EP and initialize it
                           ! with address of first byte
                           ! in upper 32K-word area

ep := 5;                   !Assign 5 to word location at
                           ! address %200000D
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You can use a move statement to copy a constant list to the address contained in a
simple pointer.  You can then assign one of the values in the constant list to an array
element by appending an index to the pointer to access that particular value:

INT var[0:4];              !Declare array
INT .ptr := %100000;       !Declare simple pointer

var[2] := 5;               !Assign 5 to VAR[2]

ptr ':=' [1, 2, 3];        !Copy constant list to location
                           ! at address %100000

var[3] := ptr[2];          !Assign 3 to VAR[3]

Copying Data to Structure Pointers

You can use INT structure pointers to copy data to word-addressed structure items in
the upper 32K-word area of the current user data segment.  To copy data, you use a
move statement:

?DATAPAGES 64              !Get maximum upper 32K-word area

STRUCT names (*);          !Declare template structure
  BEGIN
  INT new_name[0:7];
  END;

INT .name_ptr1(names) := %100000;
                           !Point to beginning of upper
                           ! 32K-word area
INT .name_ptr2(names) := %100010;
                           !Point to next free space in upper
                           ! 32K-word area
PROC main_proc MAIN;
  BEGIN
  !Lots of code
  name_ptr1.new_name[0] ':=' "Athersohn, Jutha";
  name_ptr2.new_name[0] ':=' "Zyrphn, Rhod Wen";
                           !Move statement copies data
  !Lots of code            ! to word-addressed structure
  END;                     ! items
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You can use an INT extended structure pointer to copy data to byte-addressed
structure items in the upper 32K-word area of the current data user segment:

STRUCT name_rec (*);       !Declare template structure
  BEGIN
  STRING name[0:25];
  END;

INT .EXT ext_ptr(name_rec) := %200000D;
                           !Point to beginning
                           ! of upper 32K-word area

ext_ptr.name[0] ':=' "Anasta L. Malatorious";
                           !Move statement copies data
                           ! to byte-addressed structure
                           ! items

Managing Large
Blocks of Memory

The DEFINEPOOL, GETPOOL, and PUTPOOL system procedures can help you
manage large blocks of memory and build proper addresses:

LITERAL head_size = 19D;
INT .EXT poolhead := %200000D;          !Pool header
INT .EXT pool := %200000D + head_size;  !Points into upper
                                        ! 32K-word area
INT .EXT block;

status := DEFINEPOOL (poolhead, pool, head_size);
@block := GETPOOL (poolhead, 1024D);
!Lots of processing
CALL PUTPOOL (poolhead, block);

The DEFINEPOOL, GETPOOL, and SEGMENT_USE_ procedures return both a
condition code and a value.  If you assign a returned value to a variable, the condition
code setting is lost.  For more information on system procedures, see the Guardian
Procedure Calls Reference Manual and the Guardian Programmer’s Guide.
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Indexing the Upper
32K-Word Boundary

Although an index for standard indirect structures must fall within the signed INT
range, a word offset (from the zeroth structure occurrence) can be in the range –65,535
through 65,535.  The following example shows how you can access such offsets:

STRUCT x (*);
  BEGIN
  INT i, j;
  END;

PROC m MAIN;
  BEGIN
  INT .y (x) := %70000;         !Y[0:18430] spans the
                                ! 32K-word boundary
  USE i;
  FOR i := 0 TO 18430 DO
    y[i].i := y[i].j := 0;
  DROP i;
  END;

Note If you use an array of structure occurrences that spans the 32K-word boundary, your program must
handle the data stack overflow condition.  The compiler issues an error only when the data stack
overflows the 32K-word boundary.

A byte offset, as opposed to a word offset, can be in the range –65,535 through 65,535 if
the structure occurrences are either all in the lower 32K words or all in the upper 32K
words of the user data segment.  Otherwise, the byte offset is incorrect.

If the structure is in the upper 32K words of the user data segment, you must use
$XADR and extended (32-bit) addressing.  Here is an example:

STRUCT x (*);
  BEGIN
  STRING s[0:1];
  END;

PROC m MAIN:
  BEGIN
  INT .y (x) := %100000;        !Y[0:32767} is in the
                                ! upper 32K-word area
  INT .EXT z (x) := $XADR (y);
  INT i;

  FOR i := 0 TO 32767 DO
    z.s[1] := z.s[0] := 0;
  END;
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Accessing the User
Code Segment

You can access the user code segment by storing a 32-bit byte address in an extended
pointer.  To build the address, use:

The $DBLL standard function, which returns an INT(32) value from two INT
values.  The first INT value becomes the upper half of the INT(32) value, and the
second value becomes the lower half.

An unsigned bit-shift operation ('<<' 1), which converts a word address to a byte
address.

Initializing Simple Pointers You can initialize an extended simple pointer with a 32-bit byte address for read-only
access.  The address can point to the seventh word or fourteenth byte of the current
user code segment:

INT .EXT ext_ptr := ($DBLL (3, 7)) '<<' 1;  !Declare and
                             ! initialize extended simple
                             ! pointer with 32-bit byte
                             ! address in user code segment

Assigning Addresses to
Simple Pointers

You can assign an address for read-only access in the current user code segment as
follows:

INT .EXT ext_ptr;            !Declare extended simple
                             ! pointer
@ext_ptr := ($DBLL (3, 7)) '<<' 1;
                             !Assign current code
                             ! segment address
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Using Extended Data
Segments

In addition to the user data segment, you can store data in:

The automatic extended data segment
One or more explicit extended data segments

You should use only the automatic extended data segment if possible.  You should not
mix the two approaches.  If you must use explicit segments and the automatic
segment, however, follow guidelines 4 and 10 in “Using Explicit Extended Segments”
that follows.

Using the Automatic
Extended Segment

When you declare extended indirect arrays or structures, the system automatically
creates and manages an extended data segment for you.  You have automatic access,
however, to only one extended data segment.

To declare extended indirect arrays or structures, you specify the .EXT indirection
symbol.  To access the array, you use its name in a statement.  Declaring and accessing
extended indirect arrays and structures is shown throughout this manual, particularly
in Sections 7 and 8.

Using Explicit
Extended Segments

Your program can allocate and deallocate extended data segments explicitly.  Since the
advent of the automatic extended data segment, however, programs usually need not
use explicit extended data segments.  The information in this subsection is provided in
support of existing programs.

To create and use an explicit extended segment, you call system procedures.  You can
allocate and manage as many extended segments as you need, but you can use only
one extended segment at a time.  You can access data in an explicit extended segment
only by using extended pointers.   The compiler allocates memory space for the
extended pointers you declare.  You  must manage allocation of the data yourself.

Here are guidelines for using explicit extended segments:

1. First declare an extended pointer for the base address of the explicit extended
segment.

2. To allocate an explicit extended segment and obtain the segment base address, call
SEGMENT_ALLOCATE_.

3. To make the explicit extended segment the current segment, call
SEGMENT_USE_.

4. If the automatic extended segment is already in place, SEGMENT_USE_ returns
the automatic extended segment’s  number.  Save this number so you can later
access the automatic segment again.

5. You must keep track of addresses stored in extended pointers.  When storing
addresses in subsequent pointers, you must allow space for preceding data items.

6. To refer to data in the current segment, call READX or WRITEX .

7. To move data between extended segments, call MOVEX.
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8. To manage large blocks of memory, call DEFINEPOOL, GETPOOL, and
PUTPOOL.

9. To determine the size of a segment, call SEGMENT_GETINFO_.

10. To access data in the automatic extended segment, call SEGMENT_USE_ and
restore the segment number that you saved at step 4.

11. To delete an explicit segment that you no longer need, call
SEGMENT_DEALLOCATE_.

For information on using these system procedures, see the Guardian Programmer's
Guide and the Guardian Procedure Calls Reference Manual.

If you do not restore the automatic extended segment before you manipulate data in it,
any of the following actions can result:

An assignment statement is beyond the segment’s memory limit and causes a trap.

All assignments within range occur in the hardware base and limit registers of the
automatic extended segment.  Data in the currently active extended segment is
overwritten.  The error is undetected until you discover the discrepancy at a later
time.

You get the wrong data from valid addresses in the explicit extended data
segment.

Storing the Base Address

The base address of the explicit extended segment defines the first storage location
that is available for allocating data.

When you call SEGMENT_ALLOCATE_, it returns the base address, as shown in the
following example.

D-Series Extended Segment Allocation Program

Example B-1 shows a D-series version of an extended segment allocation program.
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Example B-1.  D-Series Extended Segment Allocation

?INSPECT, SYMBOLS
?SOURCE $SYSTEM.SYSTEM.EXTDECS0 (
?            SEGMENT_ALLOCATE_, SEGMENT_USE_)

PROC alloc_xsegment MAIN;
  BEGIN
  DEFINE error = ! ...! #;     !Error handling routine

  INT .EXT px;                 !Extended pointer for base
                               ! address of extended segment

  INT s;
  !Lots of code

  s := SEGMENT_ALLOCATE_ (0, 4096D, , , , , px);
                               !Allocate extended segment 0;
                               ! assign status value to S;
                               ! request 2 pages of extended
                               ! memory; obtain base address

  IF s <> 0 THEN error;        !Continue if segment 0 is
                               !allocated; else return error

  s := SEGMENT_USE_ (0, , px); !Make segment 0 the current
                               ! extended segment

  IF s <> 0 THEN error;        !Continue if segment 0 is
                               !current; else return error

  px := 5;                     !Assign 5 to first word of
                               ! segment 0

  s := SEGMENT_ALLOCATE_ (1, 4096D, , , , , px);
                               !Allocate extended segment 1;
                               ! assign status value to S;
                               ! request 2 pages of extended
                               ! memory; obtain base address

  IF s <> 0 THEN error;        !Continue if segment 1 is
                               !allocated; else return error

  s := SEGMENT_USE_ (1, , px); !Make segment 1 the current
                               ! extended segment

  IF s <> 0 THEN error;        !Continue if segment 1 is
                               ! current; else return error

  px := 2;                     !Assign 2 to first word of
                               ! segment 1
  !Lots more code
  END;
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Managing Data Allocation in Extended Segments

When you declare a pointer, the compiler allocates storage for the pointer itself but
does not allocate storage for data at the address that is contained in the pointer.  You
must manage such allocation yourself.  You must remember which addresses you
have used and the length of the data item pointed to by each pointer.  When you
initialize subsequent pointers, you must allow space for the preceding data items.

All data items in an extended data segment are byte addressed.  You can manage data
allocation in an extended segment as follows:

?SOURCE $SYSTEM.SYSTEM.EXTDECS0 (
?            SEGMENT_ALLOCATE_, SEGMENT_USE_)

PROC xsegment MAIN;
  BEGIN
  DEFINE error = ! ...! #;     !Error handling routine

  !Extended pointer declarations:
  INT .EXT x;                  !For a 435-word array
  INT .EXT y;                  !For a 1000-word array
  INT .EXT z;                  !For a 94-word array

  INT s;
  !Lots of code
  s := SEGMENT_ALLOCATE_ (0, 4096D, , , , , x);
                               !Allocate extended segment 0;
                               ! assign status value to S;
                               ! request 2 pages of extended
                               ! memory; obtain base address

  IF s <> 0 THEN error;        !Continue if segment 0 is
                               !allocated; else return error

  s := SEGMENT_USE_ (0, , x);  !Make segment 0 the current
                               ! extended segment

  IF s <> 0 THEN error;        !Continue if segment 0 is
                               !current; else return error

  @y := @x + 870D;             !Assign pointer Y to
                               ! first free space after
                               ! area pointed to by X

  @z := @y + 2000D;            !Assign pointer Z to the
    .                          ! first free space after
                               ! area pointed to by Y
  !Lots of code
  END;
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Accessing Data in an Extended Segment

After you declare a pointer and store an address in the pointer, you can use an
assignment or move statement to place an item at the location pointed to by the
pointer.

For example, you can declare a structure, declare and initialize an INT extended
structure pointer, and then access byte-addressed structure items in the current
extended data segment.  In this case, a move statement copies a character string into an
array in the structure:

?SOURCE $SYSTEM.SYSTEM.EXTDECS0 (
?            SEGMENT_ALLOCATE_, SEGMENT_USE_)

PROC xsegment MAIN;
  BEGIN
  DEFINE error = ! ...! #;     !Error handling routine

  STRUCT name_rec (*);         !Declare template structure
    BEGIN
    STRING name[0:25];
    END;

  INT .EXT ext_seg(name_rec);  !Pointer for base address
                               ! of extended segment

  INT s;
  !Lots of code
  s := SEGMENT_ALLOCATE_ (0, 4096D, , , , , ext_seg);
                               !Allocate extended segment 0;
                               ! assign status value to S;
                               ! request 2 pages of extended
                               ! memory; store base address
                               ! in EXT_SEG

  IF s <> 0 THEN error;        !Continue if segment 0 is
                               !allocated; else return error

  s := SEGMENT_USE_ (0, , ext_seg);
                               !Make segment 0 the current
                               ! extended segment

  IF s <> 0 THEN error;        !Continue if segment 0 is
                               !current; else return error

  ext_seg.name[0] ':=' "Octavius Q. Pumpernickle";
                               !Copy data into array
  END;
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Copying Data Between Segments

You cannot use a move statement to copy data between extended segments.  You can
use a move statement to copy data from an extended segment to the user data segment
and then from there to another extended segment, or you can use  the MOVEX system
procedure.

Managing Large Blocks of Memory

To manage large blocks of memory, you can call the following system procedures:

DEFINEPOOL Defines the bounds of a memory pool in an extended data
segment or in the user data segment.

GETPOOL Obtains a block of storage from a memory pool.

PUTPOOL Returns a block of storage to a memory pool.

Each of the procedures returns a condition code and a value.  If you assign a returned
value to a variable, the condition code is lost.

The following example shows how to use memory pools to manage data storage in
extended data segments.  As shown in the example, you should store –1 or–1D in nil
pointers , not 0D because 0D points to the first word in the user data segment.
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D-Series Extended Segment Management Program

Example B-2 shows D-series extended segment management program.

Example B-2.  D-Series Extended Segment Management Program(Page 1 of 3)

?INSPECT, SYMBOLS
?NOCODE
?PAGE "dummy page directive"

?PUSHLIST, NOLIST SOURCE $SYSTEM.SYSTEM.EXTDECS0 (
?  PROCESS_DEBUG_, DEFINEPOOL, GETPOOL, PUTPOOL,
?  SEGMENT_ALLOCATE_, SEGMENT_USE_, SEGMENT_DEALLOCATE_)

?POPLIST

LITERAL dealloc_flags = 1;      !For SEGMENT_DEALLOCATE_
                                ! later
LITERAL seg_id_zero = 0;        !User extended data segment
LITERAL seg_id_two  = 2;        !IDs need not be contiguous
LITERAL seg_id_zero_len = 2048D;
LITERAL seg_id_two_len  = 4096D;
INT    .EXT word_ptr := -1D;    !Nil pointer
STRING .EXT byte_ptr := -1D;    !Nil pointer

INT .EXT pool_head := -1D;      !Pointer for 19-word pool
                                ! header in extended segment

INT .EXT pool_ptr := -1D;       !Pointer for first byte after
                                ! pool header

INT .EXT block_ptr1 := -1D;     !Pool block general pointer
INT .EXT block_ptr2 := -1D;     !Pool block general pointer
STRING .byte_array[-1:100];     !Byte array for local scan
STRING .EXT ba_ptr := -1D;      !Extended pointer to byte
                                ! array for extended move

STRING .offset_ptr := -1;
INT offset_x := 0;

LITERAL str_len = 47;           !Length of string to move
LITERAL array_len = 102;        !Length of byte array

INT status := 1000;             !Beyond maximum error range
INT old_seg_num := -1;          !Not a valid user extended
                                ! data segment ID
INT error;                      !Outcome of system procedure
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Example B-2.  D-Series Extended Addressing Program(Page 2 of 3)

PROC ext_addr_example MAIN;
  BEGIN
  status := SEGMENT_ALLOCATE_ (
          seg_id_zero, seg_id_zero_len, , , , , byte_ptr);
  IF status <> 0 THEN CALL PROCESS_DEBUG_;

  status := SEGMENT_ALLOCATE_
          (seg_id_two, seg_id_two_len, , , , , block_ptr1);
  IF status <> 0 THEN CALL PROCESS_DEBUG_;

  status := SEGMENT_USE_ (seg_id_zero, , byte_ptr);
  IF status <> 0 THEN CALL PROCESS_DEBUG_;

  byte_ptr ':='
           "This is a sample string to be scanned for an X.";
                                !Put character string into
                                ! current extended segment

  byte_array ':=' byte_ptr FOR str_len BYTES;
                                !Extended move of string
                                ! to user stack

  byte_array[-1]  := 0;         !Delimit the scan area
  byte_array[100] := 0;         ! with zeros

  SCAN byte_array[0] UNTIL "X" -> @offset_ptr;
  IF $CARRY THEN CALL PROCESS_DEBUG_;
                                !Scan on stack; if scan
                                ! stopped by 0, call debugger

  offset_x := @offset_ptr '-' @byte_array[0];
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Example B-2.  D-Series Extended Addressing Program (Page 3 of 3)

!USE new extended data segment for more manipulations.

  status := SEGMENT_USE_ (seg_id_two, , block_ptr1);
  IF status <> 0 THEN CALL PROCESS_DEBUG_;

  @pool_ptr := @pool_head + %47D;
                                !Store first byte address
                                ! after pool header

  status := DEFINEPOOL (pool_head, pool_ptr, 4000D);
  IF status <> 0 THEN CALL PROCESS_DEBUG_;

  @block_ptr1 := GETPOOL (pool_head , 101D);
                                !For content of BYTE_ARRAY
  IF <> THEN CALL PROCESS_DEBUG_;

  block_ptr1 ':=' byte_array[-1] FOR array_len BYTES;
                                !Move BYTE_ARRAY to first
                                ! pool in extended segment

  @block_ptr2 := GETPOOL (pool_head, 1000D);
                                !Get second pool in current
                                ! extended segment
  IF <> THEN CALL PROCESS_DEBUG_;

  block_ptr2 ':=' [8, 16, 32, 40, 48, 56, 64, 128];
                                !Move constant list into
                                ! this pool in extended
                                ! segment

  CALL PUTPOOL (pool_head, block_ptr1);
                                !Give first pool back
  IF <> THEN CALL PROCESS_DEBUG_;

  CALL PUTPOOL (pool_head, block_ptr2);
                                !Give second pool back
  IF <> THEN CALL PROCESS_DEBUG_;

  CALL SEGMENT_DEALLOCATE_ (seg_id_two, dealloc_flags);

  CALL SEGMENT_DEALLOCATE_ (seg_id_zero, dealloc_flags);

  END;
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C-Series Extended
Segment Examples

On a C-series system, you call ALLOCATESEGMENT and USESEGMENT to create
and use an explicit extended data segment.  ALLOCATESEGMENT does not return
the base address of the extended segment.  The first segment address you can use in
the explicit extended segment is 4D '<<' 17 or %2000000D.   The following declarations
are equivalent:

STRING .EXT ptr := 4D '<<' 17;
STRING .EXT ptr := %2000000D;

Figure B-2 shows the format of the base address.

Figure B-2.  Format of Extended Segment Base Address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

%2 0 0 0 0 0 0

1 1

'<<' 17

A B Segment Page Word Byte(%4)

336
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C-Series Extended Segment Allocation Program

Example B-3 shows a C-series version of the previous D-series extended segment
allocation program.  This example is not portable to future software platforms:

Example B-3.  C-Series Extended Segment Allocation Program

?INSPECT, SYMBOLS
?SOURCE $SYSTEM.SYSTEM.EXTDECS0 (
?            ALLOCATESEGMENT, USESEGMENT)

PROC alloc_xsegment MAIN;
  BEGIN
  DEFINE error = ! ...! #;     !Error handling routine
  INT .EXT px := %2000000D;    !Initialize extended pointer
                               ! to start of extended segment
  INT s;
  !Lots of code
  s := ALLOCATESEGMENT (0, 4096D);
                               !Allocate extended segment 0;
                               ! assign status value to S;
                               ! request 2 pages (4K bytes)
                               ! of extended memory

  IF s <> 0 THEN  error;       !Continue if segment 0 is
                               ! allocated else return error

  CALL USESEGMENT (0);         !Make segment 0 the current
                               ! extended segment

  px := 5;                     !Assign 5 to first word of
                               ! segment 0

  s := ALLOCATESEGMENT (1, 4096D);
                               !Allocate extended segment 1;
                               ! assign status value to S;
                               ! request 2 pages (4K bytes)
                               ! of extended memory

  IF s <> 0 THEN  error;       !Continue if segment 1 is
                               ! allocated else return error

  CALL USESEGMENT (1);         !Make segment 1 the current
                               ! extended segment

  px := 2;                     !Assign 2 to first word of
                               ! extended segment 1
  !Lots more code

  END;
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Managing Data Allocation in Extended Segments

When you declare a pointer, the compiler allocates storage for the pointer itself but
does not allocate storage for data at the address that is contained in the pointer.  You
must manage such allocation yourself.  You must remember which addresses you
have used and the length of the data item pointed to by each pointer.  When you
initialize subsequent pointers, you must allow space for the preceding data items.

An extended data segment begins at the extended byte address %2000000D.  All data
items in an extended data segment are byte addressed.  You can manage data
allocation in an extended segment as follows:

INT .EXT x := %2000000D;     !Initialize extended simple
                             ! pointer with first byte
                             ! address in extended segment
                             ! for 435-word array

INT .EXT y := @x + 870D;     !Initialize extended simple
                             ! pointer with first free
                             ! byte address after array
                             ! pointed to by X for
                             ! 1000-word array

INT .EXT z := @y + 2000D;    !Initialize extended simple
                             ! pointer with first free
                             ! byte address after array
                             ! pointed to by Y for
                             ! 94-word array
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C-Series Extended Segment Management Program

Example B-4  shows a C-series version of the previous D-series extended segment
management program.  This example is  not portable to future software platforms.

Example B-4.  C-Series Extended Segment Management Program (Page 1 of 3)

?INSPECT, SYMBOLS
?NOCODE
?PAGE "dummy page directive"

LITERAL dealloc_flags = 1;      !For DEALLOCATESEGMENT later
LITERAL seg_id_zero = 0;        !User extended data segment
LITERAL seg_id_two  = 2;        !IDs need not be contiguous
LITERAL seg_id_zero_len = 2048D;
LITERAL seg_id_two_len  = 4096D;
INT    .EXT word_ptr := -1D;    !Nil pointer
STRING .EXT byte_ptr := -1D;    !Nil pointer
INT .EXT pool_head := %2000000D;
                                !Beginning of 19-word pool
                                ! header in extended segment
INT .EXT pool_ptr  := %2000046D;
                                !First byte after pool header
INT .EXT block_ptr1 := -1D;     !Pool block general pointer
INT .EXT block_ptr2 := -1D;     !Pool block general pointer
STRING .byte_array[-1:100];     !Byte array for local scan
STRING .EXT ba_ptr := -1D;      !Extended pointer to byte
                                ! array for extended move

STRING .offset_ptr := -1;
INT offset_x := 0;

LITERAL str_len = 47;           !Length of string to move
LITERAL array_len = 102;        !Length of byte array

INT status := 1000;             !Beyond maximum error range
INT old_seg_num := -1;          !Not a valid user extended
                                ! data segment ID
INT error;                      !Outcome of system procedure

?PUSHLIST, NOLIST SOURCE $SYSTEM.SYSTEM.EXTDECS0 (
?  DEBUG, DEFINEPOOL, GETPOOL, PUTPOOL,
?  ALLOCATESEGMENT, USESEGMENT, DEALLOCATESEGMENT)

?POPLIST
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Example B-4.  C-Series Extended Addressing Program (Page 2 of 3)

PROC ext_addr_example MAIN;
  BEGIN
  status := ALLOCATESEGMENT (seg_id_zero, seg_id_zero_len);
  IF status <> 0 THEN CALL DEBUG;

  status := ALLOCATESEGMENT (seg_id_two, seg_id_two_len);
  IF status <> 0 THEN CALL DEBUG;

  CALL USESEGMENT (seg_id_zero);
  IF <> THEN CALL DEBUG;

  @byte_ptr := %2000000D;       !Set extended pointer to
                                ! first byte of current
                                ! extended segment

  byte_ptr ':='
           "This is a sample string to be scanned for an X.";
                                !Put character string into
                                ! current extended segment

  byte_array ':=' byte_ptr FOR str_len BYTES;
                                !Extended move of string
                                ! to user stack

  byte_array[-1]  := 0;         !Delimit the scan area
  byte_array[100] := 0;         ! with zeros

  SCAN byte_array[0] UNTIL "X" -> @offset_ptr;
  IF $CARRY THEN CALL DEBUG;
                                !Scan on stack; if scan
                                ! stopped by 0, call debugger

  offset_x := @offset_ptr '-' @byte_array[0];
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Example B-4.  C-Series Extended Addressing Program (Page 3 of 3)

!USE new extended data segment for more manipulations.

  CALL USESEGMENT (seg_id_two);
  IF <> THEN CALL DEBUG;

  status := DEFINEPOOL (pool_head, pool_ptr, 4000D);
  IF status <> 0 THEN CALL DEBUG;

  @block_ptr1 := GETPOOL (pool_head , 101D);
                                !For content of BYTE_ARRAY
  IF <> THEN CALL DEBUG;

  block_ptr1 ':=' byte_array[-1] FOR array_len BYTES;
                                !Move BYTE_ARRAY to first
                                ! pool in extended segment

!You cannot use a move statement to copy data directly from
! an extended segment to another extended segment.  You can
! use a move statement to copy data from an extended segment
! to the user data segment and then from there to another
! extended segment, or you can use the MOVEX system procedure
! described in the Guardian Procedure Calls Reference Manual.

  @block_ptr2 := GETPOOL (pool_head, 1000D);
                                !Get second pool in current
                                ! extended segment
  IF <> THEN CALL DEBUG;

  block_ptr2 ':=' [8, 16, 32, 40, 48, 56, 64, 128];
                                !Move constant list into
                                ! this pool in extended
                                ! segment

  CALL PUTPOOL (pool_head, block_ptr1);
                                !Give first pool back
  IF <> THEN CALL DEBUG;

  CALL PUTPOOL (pool_head, block_ptr2);
                                !Give second pool back
  IF <> THEN CALL DEBUG;

  CALL DEALLOCATESEGMENT (seg_id_two, dealloc_flags);

  CALL DEALLOCATESEGMENT (seg_id_zero, dealloc_flags);

  END;
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Although the TAL compiler is a one-pass compiler and is subject to certain limitations
inherent in this characteristic, it generates efficient object code for the target computer.
If optimum run-time speed is important, however, you can maximize efficiency by
following the guidelines given in this appendix.

General Guidelines The following guidelines describe general practices for achieving efficient code:

Code programs as cleanly and clearly as possible.  Provide structured source code
and adequate documentation in the source listing.

Debug the programs to ensure that they work properly.

Analyze the programs using performance analysis tools to determine where
inefficiencies occur.

Based on the analysis, change procedures that require modification. Provide
comments that describe the changes and why you made them.

The following guidelines apply to addressing, indexing, and arithmetic operations.

Addressing Guidelines You can use direct and indirect addressing in various ways.

Direct Addressing Although direct addressing is limited in the amount of memory it can reference, it is
more efficient than indirect addressing.  Thus, you should use direct addressing
whenever possible.

For example, suppose a procedure expects a reference parameter that is used heavily
in calculations within that procedure before it returns a value to the caller.  In the
procedure, move the value in the indirectly addressed parameter to a local directly
addressed storage area and then use that copy in the calculations.  At the end of the
procedure, store the result in the original parameter, which is returned.  Although
initially a slight overhead results from copying from parameter to local variable back
to parameter, overall execution speed is improved because:

Indirect addressing is used only twice (once in parameter passing and once in
returning the value).

All other references use direct addressing.

Indirect Addressing Indirect arrays, indirect structures, and pointers you declare provide equivalent
operation.  The advantage of indirect arrays and indirect structures is that the compiler
provides a pointer for the array or structure, allocates the data or structure, and
initializes the pointer to the beginning of the array or structure.  To use pointers you
declare, you must initialize the pointer and manage allocation of the data to which the
pointer points.

Extended Addressing The compiler emits shorter instruction sequences if it can place INT and STRING
extended pointers in locations G[0] through G[63] or L[1] through L[63], so you should
declare these pointers before you declare other global and local declarations.
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STACK and
STORE Statements

STACK and STORE statements do not improve the efficiency of access to data items.
These statements are provided primarily for moving operands to and from the register
stack when working with the CODE statement.

Indexing Guidelines The compiler saves index values in index registers so you can refer to them in later
statements.  For instance, for the following operation, the compiler saves the value of I
in an index register:

x[i] := 5;

You can then use I in a reference such as Y[I].

Multiple references to the same index value (using the same data type) promote
efficiency.

For indexed items in structures, the compiler optimizes references only to adjacent
items within the same substructure.

An index on a 16-bit variable is always a signed INT expression.  For a STRING
variable, an index can access ranges from 32K bytes below to 32K bytes above the
zeroth structure occurrence.  For any variable except a STRING variable, an index can
access ranges from 32K words below to 32K words above the zeroth structure
occurrence.

Indexing indirect references is no less efficient than not indexing indirect references,
because the hardware requires no extra time to add indexes to address values.

For an INT or STRING extended pointer located below G[63] or L[63] (decimal), a 16-
bit index is more efficient than a 32-bit index.  A 16-bit index results in a shorter
instruction sequence using the LWXX, SWXX, LBXX, and SBXX instructions.  (These
instructions are described in the System Description Manual for your system.)

For all other extended pointers, a 16-bit index is slightly more efficient than a 32-bit
index.  If, however, the offset of a structure item declared in an extended indirect
structure is outside the signed INT range (–32,768 through 32,767), you must use a 32-
bit index.

In a program written for a D-series system, you can use the INT32INDEX directive
when you index an extended indirect structure item.  INT32INDEX suppresses the
[NO]INHIBITXX directive and generates a 32-bit index from a 16-bit index.  If you use
INT32INDEX, you need not calculate the offset of an extended structure item to
determine whether to use a 16-bit or a 32--bit index.  INT32INDEX always generates
correct offsets but is slightly less efficient than using a 32-bit index.   For more
information, see “Indexing Structures” in Section 8, “Using Structures.”

Using a USE register for the 16-bit index of an extended pointer does not provide
further efficiency.  The compiler must still load the index value from the USE register
into register A for use with the LWXX, SWXX, LBXX, and SBXX instructions.  For the
less efficient extended access, the compiler loads the 16-bit index from the USE register
into register A, then converts it to a 32-bit index.
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Arithmetic Guidelines A single complex arithmetic expression might cause more memory references than
several smaller expressions that are equivalent to the single complex expression.  The
excessive memory references are triggered by register stack overflow, which is
especially likely if indexes are involved.  Use of an index might cause part of the
computation to be pushed on the stack and later popped off.  Doubleword or
quadrupleword operands fill the register stack quickly.

For quadrupleword operations, do not nest index calculations in larger arithmetic
expressions because register stack overflow is likely to result.  Use a separate
statement for the index calculations, saving the results in a temporary area.  The
expression can then reference this area.

The IF and CASE forms of arithmetic expressions do not generate efficient machine
code, especially when used to test complex conditions.  To evaluate a complex
condition, include separate IF or CASE statements that perform proper assignments in
all possible branches of the condition.
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Char Left Right Hex Dec Meaning

NUL 000000 000000 00 0 Null
SOH 000400 000001 01 1 Start of heading
STX 001000 000002 02 2 Start of text
ETX 001400 000003 03 3 End of text
EOT 002000 000004 04 4 End of transmission
ENQ 002400 000005 05 5 Enquiry
ACK 003000 000006 06 6 Acknowledge
BEL 003400 000007 07 7 Bell
BS 004000 000010 08 8 Backspace
HT 004400 000011 09 9 Horizontal tabulation
LF 005000 000012 A 10 Line feed
VT 005400 000013 B 11 Vertical tabulation
FF 006000 000014 C 12 Form feed
CR 006400 000015 D 13 Carriage return
SO 007000 000016 E 14 Shift out
SI 007400 000017 F 15 Shift in
DLE 010000 000020 10 16 Data link escape
DC1 010400 000021 11 17 Device control 1
DC2 011000 000022 12 18 Device control 2
DC3 011400 000023 13 19 Device control 3
DC4 012000 000024 14 20 Device control 4
NAK 012400 000025 15 21 Negative acknowledge
SYN 013000 000026 16 22 Synchronous idle
ETB 013400 000027 17 23 End of transmission block
CAN 014000 000030 18 24 Cancel
EM 014400 000031 19 25 End of medium
SUB 015000 000032 1A 26 Substitute
ESC 015400 000033 1B 27 Escape
FS 016000 000034 1C 28 File separator
GS 016400 000035 1D 29 Group separator
RS 017000 000036 1E 30 Record separator
US 017400 000037 1F 31 Unit separator
SP 020000 000040 20 32 Space
! 020400 000041 21 33 Exclamation point
" 021000 000042 22 34 Quotation mark
# 021400 000043 23 35 Number sign
$ 022000 000044 24 36 Dollar sign
% 022400 000045 25 37 Percent sign
& 023000 000046 26 38 Ampersand
' 023400 000047 27 39 Apostrophe
( 024000 000050 28 40 Opening parenthesis
) 024400 000051 29 41 Closing parenthesis
∗ 025000 000052 2A 42 Asterisk
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Char Left Right Hex Dec Meaning

+ 025400 000053 2B 43 Plus
, 026000 000054 2C 44 Comma
- 026400 000055 2D 45 Hyphen (minus)
. 027000 000056 2E 46 Period (decimal point)
/ 027400 000057 2F 47 Right slash

0 030000 000060 30 48 Zero
1 030400 000061 31 49 One
2 031000 000062 32 50 Two
3 031400 000063 33 51 Three
4 032000 000064 34 52 Four
5 032400 000065 35 53 Five
6 033000 000066 36 54 Six
7 033400 000067 37 55 Seven
8 034000 000070 38 56 Eight
9 034400 000071 39 57 Nine

: 035000 000072 3A 58 Colon
; 035400 000073 3B 59 Semicolon
< 036000 000074 3C 60 Less than
= 036400 000075 3D 61 Equals
> 037000 000076 3E 62 Greater than
? 037400 000077 3F 63 Question mark
@ 040000 000100 40 64 Commercial at sign

A 040400 000101 41 65 Uppercase A
B 041000 000102 42 66 Uppercase B
C 041400 000103 43 67 Uppercase C
D 042000 000104 44 68 Uppercase D
E 042400 000105 45 69 Uppercase E
F 043000 000106 46 70 Uppercase F
G 043400 000107 47 71 Uppercase G
H 044000 000110 48 72 Uppercase H
I 044400 000111 49 73 Uppercase I
J 045000 000112 4A 74 Uppercase J
K 045400 000113 4B 75 Uppercase K
L 046000 000114 4C 76 Uppercase L
M 046400 000115 4D 77 Uppercase M
N 047000 000116 4E 78 Uppercase N
O 047400 000117 4F 79 Uppercase O
P 050000 000120 50 80 Uppercase P
Q 050400 000121 51 81 Uppercase Q
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Char Left Right Hex Dec Meaning

R 051000 000122 52 82 Uppercase R
S 051400 000123 53 83 Uppercase S
T 052000 000124 54 84 Uppercase T
U 052400 000125 55 85 Uppercase U
V 053000 000126 56 86 Uppercase V
W 053400 000127 57 87 Uppercase W
X 054000 000130 58 88 Uppercase X
Y 054400 000131 59 89 Uppercase Y
Z 055000 000132 5A 90 Uppercase Z

[ 055400 000133 5B 91 Opening bracket
\ 056000 000134 5C 92 Back slash
] 056400 000135 5D 93 Closing bracket
^ 057000 000136 5E 94 Circumflex
_ 057400 000137 5F 95 Underscore
` 060000 000140 60 96 Grave accent

a 060400 000141 61 97 Lowercase a
b 061000 000142 62 98 Lowercase b
c 061400 000143 63 99 Lowercase c
d 062000 000144 64 100 Lowercase d
e 062400 000145 65 101 Lowercase e
f 063000 000146 66 102 Lowercase f
g 063400 000147 67 103 Lowercase g
h 064000 000150 68 104 Lowercase h
i 064400 000151 69 105 Lowercase i
j 065000 000152 6A 106 Lowercase j
k 065400 000153 6B 107 Lowercase k
l 066000 000154 6C 108 Lowercase l
m 066400 000155 6D 109 Lowercase m
n 067000 000156 6E 110 Lowercase n
o 067400 000157 6F 111 Lowercase o
p 070000 000160 70 112 Lowercase p
q 070400 000161 71 113 Lowercase q
r 071000 000162 72 114 Lowercase r
s 071400 000163 73 115 Lowercase s
t 072000 000164 74 116 Lowercase t
u 072400 000165 75 117 Lowercase u
v 073000 000166 76 118 Lowercase v
w 073400 000167 77 119 Lowercase w
x 074000 000170 78 120 Lowercase x
y 074400 000171 79 121 Lowercase y
z 075000 000172 7A 122 Lowercase z
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Char Left Right Hex Dec Meaning

{ 075400 000173 7B 123 Opening brace
| 076000 000174 7C 124 Vertical line
} 076400 000175 7D 125 Closing brace
~ 077000 000176 7E 126 Tilde
DEL 077400 000177 7F 127 Delete
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This appendix describes how you specify disk file names and TACL commands.
Topics include:

Disk file names
TACL DEFINE commands
TACL PARAM commands
TACL ASSIGN commands
TACL ASSIGN SSV commands

For information on process or device file names, see the Guardian Programmer’s Guide.

Disk File Names A disk file name identifies a file that contains data or a program.  A disk file name
reflects the specified file’s location on a Tandem system.  The location of a disk file on
a Tandem system is analogous to the location of a form in a file cabinet.  To find the
form, you must know:

Which file cabinet it is in
Which drawer it is in
Which folder it is in
Which form it is

Analogously, to find a disk file on a Tandem system, you must know:

Which node (system) it is on
Which volume it is on
Which subvolume it is on
Which disk file it is

In general, disk file names:

Cannot contain spaces
Can contain ASCII characters only
Are not case-sensitive;  the following names are equivalent:

myfile
MyFile
MYFILE

Language functions and system procedures that return file names might return
them in uppercase (even if the file name was originally in lowercase).  Check the
description of the function or procedure that you are using.
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Parts of a Disk File Name A disk file has a unique file name that consists of four parts, with each part separated
by a period:

A D-series node name or a C-series system name
A volume name
A subvolume name
A file ID

Here is an example of a disk file name:

\mynode.$myvol.mysubvol.myfile

You can name your own subvolumes and file IDs, but nodes (systems) and volumes
are named by the system manager.

All parts of the file name except the file ID are optional except as noted in the
following discussion.  If you omit any part of the file name, the system uses values as
described in “Partial File Names” later in this appendix.

Node or System Name

The node or system name, such as \MYNODE, is the name of the node or system
where the file resides.  If specified, the node or system name must begin with a
backslash (\) followed by one to seven alphanumeric characters.  The character
following the backslash must be an alphabetic character.

Volume Name

The volume name, such as $MYVOL, is the name of the disk volume where the file
resides.  If specified, the volume name must begin with a dollar sign ($), followed by
one to six or one to seven alphanumeric characters as follows.  The character following
the dollar sign must be an alphabetic character.

On a D-series system, the volume name can contain one to seven alphanumeric
characters.

On a C-series system, the volume name can contain:

One to six alphanumeric characters if you include the system name
One to seven alphanumeric characters if you omit the system name

On a C-series system, if you specify the system name, you must also specify the
volume name.  If you omit the system name, specifying the volume name is optional.

Subvolume Name

The subvolume name, such as MYSUBVOL, is the name of the set of files, on the disk
volume, within which the file resides.  The subvolume name can contain from one to
eight alphanumeric characters, the first of which must be alphabetic.

On a D-series system, if you specify the volume name, you must also specify the
subvolume name.  If you omit the volume name, specifying the subvolume name is
optional.
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File ID

The file ID, such as MYFILE, is the identifier of the file in the subvolume.  The file ID
can contain from one to eight alphanumeric characters, the first of which must be
alphabetic.

The file ID is required.

Partial File Names A partial file name contains at least the file ID, but does not contain all the file-name
parts.  When you specify a partial file name, the operating system or other process fills
in the missing file-name parts by using your current default values.  Following are the
optional file-name parts and their default values:

File-Name Part Default

node (system) Node (system) on which your program is executing

volume Current default volume

subvolume Current default subvolume

Following are all the partial file names you can specify for a disk file named
\BRANCH.$DIV.DEPT.EMP:

Omitted File-Name Parts Partial File Name D-Series System C-Series System

Node (system) $div.dept.emp Yes Yes

Node (system), volume dept.emp Yes Yes

Node (system), volume,
subvolume

emp Yes Yes

Volume \branch.dept.emp Yes No

Volume, subvolume \branch.emp Yes No

Subvolume \branch.$div.emp No Yes

Node (system), subvolume $div.emp No Yes

You can change your current default values in various ways:

You can change the volume and subvolume with the VOLUME command of, for
example, the Binder, Inspect, and TACL products.

In some cases, you can specify node (system), volume, and subvolume names by
issuing TACL ASSIGN SSV commands, described later in this appendix.

Logical File Names You can use a logical file name in place of the disk file name.  A logical file name is an
alternate name you specify in a TACL DEFINE or TACL ASSIGN command, described
later in this appendix.
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Internal File Names The C-series operating system uses the internal form of a file name when passing it
between your program  and the operating system.  The D-series operating system uses
the internal form only if your program has not been converted to use D-series features.

For information on converting external file names to internal file names in a program,
see the Guardian Programmer’s Guide and the Guardian Procedure Calls Reference Manual.

TACL Commands You can send information to the compiler by using the following TACL commands:

DEFINE
PARAM
ASSIGN

These commands are summarized in the remainder of this appendix.  For complete
information on these commands, see the following manuals:

TACL Reference Manual (syntactic information)
TACL Programmer's Guide (programmatic information)
Guardian User’s Guide (interactive information)
Guardian Programmer’s Guide  (programmatic information)

TACL DEFINE
Commands

By issuing TACL DEFINE commands before starting the compiler, you can:

Substitute an actual file name for a logical file name used in the source file
Specify spooler attributes
Specify file attributes on a labeled tape
Specify process defaults, such as default volume and subvolume

Substituting File Names You can substitute a file name for a logical (or TACL DEFINE) name being passed by a
nonprivileged program to a system procedure.  To substitute a file name, issue the
following TACL commands:

TACL Command Purpose

SET DEFMODE ON Enable DEFINE processing

SET DEFINE CLASS Set the initial attribute of a DEFINE command to CLASS MAP

SET DEFINE Set the working attributes

ADD DEFINE Specify a file name to substitute for a DEFINE name
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TACL DEFINE Names TACL DEFINE names:

Are not case-sensitive
Consist of 2 to 24 characters
Begin with an equals sign (=) followed by an alphabetic character
Continue with any combination of letters, digits, hyphens (-), underscores (_), and
circumflexes (^)

Some examples of valid DEFINE names are:

=A
=The_chosen_file
=Long-but-not-too-long
=The-File-of-The-Week

DEFINE names that begin with an equals sign followed by an underscore (=_) are
reserved by Tandem.  For example, do not use DEFINE names such as =_DEFAULT.

Setting DEFINE
CLASS Attributes

To create a DEFINE message or set its attributes, you must set a CLASS attribute for
the DEFINE.  The CLASS attributes are MAP, TAPE, SORT/SUBSORT, SPOOL, and
DEFAULTS.  Each attribute has an initial setting based on whether the attribute is
required, optional, or default.

MAP DEFINE

When you log on, the default CLASS attribute is MAP, which requires a file name.  A
MAP DEFINE substitutes a file name for a DEFINE name used in the source file.  For
example, suppose that your current CLASS attribute is MAP and your source file
includes the DEFINE name =MULTI in a SOURCE directive:

?SOURCE =multi

Before running the compiler, you can associate file name \BRIG.$ULLX.CABLE.PORT
with  =MULTI:

ADD DEFINE =multi, FILE \brig.$ullx.cable.port

During compilation, the compiler passes the DEFINE name to a system procedure,
which makes the file available to the compiler.  If the system procedure cannot make
the file available, the open operation fails.

TAPE DEFINE (D-Series Systems Only)

The TAPE DEFINE lets you specify attributes for labeled magnetic tapes.  For instance,
it lets you specify attributes such as block length, recording density, record format and
length, number of reels, and labeling.

SPOOL DEFINE

The SPOOL DEFINE lets you specify spooler settings or attributes, such as number of
copies, form name, location, owner, report name, and priority.
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DEFAULTS DEFINE

In the DEFAULTS class, a permanently built-in DEFINE named =_DEFAULTS has the
following attributes, which are active regardless of any DEFMODE setting:

Attribute Required Purpose

VOLUME Yes Contains the default node, volume, and subvolume names for the
current process as set by the TACL VOLUME, SYSTEM, and LOGON
commands

SWAP No Contains the node and volume name in which the operating system is to
store swap files

CATALOG No Contains a substitute name for a catalog as described in the NonStop
SQL Reference Manual

TACL PARAM
Commands

Compilers accept TACL PARAM commands that you issue before starting the
compilers.  PARAM commands are BINSERV, SAMECPU, SWAPVOL, and
SYMSERV.

PARAM BINSERV
Command

The PARAM BINSERV command lets you specify which BINSERV process you want
to use.  You can specify a file name or a TACL DEFINE name.

For example, you can specify the BINSERV file on a particular node, volume, and
subvolume as follows:

PARAM BINSERV \mynode.$myvol.mysubvol.BINSERV

If the specified node is not the one the TAL compiler runs on, the compiler ignores the
command.  If you omit the volume and subvolume, the compiler uses the current
default volume and subvolume.  If you omit the file ID,  the compiler uses the file ID
BINSERV.  If you specify a TACL DEFINE name, it must refer to a disk file of class
MAP.

If you use this command, the error file PDTERROR must be on the same subvolume as
BINSERV.  If you omit this command, the compiler uses the BINSERV process on its
own volume and subvolume.

PARAM SAMECPU
Command

The PARAM SAMECPU command causes the compiler, BINSERV, and SYMSERV to
all to run in the same processor if you specify any number but 0.  For example:

PARAM SAMECPU 32767
TAL /CPU 6/

Specifying 0 means the compiler, BINSERV, and SYMSERV need not run on the same
processor.  For example:

PARAM SAMECPU 0
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PARAM SWAPVOL
Command

The PARAM SWAPVOL command lets you specify the volume that the compiler,
BINSERV, and SYMSERV use for temporary files.  For example:

PARAM SWAPVOL $myvol

The compiler ignores any node specification and allocates temporary files on its own
node.  If you omit the volume, the compiler uses the default volume for temporary
files; BINSERV and SYMSERV use the volume that is to receive the object file.

Use this command when:

The volumes normally used for temporary files might not have sufficient space.
The default volume or the volume to receive the object file is on a different node
from the compiler.

PARAM SYMSERV
Command

The PARAM SYMSERV command lets you specify which SYMSERV process you want
to use.  You can specify a file name or a TACL DEFINE name.

For example, to specify the SYMSERV file on a particular volume and subvolume:

PARAM SYMSERV \mynode.$myvol.mysubvol.SYMSERV

If the node is not the one the compiler runs on, the compiler ignores the command.  If
you omit the volume or subvolume, the compiler uses the current default volume or
subvolume.  If you omit the file name, the compiler uses the name SYMSERV.  If you
specify a TACL DEFINE name, the name must refer to a disk file of class MAP.

If you omit this command, the compiler uses the volume and subvolume specified in
the PARAM BINSERV command.  If you omit both PARAM SYMSERV and PARAM
BINSERV commands, the compiler uses the SYMSERV process on the compiler’s
volume and subvolume.

Using PARAM Commands You can specify one or more PARAM commands before starting the compiler.  For
example, you can specify that:

The compiler use the BINSERV process located on MYSUBVOL

PARAM BINSERV mysubvol

The compiler, BINSERV, and SYMSERV all run in the same processor

PARAM SAMECPU 1

The compiler, BINSERV, and SYMSERV allocate temporary files on volume
$JUNK

PARAM SWAPVOL $junk

Then you can issue the TAL compilation command:

TAL /IN mysource/ myprog
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TACL ASSIGN
Commands

You can issue the TACL ASSIGN command before starting the compiler to substitute
actual file names for logical file names used in the source file.  The TACL product
stores the file-name mapping until the compiler requests it.

ASSIGN commands fall into two categories:

Ordinary ASSIGN commands
ASSIGN SSV commands

Ordinary ASSIGN
Command

The ordinary ASSIGN command equates a file name with a logical file name used in
ERRORFILE, SAVEGLOBALS, SEARCH, SOURCE, and USEGLOBALS directives.
The compiler accepts only the first 75 ordinary ASSIGN messages.

In each ASSIGN command, specify a logical identifier followed by a comma and the
file name or a TACL DEFINE name:

ASSIGN dog, \a.$b.c.dog
ASSIGN cat, =mycat

If the file name is incomplete, the TACL product completes it from your current
default node, volume, and subvolume.  For example, if your current defaults are
\X.$Y.Z, the TACL product completes the incomplete file names in ASSIGN
commands as follows:

Incomplete File Names Complete File Names

ASSIGN qq, cat ASSIGN qq, \x.$y.z.cat
ASSIGN ss, b.dog ASSIGN ss, \x.$y.b.dog
ASSIGN tt, $a.b.rat ASSIGN tt, \x.$a.b.rat.

If you use a TACL DEFINE name in place of a file name, the TACL product qualifies
the file name specified in the ADD DEFINE command when it processes the ASSIGN
command.  Even if you specify new node, volume, and subvolume defaults between
the ADD DEFINE command and the ASSIGN command, the ASSIGN mapping still
reflects the ADD DEFINE settings.

Processing ASSIGN File Names

If you issue the following commands:

ASSIGN aa, $a.b.cat
ASSIGN bb, $a.b.dog
ASSIGN cc, =my_zebra
ADD DEFINE =my_zebra, CLASS MAP, FILE $a.b.zebra

TAL /IN mysource, OUT $s/ obj

the compiler equates SOURCE directives in MYSOURCE to files as follows:

?SOURCE aa              !Equates to ?SOURCE $a.b.cat
?SOURCE cc              !Equates to ?SOURCE $a.b.zebra
?SOURCE bb              !Equates to ?SOURCE $a.b.dog

You can name new source files at each compilation without changing the contents of
the source file.
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ASSIGN SSV Command The ASSIGN SSV (Search SubVolume) command lets you specify which node, volume,
and subvolume to take files from.  The compiler uses ASSIGN SSV information to
resolve incomplete file names in the SEARCH, SOURCE, and USEGLOBALS
directives.

For each ASSIGN SSV command, append to the SSV keyword a value in the range 0
through 49.  Values in the range 0 through 9 can appear with or without a leading 0.

For example, if you specify:

ASSIGN SSV1, oldfiles

and the compiler encounters the directive:

?SOURCE myutil

the compiler looks for OLDFILES.MYUTIL.

If you then specify:

ASSIGN SSV1, newfiles

and run the compiler again, it looks for NEWFILES.MYUTIL.

If you omit the node or volume, the TACL product uses the current default node or
volume.  If you omit the subvolume, the compiler ignores the command.  TACL
DEFINE names are not allowed.

The ASSIGN SSV command also lets you specify the order in which subvolumes are
searched.  You can specify ASSIGN SSV commands in any order.  If the same SSV
value appears more than once, the TACL product stores only the last command having
that value.

For example, if you issue the following commands, the TACL product stores only two
of the messages :

Assign SSV Command Stored

ASSIGN SSV28, $a.b Yes
ASSIGN SSV7, $c.d No
ASSIGN SSV7, $e.f No
ASSIGN SSV07, $g.h Yes

The compiler stores ASSIGN SSV messages in its SSV table in ascending order.
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Processing ASSIGN SSV Commands

For each file name the compiler processes, the compiler scans the SSVs in ascending
order from SSV0 until it finds a subvolume that holds the file.

For example, if you issue the following ASSIGN commands before running the
compiler:

ASSIGN SSV7,  $aa.b3
ASSIGN SSV10, $aa.grplip
ASSIGN SSV8,  mylib
ASSIGN SSV20, $cc.divlib
ASSIGN trig,  $sp.math.xtrig

and the compiler encounters the following SOURCE directive:

?SOURCE unpack

the compiler first looks for an ASSIGN message having the logical name UNPACK.  If
there is none, the compiler looks for the file in subvolumes in the following order:

$aa.b3.unpack                            (SSV7)
$default-volume.mylib.unpack             (SSV8)
$aa.grplib.unpack                        (SSV10)
$cc.divlib.unpack                        (SSV20)
$default-volume.default-subvolume.unpack

The compiler uses the first file it finds.  If it finds none named UNPACK, it issues an
error message.

When the compiler encounters the following directive:

?SOURCE trig

it tries only $SP.MATH.XTRIG; if it does not find that exact file, it issues an error
message.
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The tables in this appendix provide information on:

Data type correspondence among Tandem languages
The return value size generated by each data type

These tables are useful if your programs:

Use data from files created in another language
Pass parameters to programs written in callable languages

The return value sizes given in these tables do not correspond to the storage size of
SQL data types.  For a complete list of SQL data type correspondence, see the
appropriate NonStop SQL programmer’s guide.

Note COBOL includes COBOL74, COBOL85, and SCREEN COBOL unless otherwise noted.

If you use the Data Definition Language (DDL) utility to describe your files, you might
not need these tables.  For more information, see the Data Definition Language
(DDL)Reference Manual.
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Table F-1.  Integer Types, Part 1

8-Bit Integer 16-Bit Integer 32-Bit Integer

BASIC STRING INT
INT(16)

INT(32)

C char [1]
unsigned char
signed char

int
short
unsigned

long
unsigned long

COBOL Alphabetic
Numeric DISPLAY
Alphanumeric-Edited
Alphanumeric
Numeric-Edited

PIC S9(n) COMP or PIC 9(n) COMP
   without  P or V, 1 ≤ n ≤ 4
Index Data Item [2]
NATIVE-2 [3]

PIC S9(n) COMP or PIC 9(n) COMP
   without  P or V, 5 ≤ n ≤ 9
Index Data Item [2]
NATIVE-4 [3]

FORTRAN — INTEGER [4]
INTEGER*2

INTEGER*4

Pascal BYTE
Enumeration, unpacked,
   ≤ 256 members
Subrange, unpacked,
   n…m, 0 ≤ n and
   m≤ 255

INTEGER
INT16
CARDINAL [1]
BYTE or CHAR value parameter
Enumeration, unpacked, > 256 members
Subrange, unpacked, n…m, -32,768 ≤ n
   and m ≤ 32,767, but at least  n or m
   outside 0…255 range

LONGINT
INT32
Subrange, unpacked n…m,
   –2147483648 ≤ n and
   m ≤  2147483647,
   but at least n or m outside
   -32,768…32,767 range

SQL CHAR NUMERIC(1)…NUMERIC(4)
PIC 9(1) COMP…PIC 9(4) COMP
SMALLINT

NUMERIC(5)…NUMERIC(9)
PIC 9(1) COMP…PIC 9(9) COMP
INTEGER

TAL STRING
UNSIGNED(8)

INT
UNSIGNED(16)

INT(32)

Return Value
Size (Words)

1 1 2

[1] Unsigned Integer.

[2] Index Data Item is a 16-bit integer in COBOL 74 and a 32-bit integer in COBOL85.

[3] Tandem COBOL85 only.

[4] INTEGER is normally equivalent to INTEGER*2.  The INTEGER*4 and INTEGER*8 compiler directives redefine INTEGER.
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Table F-2.  Integer Types, Part 2

64-Bit Integer Bit Integer of 1 to 31 Bits Decimal Integer

BASIC INT(64)
FIXED(0)

— —

C long long — —

COBOL PIC S9(n) COMP or PIC 9(n) COMP
   without P or V, 10 ≤ n ≤ 18
NATIVE-8 [1]

— Numeric DISPLAY

FORTRAN INTEGER*8 — —

Pascal INT64 UNSIGNED(n), 1 ≤ n ≤ 16
INT(n), 1 ≤ n ≤ 16

DECIMAL

SQL NUMERIC(10)…NUMERIC(18)
PIC 9(10) COMP…PIC 9(18) COMP
INTEGER

— DECIMAL (n,s)
PIC 9(n) DISPLAY

TAL FIXED(0) UNSIGNED(n) , 1 ≤ n ≤ 31 —

Return Value
Size (Words)

4 1, 1 or 2 in TAL 1 or 2, depends on
declared pointer size

[1] Tandem COBOL85 only.

Table F-3.  Floating, Fixed, and Complex Types

32-Bit Floating 64-Bit Floating 64-Bit Fixed Point 64-Bit Complex

BASIC REAL REAL(64) FIXED(s), 0 ≤ s ≤ 18 —

C float double — —

COBOL — — PIC S9(n–s)v9(s) COMP or
   PIC 9(n–s)v9(s) COMP, 10 ≤ n ≤ 18

—

FORTRAN REAL DOUBLE PRECISION — COMPLEX

Pascal REAL LONGREAL — —

SQL — — NUMERIC (n,s)
PIC 9(n-s)v9(s) COMP

—

TAL REAL REAL(64) FIXED(s), -19 ≤ s ≤ 19 —

Return Value
Size (Words)

2 4 4 4
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Table F-4.  Character Types

Character Character String Varying Length Character String

BASIC STRING STRING —

C signed char
unsigned char

pointer to char struct {
  int len;
  char val [n]
  };

COBOL Alphabetic
Numeric DISPLAY
Alphanumeric-Edited
Alphanumeric
Numeric-Edited

Alphabetic
Numeric DISPLAY
Alphanumeric-Edited
Alphanumeric
Numeric-Edited

01 name.
     03 len USAGE IS NATIVE-2 [1]
     03 val PIC X(n).

FORTRAN CHARACTER CHARACTER array
CHARACTER*n

—

Pascal CHAR or BYTE value parameter
Enumeration, unpacked, ≤ 256 members
Subrange, unpacked n…m,
   0 ≤ n and m ≤ 255

PACKED ARRAY OF CHAR
FSTRING(n)

STRING(n)

SQL PIC X
CHAR

CHAR(n)
PIC X(n)

VARCHAR(n)

TAL STRING STRING array —

Return Value
Size (Words)

1 1 or 2, depends on declared
pointer size

1 or 2, depends on declared
pointer size

[1] Tandem COBOL85 only.

Table F-5.  Structured, Logical, Set, and File Types

Byte-Addressed Structure Word-Addressed Structure Logical (true or false) Boolean Set File

BASIC — MAP buffer — — — —

C — struct — — — —

COBOL — 01-level RECORD — — — —

FORTRAN RECORD — LOGICAL [1] — — —

Pascal RECORD, byte-aligned RECORD, word-aligned — BOOLEAN Set File

SQL — — — — — —

TAL Byte-addressed standard
   STRUCT pointer

Word-addressed standard
   STRUCT pointer

— — — —

Return Value
Size (Words)

1 or 2, depends on
declared pointer size

1 or 2, depends on
declared pointer size

1 or 2, depends on
compiler directive

1 1 1

[1] LOGICAL is normally defined as 2 bytes.  The LOGICAL*2 and LOGICAL*4 compiler directives redefine LOGICAL.
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Table F-6.  Pointer Types

Procedure Pointer Byte Pointer Word Pointer Extended Pointer

BASIC — — — —

C function pointer byte pointer word pointer extended pointer

COBOL — — — —

FORTRAN — — — —

Pascal Procedure pointer Pointer, byte-addressed
BYTEADDR

Pointer, byte-addressed
WORDADDR

Pointer, extended-addressed
EXTADDR

SQL — — — —

TAL — 16-bit pointer,
   byte-addressed

16-bit pointer,
   word-addressed

32-bit pointer

Return Value
Size (Words)

1 or 2, depends on
declared pointer size

1 or 2, depends on
declared pointer size

1 or 2, depends on
declared pointer size

1 or 2, depends on declared
pointer size
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actual parameter.  An argument that a calling procedure or subprocedure passes to a
called procedure or subprocedure.

addressing mode.  The mode in which a variable is to be accessed—direct addressing,
standard indirect addressing, or extended indirect addressing—as specified in the data
declaration.

AND.  A Boolean operator that produces a true state if both adjacent conditions are true.

arithmetic expression.  An expression that computes a single numeric value.

array.  A variable that represents a collectively stored set of elements of the same data
type.

ASSERT statement.  A statement that conditionally calls an error-handling procedure.

assignment expression.  An expression that stores a value in a variable.

assignment statement.  A statement that stores a value in a variable.

ASSIGN Command.  A TACL command that lets you associate a logical file name with a
Tandem file name.  The Tandem file name is a fully qualified file ID.  See “file name”
and “file ID.”

ASSIGN SSV Command.  A TACL command that lets you specify the D-series node (or
C-series system), volume, and subvolume from which the compiler is to resolve
incomplete file names specified in SEARCH, SOURCE, and USEGLOBALS directives.

automatic extended data segment.   A segment that is automatically allocated by the
compiler when you declare extended indirect arrays or extended indirect structures.

Binder.  A stand-alone binder you can use to bind separately compiled object files (or
modules) into a new object file.

BINSERV.  A binder that is integrated with the TAL compiler.

bit deposit.  The assignment of a value to a bit field in a previously allocated STRING or
INT variable, but not in an UNSIGNED(1–16) variable.  A bit-deposit field has the
form <n> or <n:n>.

bit extraction.  The access of a bit field in an INT expression (which can include STRING,
INT, or UNSIGNED(1–16) variables).  A bit-extraction field has the form <n> or <n:n>.

bit field.  One of the following units:

An n-bit storage unit that is allocated for a variable of the UNSIGNED data type.
For an UNSIGNED simple variable, the bit field can be 1 to 31 bits wide.  For an
UNSIGNED array element, the bit field can be 1, 2, 4, or 8 bits wide.

A bit field in the form <n> or <n:n>, used in bit-deposit or bit-extraction
operations.
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bit shift.  The shifting of bits within an INT or INT(32) expression a specified number of
positions to the left or right.  An INT expression can consist of STRING, INT, or
UNSIGNED(1–16) values.  An INT(32) expression can consist of INT(32) or
UNSIGNED(17–31) values.

bit-shift operators.  Unsigned ('<<',  '>>') or signed (<<,  >>) operators that left shift or
right shift a bit field within an INT or INT(32) expression.

bitwise logical operator.  The LOR, LAND, or XOR operator, which performs a bit-by-bit
operation on INT expressions.

blocked global data.  Data you declare within BLOCK declarations.  See “BLOCK
declaration.”

BLOCK declaration.  A means by which you can group global data declarations into a
relocatable data block that is either shareable with all compilation units in a program
or private to the current compilation unit.

Boolean operator.  The NOT, OR, or AND operator, which sets the state of a single value
or the relationship between two values.

breakpoint.  A location in a program at which execution is suspended so that you can
examine and modify the program state.  Breakpoints are set by Inspect or Debug
commands.

built-in function.  See “standard function.”

byte.  An 8-bit storage unit; the smallest addressable unit of memory.

CALL statement.  A statement that invokes a procedure or a subprocedure.

CALLABLE procedure.  A procedure you declare using the CALLABLE keyword; a
procedure that can call a PRIV procedure.  (A PRIV procedure can execute privileged
instructions.)

CASE expression.  An expression that selects an expression based on a selector value.

CASE statement.  A statement that selects a statement based on a selector value.

central processing unit.  See “CPU.”

character string constant.   A string of one or more ASCII characters that you enclose
within quotation mark delimiters.  Also referred to as a character string.

CISC.  Complex instruction set computing.  A processor architecture based on a large
instruction set, characterized by numerous addressing modes, multicycle machine
instructions, and many special-purpose instructions.  Contrast with “RISC.”

CLUDECS.   A file, provided by the CRE, that contains external declarations for CLULIB
functions.  See also “CLULIB.”

CLULIB.    A library file, provided by the CRE, that contains Saved Messages Utility
(SMU) functions for manipulating saved startup, ASSIGN, and PARAM messages.

code segment.  A segment that contains program instructions to be executed, plus
related information.  Applications can read code segments but cannot write to them.
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code space.  A part of virtual memory that is reserved for user code, user library code,
system code, and system library code.  The current code space of your process consists
of an optional library code space and a user code space.

CODE statement.  A statement that specifies machine codes or constants for inclusion in
the object code.

comment.  A note that you insert into the source code to describe a construct or
operation in your source code.  The compiler ignores comments during compilation.
A comment must either:

Begin with two hyphens (--) and terminate with the end of the line

Begin with an exclamation point (!) and terminate with either another
exclamation point or the end of the line

Common Run-Time Environment.  See “CRE.”

compilation unit.  A source file plus source code that is read in from other source files by
SOURCE directives, which together compose a single input to the compiler.

compiler directive.  A compiler option that lets you control compilation, compiler
listings, and object code generation.  For example, compiler directives let you compile
parts of the source file conditionally or suppress parts of a compiler listing.

compiler listing.  The listing produced by the compiler after successful compilation.  A
compiler listing can include a header, banner, warning and error messages, source
listing, maps, cross-references, and compilation statistics.

completion code.  A value used to return information about a process to its caller when
the process completes execution.  For example, the compiler returns to the TACL
product a completion code indicating the status of the compilation.

complex instruction set computing.  See “CISC.”

condition.  An operand that represents a true or false state.

condition code.  A status returned by expressions and by some file system procedure
calls as follows:

Condition Code Meaning Expression Status Procedure Call Status

CCG Condition-code-greater-than Positive Warning

CCL Condition-code-less-than 0 Error

CCE Condition-code-equal-to Negative Successful execution

conditional expression.  An expression that establishes the relationship between values
and results in a true or false value;  an expression that consists of relational or Boolean
conditions and conditional operators.

constant.  A number or a character string.

constant expression.  An arithmetic expression that contains only constants, LITERALs,
and DEFINEs as operands.
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CPU.   Central processing unit.  Historically, the main data processing unit of a
computer.  A Tandem system has multiple cooperating processors rather than a single
CPU;  processors are sometimes called CPUs.

CRE.  Common Run-Time Environment.  Services that facilitate D-series mixed-
language programs.

CREDECS.   A file, provided by the CRE, that contains external declarations for CRELIB
functions whose names begin with CRE_.  See also “CRELIB.”

CRELIB.   A library file, provided by the CRE, that contains functions for sharing files,
manipulating $RECEIVE, terminating the CRE, and performing standard math
functions and other tasks.

Crossref.  A stand-alone product that collects cross-reference information for your
program.

CROSSREF.  A compiler directive that collects cross-reference information for your
program.

cross-references.  Source-level cross-reference information produced for your program
by the CROSSREF compiler directive or the Crossref stand-alone product.

C-series system.  A system that is running a C-series release version of the Guardian 90
operating system.

data declaration.  A means by which to allocate storage for a variable and to associate an
identifier with a variable, a DEFINE, or a LITERAL.

data segment.  A segment that contains information to be processed by the instructions
in the related code segment.  Applications can read and write to data segments.  Data
segments contain no executable instructions.

data space.  The area of virtual memory that is reserved for user data and system data.
The current data space of your process consists of a user data segment, an automatic
extended data segment if needed, and any user-defined extended data segments.

data stack.  The local and sublocal storage areas of the user data segment.

data type.  A part of a variable declaration that determines the kind of values the
variable can represent, the operations you can perform on the variable, and the
amount of storage to allocate.  TAL data types are STRING, INT, INT(32), UNSIGNED,
FIXED, REAL, and REAL(64).

data type alias.  An alternate way to specify INT, REAL, and FIXED(0) data types.  The
respective aliases are INT(16), REAL(32), and INT(64).

Debug.  A machine-level interactive debugger.

DEFINE command.  A TACL command that lets you specify a named set of attributes and
values to pass to a process.

DEFINE.  A TAL declaration that associates an identifier with text such as a sequence of
statements.
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definition structure.  A declaration that describes a structure layout and allocates storage
for the structure layout.  Contrast with “referral structure” and “template structure.”

dereferencing operator.  A period (.) prefixed to an INT simple variable, which causes the
content of the variable to become the standard word address of another data item.

direct addressing.  Data access that requires only one memory reference and that is
relative to the base of the global, local, or sublocal area of the user data segment.

directive.  See “compiler directive.”

DO statement.   A statement that executes a posttest loop until a true condition occurs.

doubleword.   A 32-bit storage unit for the INT(32) or REAL data type.

DROP statement.  A statement that frees a reserved index register or removes a label
from the symbol table.

D-series system.  A system that is running a D-series release version of the operating
system.

entry point.  An identifier by which a procedure can be invoked.  The primary entry
point is the procedure identifier specified in the procedure declaration.  Secondary
entry points are identifiers specified in entry-point declarations.

entry-point declaration.  A declaration within a procedure that provides a secondary
entry point by which that procedure can be invoked.  The primary entry point is the
procedure identifier specified in the procedure declaration.

environment register.  A facility that contains information about the current process, such
as the current RP value and whether traps are enabled.

equivalenced variable.  A declaration that associates an alternate identifier and
description with a location in a primary storage area.

expression.  A sequence of operands and operators that, when evaluated, produces a
single value.

EXTDECS.  A file, provided by the operating system, that contains external declarations
for system procedures.  System procedures, for example, manage files, activate and
terminate programs, and monitor the operations of processes.

extended data segment.  A segment that provides up to 127.5 megabytes of indirect data
storage.  A process can have more than one extended data segment:

The compiler allocates an extended data segment when you declare extended
indirect arrays or indirect structures.

Your process can also allocate explicit extended data segments.

extended indirect addressing.  Data access through an extended (32-bit) pointer.

extended pointer.  A 32-bit simple pointer or structure pointer.  An extended pointer can
contain a 32-bit byte address of any location in virtual memory.
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extended stack.  A data block named $EXTENDED#STACK that is created in the
automatic extended data segment by the compiler when you declare extended indirect
arrays and structures.

EXTENSIBLE procedure.  A procedure that you declare using the EXTENSIBLE keyword;
a procedure to which you can add formal parameters without recompiling its callers;
a procedure for which the compiler considers all parameters to be optional, even if
some are required by your program.  Contrast with “VARIABLE procedure.”

external declarations file.  A file that contains declarations for procedures declared in
other source files.

EXTERNAL procedure declaration.   A procedure declaration that includes the EXTERNAL
keyword and no procedure body;  a declaration that enables you to call a procedure
that is declared in another source file.

file ID.  The last of the four parts of a file name.

file name.  A fully qualified file ID.  A file name contains four parts separated by
periods:

Node name (system name)
Volume name
Subvolume name
File ID

file system.  A set of operating system procedures and data structures that allows
communication between a process and a file, which can be a disk file, a device, or a
process.

filler bit.  A declaration that allocates a bit place holder for data or unused space in a
structure.

filler byte.  A declaration that allocates a byte place holder for data or unused space in a
structure.

FIXED.  A data type that requires a quadrupleword of storage and that can represent a
64-bit fixed-point number.

FOR statement.  A statement that executes a pretest loop n times.

formal parameter.  A specification, within a procedure or subprocedure, of an argument
that is provided by the calling procedure or subprocedure.

FORWARD procedure declaration.  A procedure declaration that includes the FORWARD
keyword but no procedure body;  a declaration that allows you to call a procedure
before you declare the procedure body.

fpoint.  An integer in the range –19 through 19 that specifies the implied decimal point
position in a FIXED value.  A positive fpoint denotes the number of decimal places to
the right of the decimal point.  A negative fpoint denotes the number of integer places
to the left of the decimal point; that is, the number of integer digits to replace with
zeros leftward from the decimal point.
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function.  A procedure or subprocedure that returns a value to the calling procedure or
subprocedure.

global data.  Data declarations that appear before the first procedure declaration;
identifiers that are accessible to all compilation units in a program, unless the the data
declarations appear in a BLOCK declaration that includes the PRIVATE keyword.

GOTO statement.  A statement that unconditionally branches to a label within a
procedure or subprocedure.

group comparison expression.  An expression that compares a variable with another
variable or with a constant.

high PIN.  A process identification number (PIN) that is greater than 255.  Contrast with
“low PIN.”

home terminal.  Usually the terminal from which a process was started.

Identifier.  A name you declare for an object such as a variable, LITERAL, or procedure.

IF expression.  An expression that selects the THEN expression for a true state or the
ELSE expression for a false state.

IF statement.  A statement that selects the THEN statement for a true state or the ELSE
statement for a false state.

implicit pointer.  A pointer the compiler provides when you declare an indirect array or
indirect structure.  See also “pointer.”

index register.  Register R5, R6, or R7 of the register stack.

index.  An element (byte, word, doubleword, or quadrupleword) offset or an
occurrence offset as follows:

Array index—an element offset from the zeroth element
Simple pointer index —an element offset from the address stored in the pointer
Structure or substructure index—an occurrence offset from the zeroth occurrence

indexing.  Data access through an index appended to a variable name.

Inspect product.  A source-level and machine-level interactive debugger.

INITIALIZER.  A system procedure that reads and processes messages during process
startup.

instruction register.  A facility that contains the instruction currently executing the
current code segment.

INT.  A data type that requires a word of storage and that can represent one or two
ASCII characters or a 16-bit integer.

INT(16).  An alias for INT.

INT(32).  A data type that requires a doubleword of storage and that can represent a
32-bit integer.

INT(64).  An alias for FIXED(0).
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INTERRUPT attribute.   A procedure attribute (used only for operating system
procedures) that causes the compiler to generate an IXIT (interrupt exit) instruction
instead of an EXIT instruction at the end of execution.

keyword.  A term that has a predefined meaning to the compiler.

label.  An identifier you place before a statement for access by other statements within
the encompassing procedure, usually a GOTO statement.

labeled tape.  A magnetic tape file described by standard ANSI or IBM file labels.

LAND.  A bitwise logical operator that performs a bitwise logical AND operation.

LANGUAGE attribute.   A procedure attribute that lets you specify in which language (C,
COBOL, FORTRAN, or Pascal) a D-series EXTERNAL procedure is written.

large-memory-model program.  A C or Pascal program that uses 32-bit addressing and
stores data in an extended data segment.

LITERAL.  A declaration that associates an identifier with a constant.

local data.  Data that you declare within a procedure;  identifiers that are accessible only
from within that procedure.

local register.  A facility that contains the address of the beginning of the local data area
for the most recently called procedure.

logical operator.  See “bitwise logical operator.”

LOR.  A bitwise logical operator that performs a bitwise logical OR operation.

low PIN.  A process identification number (PIN) in the range 0 through 254.  Contrast
with “high PIN.”

lower 32K-word area.  The lower half of the user data segment.  The global, local, and
sublocal storage areas.

MAIN procedure.  A procedure that you declare using the MAIN keyword;  the
procedure that executes first when you run the program regardless of where the
MAIN procedure appears in the source code.

memory page.  A unit of virtual storage.  TAL supports the 1048-byte memory page
regardless of the memory-page size supported by the system hardware.

mixed-language program.  A program that contains source files written in different
Tandem programming languages.

modular program.  A program that is divided into smaller, more manageable
compilation units that you can compile separately and then bind together.

move statement.  A statement that copies a group of elements from one location to
another.

multidimensional array.  A structure that contains nested substructures.

NAME declaration.  A declaration that associates an identifier with a compilation unit
(and with its private global data block if any).
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named data block.  A BLOCK declaration that specifies a data-block identifier.  The
global data declared within the BLOCK declaration is accessible to all compilation
units in the program.  Contrast with “private data block.”

network.  Two or more nodes linked together for intersystem communication.

node.  A computer system connected to one or more computer systems in a network.

NonStop SQL.  A relational database management system that provides efficient online
access to large distributed databases.

NOT.  A Boolean operator that tests a condition for the false state and that performs
Boolean negation.

object file.  A file, generated by a compiler or binder, that contains machine instructions
and other information needed to construct the executable code spaces and initial data
for a process.  The file can be a complete program ready for execution, or it can be
incomplete and require binding with other object files before execution.

offset.   Represents, when used in place of an index, the distance in bytes of an item
from either the location of a direct variable or the location of the pointer of an indirect
variable, not from the location of the data to which the pointer points.  Contrast with
“index.”

operand.  A value that appears in an expression.  An operand can be a constant, a
variable identifier, a LITERAL identifier, or a function invocation.

operator.  A symbol—such as an arithmetic or conditional operator—that performs a
specific operation on operands.

OR.  A Boolean operator that produces a true state if either adjacent condition is true.

output listing.   See “compiler listing.”

page.  See “memory page.”

PARAM command.  A TACL command that lets you associate an ASCII value with a
parameter name.

parameter.  An argument that can be passed between procedures or subprocedures.

parameter mask.  A means by which the compiler keeps track of which actual
parameters are passed by a procedure to an EXTENSIBLE or VARIABLE procedure.

parameter pair.  Two parameters connected by a colon that together describe a single
data type to some languages.

PIN.  A process identification number; an unsigned integer that identifies a process in a
processor module.

pointer.  A variable that contains the address of another variable.  Pointers include:

Simple pointers and structure pointers that you declare and manage

Implicit pointers (pointers the compiler provides and manages when you declare
indirect arrays and indirect structures)

See also “extended pointer” and “standard pointer.”
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precedence of operators.  The order in which the compiler evaluates operators in
expressions.

primary storage area.  The area of the user data segment that can store pointers and
directly addressed variables.  Contrast with “secondary storage area.”

PRIV procedure.  A procedure you declare using the PRIV keyword; a procedure that
can execute privileged instructions.  Normally only operating system procedures are
PRIV procedures.

private data area.  The part of the data space that is reserved for the sole use of a
procedure or subprocedure while it is executing.

private data block.  A BLOCK declaration that specifies the PRIVATE keyword.  Global
data declared within such a BLOCK declaration is accessible only to procedures within
the current compilation unit.  Contrast with “named data block.”

procedure.  A program unit that can contain the executable parts of a program and that
is callable from anywhere in a program;  a named sequence of machine instructions.

procedure declaration.  Declaration of a program unit that can contain the executable
parts of a program and that is callable from anywhere in a program.  Consists of a
procedure heading and either a procedure body or the keyword FORWARD or
EXTERNAL.

process.  An instance of execution of a program.

process environment.  The software environment that exists when the processor module
is executing instructions that are part of a user process or a system process.

process identification number.  See “PIN.”

program.  A set of instructions that a computer is capable of executing.

program register.  A facility that contains the address of the next instruction to be
executed in the current code segment.

program structure.  The order and level at which major components such as data
declarations and statements appear in a source file.

public name.  A specification within a procedure declaration of a procedure name to use
in Binder, not within the compiler.  Only a D-series EXTERNAL procedure declaration
can include a public name.  If you do not specify a public name, the procedure
identifier becomes the public name.

quadrupleword.  A 64-bit storage unit for the REAL(64) or FIXED data type.

read-only array.  An array that you can read but cannot modify;  an array that is located
in the user code segment.

REAL.  A data type that requires a doubleword of storage and that can represent a
32-bit floating-point number.

REAL(32).  An alias for REAL.
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REAL(64).  A data type that requires a quadrupleword of storage and that can represent
a 64-bit floating-point number.

recursion.  The ability of a procedure or subprocedure to call itself.

redefinition.  A declaration, within a structure, that associates a new identifier and
sometimes a new description with a previously declared item in the same structure.

reduced instruction set computing.  See “RISC.”

reference parameter.  An argument for which a calling procedure (or subprocedure)
passes an address to a called procedure (or subprocedure).  The called procedure or
subprocedure can modify the original argument in the caller’s scope.  Contrast with
“value parameter.”

referral structure.  A declaration that allocates storage for a structure whose layout is the
same as the layout of a specified structure or structure pointer.  Contrast with
“definition structure” and “template structure.”

register.  A facility that stores information about a running process.  Registers include
the program register, the instruction register, the local register, the stack register, the
register stack, and the environment register.

register stack.  A facility that contains the registers R0 through R7 for arithmetic
operations, of which R5, R6, and R7 also serve as index registers.

register pointer (RP).  An indicator that points to the top of the register stack.

relational operator.  A signed (<, =, >, <=, >= <>) or unsigned ('<', '=', '>', '<=', '>=', '<>')
operator that performs signed or unsigned comparison, respectively, of two operands
and then returns a true or false state.

relocatable data.  A global data block that Binder can relocate during the binding
session.

RESIDENT procedure.  A procedure you declare using the RESIDENT keyword;  a
procedure that remains in main memory for the duration of program execution.  The
operating system does not swap pages of RESIDENT code.

RETURN statement.  A statement that returns control from a procedure or a
subprocedure to the caller.  From functions, the RETURN statement can return a value.
As of the D20 release, RETURN can also return a condition-code value.

RISC.  Reduced instruction set computing.  A processor architecture based on a
relatively small and simple instruction set, a large number of general-purpose
registers, and an optimized instruction pipeline that supports high-performance
instruction execution.  Contrast with “CISC.”

RP.  Register pointer.  An indicator that points to the top of the register stack.

RSCAN statement.  A statement that scans sequential bytes, right to left, for a test
character.

RTLDECS.   A file, provided by the CRE, that contains external declarations for CRELIB
functions whose names begin with RTL_.  See also “CRELIB.”
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Saved Messages Utility.  See "SMU functions."

SCAN statement.  A statement that scans sequential bytes, left to right, for a test
character.

scope.  The set of levels—global, local, or sublocal—at which you can access each
identifier.

secondary storage area.  The part of the user data segment that stores the data of indirect
arrays and structures.  For standard indirection, the secondary storage area is in the
user data segment.  For extended indirection, the secondary storage area is in the
automatic extended data segment.  Contrast with “primary storage area.”

segment ID.  A number that identifies an extended data segment and that specifies the
kind of extended data segment to allocate.

signed arithmetic operators.  The following operators:  + (unary plus),    – (unary minus),
+ (binary signed addition),   – (binary signed subtraction),   * (binary signed
multiplication),  and   / (binary signed division).

simple pointer.  A variable that contains the address of a memory location, usually of a
simple variable or an array element, that you can access with this simple pointer.

simple variable.  A variable that contains one item of a specified data type.

small-memory-model program.  A C or Pascal program that uses 16-bit addressing,
contains up to 64K bytes of data, and has a limited number of named static variables.

SMU functions.  Saved Messages Utility (SMU) functions, provided by the CLULIB
library, for manipulating saved startup, ASSIGN, and PARAM messages.

source file.  A file that contains source text such as data declarations, statements,
compiler directives, and comments.  The source file, together with any source code
read in from other source files by SOURCE directives, compose a compilation unit that
you can compile into an object file.

stack register.  A register that contains the address of the last allocated word in the data
stack.

STACK statement.  A statement that loads a value onto the register stack.

standard function.  A built-in function that you can use for an operation such as type
transfer or address conversion.

standard indirect addressing.  Data access through a standard (16-bit) pointer.

standard pointer.  A 16-bit simple pointer or structure pointer.  A standard pointer can
contain a 16-bit address in the user data segment.

statement.  An executable sequence of keywords, operators, and values.  A statement
performs a specific action such as assigning a value to a variable or calling a
procedure.

STORE statement.  A statement that stores a value from a register stack element into a
variable.
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STRING.  A data type that requires a byte or word of storage and that can represent an
ASCII character or an 8-bit integer.

structure.  A variable that can contain different kinds of variables of different data
types.  A definition structure, a template structure, or a referral structure.

structure data item.  An accessible structure field declared within a structure, including a
simple variable, array, substructure, simple pointer, structure pointer, or redefinition.
Contrast with “structure item.”

structure item.  Any structure field, including a structure data item, a bit filler, or a byte
filler.  Also see “structure data item.”

structure pointer.  A variable that contains the address of a structure that you can access
with this structure pointer.

sublocal data.  Data that you declare within a subprocedure;  identifiers that are
accessible only from within that subprocedure.

subprocedure.  A named sequence of machine instructions that is nested (declared)
within a procedure and that is callable only from within that procedure.

substructure.  A structure that is nested (declared) within a structure or substructure.

SYMSERV.  A process, integrated with the TAL compiler, that on request provides
symbol-table information to the object file for use by the Inspect and Crossref
products.

system.  The processors, memory, controllers, peripheral devices, and related
components that are directly connected together by buses and interfaces to form an
entity that is operated as one computer.

system procedure.  A procedure provided by the operating system for your use.  System
procedures, for example, manage files, activate and terminate programs, and monitor
the operations of processes.

TAL.  Transaction Application Language.  A high-level, block-structured language that
works efficiently with the system hardware to provide optimal object program
performance.

TALDECS.   A file, provided by the TAL compiler, that contains external declarations for
TALLIB functions.  See also “TALLIB.”

TALLIB.   A library file, provided by the TAL compiler, that contains procedures for
initializing the CRE and for preparing a program for SQL statements.

Tandem NonStop Series system.   See “TNS system.”

Tandem NonStop Series/RISC system.   See “TNS/R system.”

template structure.  A declaration that describes a structure layout but allocates no
storage for the structure.  Contrast with “definition structure” and “referral structure.”

TNS system.   Tandem NonStop Series system.  Tandem computers that are based on
CISC technology.  TNS processors implement the TNS instruction set.
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TNS/R system.   Tandem NonStop Series/RISC system.  Tandem computers that are
based on RISC technology.  TNS/R processors implement the RISC instruction set and
are upwardly compatible with the TNS system-level architecture.

Transaction Application Language.  See “TAL.”

type transfer.  The conversion of a variable from one data type to another data type.

unblocked global data.  Global data you declare before any BLOCK declarations.
Identifiers of such data are accessible to all compilation units in a program.

UNSIGNED.  A data type that allocates storage for:

Simple variable bit fields that are 1 to 31 bits wide
Array element bit fields that are 1, 2, 4, or 8 bits wide

unsigned arithmetic operators.  The following operators—'+' (unsigned addition) '-',
(unsigned subtraction) '*' (unsigned multiplication),  '/' (unsigned division), and '\'
(unsigned modulo division).

upper 32K-word area.  The upper half of the user data segment.  You can use pointers to
allocate this area for your data;  however, if you use the CRE, the upper 32K-word area
is not available for your data.

USE statement.  A statement that reserves an index register for your use.

user data segment.  An automatically allocated segment that provides modifiable,
private storage for the variables of your process.

value parameter.  An argument for which a procedure (or subprocedure) passes a value,
rather than the address of the argument, to a called procedure (or subprocedure).  The
called procedure or subprocedure can modify the passed value but not the original
argument in the caller’s scope.  Contrast with “reference parameter.”

variable.  A symbolic representation of an item or a group of items or elements.  A
simple variable, array, structure, simple pointer, structure pointer, or equivalenced
variable.  A variable can store data that can change during program execution.

VARIABLE procedure.  A procedure that you declare using the VARIABLE keyword;  a
procedure to which you can add formal parameters but then you must recompile all
its callers;  a procedure for which the compiler considers all parameters to be optional,
even if some are required by your code.  Contrast with “EXTENSIBLE procedure.”

virtual memory.  A range of addresses that processes use to reference physical memory
and disk storage.

volume.  A disk drive;  a pair of disk drives that forms a mirrored disk.

WHILE statement.  A statement that executes a pretest loop during a true condition.

word.  A 16-bit storage unit for the INT data type.  TAL uses a 16-bit word regardless of
the word size used by the system hardware.

XOR.  A bitwise logical operator that performs a bitwise exclusive OR operation.
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16-bit (standard) addressing  4-7
16-bit (standard) pointers  9-1
32-bit (extended) addressing  4-7
32-bit (extended) pointers  9-1

A
Accelerated object files  xxviii
Actual parameters

See  Parameters
Addition operator

signed  5-16
unsigned  5-18

Address conversions
bit-shift operations  5-30
byte-to-word

simple pointer initialization  9-4
structure pointer initialization  9-14

reference parameters  11-35
standard-to-extended

simple pointer assignment  9-8
simple pointer initialization  9-5
structure pointer assignment  9-17
structure pointer initialization  9-16

word-to-byte
simple pointer assignment  9-8
simple pointer initialization  9-4
structure pointer initialization  9-14

Addressability
arrays  7-11
definition structures  8-6
referral structures  8-9

Addresses
as value parameters  11-26
in simple pointers  9-3
in simple pointers in structures  8-18
in structure pointers  9-13
in structure pointers in structures  8-20
of arrays, assigning  7-13
of procedures (PEP number)  11-52
of variables  5-27
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Addressing
definition structures  8-3
performance guidelines  C-1
referral structures  8-8
template structures  8-7

Addressing modes
byte  4-5
direct  4-6
extended (32-bit) indirect  4-7
indexing  4-7
indirect  4-6
standard (16-bit) indirect  4-7
word  4-5

Aliases, data types   5-6
Ampersand (&)

concatenated move (copy) operations  7-18
prefix, template block name

allocation  14-17
description  14-16
listing  15-14

AND operator  5-22
Arithmetic expressions

description  5-15
in conditional expressions  5-21
performance guidelines  C-3

Arithmetic operators
signed  5-16
unsigned  5-18

Arrays
accessing  7-12
addressability  7-11
as reference parameters  11-30
as structure items  8-9
assignments  7-13
by data type  7-4
concatenating  7-18
copying  7-14
declaring  7-1
indexing  7-12
indirection  7-2
initializing  7-2
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Arrays (continued)
multidimensional

simulated by structures  8-13
TAL and C guidelines  17-23

of arrays  8-9
of structures

definition structures  8-3
referral structures  8-8
TAL and C guidelines  17-23

redefinitions  8-21
scanning  7-19
storage allocation  7-8
TAL and C guidelines  17-19

ASCII character set  D-1
ASSERT statement  12-17
ASSIGN command, TACL product  E-8
ASSIGN message, saving  17-44
ASSIGN SSV command, TACL product  E-9
Assignment expression  13-2
Assignment statement

arrays  7-13
simple pointers  9-7
simple variables  6-4
structure items  8-34
structure pointers  9-16

Asterisk
See  *

AT keyword, BLOCK declaration  14-15

B
%B prefix,  binary constants  5-7
Banner, compiler listing  15-2
BEGIN-END construct

compound statements  3-16
count in compiler listing  15-4
procedures  3-16
structures  3-16
subprocedures  3-16

BEGINCOMPILATION directive  14-23
BELOW keyword, BLOCK declaration  14-15
Binary number base  5-7
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Binary-to-ASCII conversion program  A-5
Binder  14-5
Binding object files

during compilation  14-6
modular sample program  A-9
overview  14-5
run-time  14-6
stand-alone Binder  14-6
TAL and C for CRE  17-51

BINSERV
action of  14-1
and SEARCH directive  14-12
binding object files  14-6
resolving external references  14-13
specifying which one  E-6

Bit extractions  5-28
Bit fields

bit-extraction operations  5-28
manipulating in TAL and C  17-28
UNSIGNED and C packed  17-29
UNSIGNED data type  5-6

Bit operations
extractions  5-28
shifts  5-29
TAL and C guidelines  17-28

Bit shifts
description  5-29
division by powers of 2  5-30
multiplication by powers of 2  5-30
user code segment access  B-9
word-byte address conversions  5-30

Bitwise logical operators  5-20
BIT_FILLER declaration  8-16
BLOCK declarations

description  14-14
in CREDECS declarations file  17-43
in program structure  3-5
in RTLDECS declarations file  17-43
mixed-language programming  17-1
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BLOCK declarations (continued)
modular sample program

named block  A-12
private block  A-19

storage allocation  14-19
Boolean operators  5-22
Bounds, upper and lower

arrays  7-1
definition structures  8-3
referral structures  8-8

Branch table form, labeled CASE statement  12-6
BREAK command, Inspect product  16-5
BREAK key, stopping programs  16-3
Breakpoints, setting  16-5
Built-in functions

See  Standard functions
BY keyword, FOR statement  12-12
Byte  5-6
Byte addressing  4-5
BYTES keyword

group comparison expression  13-6
move statement  7-15

C
C language

calling TAL  17-13
TAL  and C guidelines  17-9

C LANGUAGE attribute, TAL procedures  17-2
C-series system  xxviii
CALL statement  12-19
Calling procedures

C calling TAL  17-13
TAL calling C  17-12
TAL calling TAL  12-19

Calling subprocedures  12-19
$CARRY function  5-26
Carry indicator, testing  5-26
CASE expressions

description  13-3
performance guidelines  C-3
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CASE statement, labeled
branch table form  12-6
conditional test form  12-6
description  12-5
modular sample program  A-20
with CHECK directive  12-7
with OPTIMIZE directive  12-7

CCE (condition code equal to)  5-25
CCG (condition code greater than)  5-25
CCL (condition code less than)  5-25
char variables, TAL and C mixed programming  17-19
Character set  D-1
Character strings

format  5-10
initializing with  6-2
interlanguage correspondence  F-3
maximum length  5-10

CHECK directive, with labeled CASE statement  12-7
Circumflex (^) in identifiers  5-2
CISC systems  xxviii
CLEAR command, Inspect product  16-8
CLUDECS (CRE external declarations file)  17-43
CLULIB (Common Language Utility library file of CRE)  17-43
COBOL environment, ENV directive  17-39
COBOL LANGUAGE attribute, TAL procedures  17-2
Code segments

procedures in  11-1
process environment  4-1

Code space
description  4-1
items in arithmetic expressions  5-15

Code-address field, compiler listing  15-3
Comments

format  3-14
omitted parameters  3-14
skipping over code  3-15

COMMON keyword, ENV
directive  17-39

Common Run-Time Environment
See  CRE

Comparing arrays  7-23
Compilation command  14-2



Index

096254 Tandem Computers Incorporated Index–7

Compilation statistics, compiler
listing  15-16

Compilation units
description  14-2
naming  14-14
order of components  3-3
scope of identifiers  3-3
structuring  3-1

Compiler
processes integrated with  14-1
starting  14-2

Compiler directives
See  Directives

Compiler listing
banner  15-2
compilation statistics  15-16
compiler messages  15-2
cross-references  15-11
directives in  15-2
innerlisting  15-7
maps

file name map  15-10
global map  15-9
load map  15-13
local map  15-6
sublocal map  15-6

octal code  15-9
page header  15-1
procedure instruction mnemonics  15-9

source code  15-3
address field  15-3
BEGIN-END counter  15-4
edit-file line numbers  15-3
lexical-level counter  15-4

statement instruction
mnemonics  15-7

Compiling source files
command options  14-2
getting started  2-4
modular sample program  A-9

Completion codes from compiler  14-5
Complex types, interlanguage correspondence  F-3
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Compound statements  3-16
Concatenated move (copy)

operations  7-18
Condition code indicator, testing  5-25
Conditional compilation

asterisk in listing  15-5
directives (DEFINETOG, IF, ENDIF, IFNOT)  3-15

Conditional expressions
assigning  5-24
description  5-21

Conditional statements  12-1
Conditional test form, labeled CASE statement  12-6
Constant expressions  5-1
Constant lists

copying into arrays  7-14
group comparison expressions  13-5
initializing arrays  7-3
move statement  7-14

Constants
arithmetic expressions  5-15
group comparison expressions  13-5
kinds of

character strings  5-10
LITERALs  5-11
numbers  5-7

move statement  7-15
Continuation directive lines  14-7
Copying data

arrays  7-14
simple pointers  9-9
structure pointers  9-19
structures  8-39

CPU, specifying for compiler  E-6
CRE guidelines

advantages of using CRE  17-37
coding guidelines  17-37
data blocks of  17-39
ENV directive  17-39
errors in CRE math routines  17-49
extended stack, support of  17-49
HEAP directive  17-41
initializing the CRE  17-44



Index

096254 Tandem Computers Incorporated Index–9

CRE guidelines (continued)
object files, stopping  17-45
run-time environment, specifying  17-39
sample program  17-50
spooling  17-47
standard files, accessing  17-46
user heap, accessing  17-41
$RECEIVE, accessing  17-48

CREDECS (CRE external declarations file)
including in program  17-43
sample program  17-50

CRELIB (CRE library file)  17-43
#CRE_GLOBALS  (CRE control block)  17-39
#CRE_HEAP  (CRE run-time heap)  17-39
CRE_TERMINATOR_  17-45
Cross-references

collecting with CROSSREF directive  14-26
compiler listing  15-11

CROSSREF directive
and USEGLOBALS directive  14-23
description  14-26

D
D suffix,  nonhexadecimal INT(32) numbers  5-8
%D suffix,  hexadecimal INT(32) numbers  5-8
D-series system  xxviii
Data access

arrays  7-12
operands in expressions  5-27
pointers in structures  8-36
read-only arrays  7-24
simple pointers  9-9
structure pointers  9-18
structures  8-27

Data blocks
CRE  17-39
relocatable  14-14

Data declarations  3-4
See also  Variables
blocked  3-5
global  3-5
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Data declarations (continued)
local  3-8
sublocal  3-12
unblocked  3-5

Data Definition Language (DDL)
and byte-aligned structures  17-21
and type correspondence  F-1

Data sets
arrays  7-1
structures  8-1

Data space  4-2
Data types

compatibility with C data types  17-10
description  5-4
format  5-4
interlanguage correspondence  F-2
of Boolean operands  5-22
of expressions  5-6
of logical arithmetic operands  5-20
of signed arithmetic operands  5-16
of signed relational results  5-23
of special expressions  13-1
of unsigned arithmetic operands  5-19
of unsigned relational results  5-23
storage units  5-6

DATAPAGES directive, upper 32K-word area  B-2
$DBL

structure pointers  9-22
structures  8-30

$DBLL, accessing user code segment  B-9
DDL

See  Data Definition Language
Debug product  16-4
Debugging programs

debuggers  16-4
displaying values  16-5
sample session  16-6
setting breakpoints  16-5
stepping through  16-5

Decimal number base  5-7
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Declarations
arrays  7-1
BLOCKs  14-14
equivalenced variables  10-1
functions  11-8
labels  11-48
LITERALs  5-11
NAME  14-14
procedures  11-2
simple pointers  9-2
simple variables  6-1
structure pointers  9-12
structures  8-3
subprocedures  11-15

DEFAULT DEFINE  E-6
DEFINE command, TACL product  E-4
DEFINEPOOL system procedure

extended data segment  B-16
upper 32K-word area  B-7

DEFINETOG directive  3-15
Definition structures

addressability  8-6
as reference parameters  11-31
declaring  8-3
equivalenced  10-10
storage allocation  8-4

Definition substructures
declaring  8-12
redefinitions  8-23
storage allocation  8-14

Dereferencing operator  5-27
Direct addressing  4-6
Directive lines  14-7
Directive stacks, pushing and popping  14-8
Directives

BEGINCOMPILATION  14-23
compiler listing  15-2
CROSSREF  14-26
DATAPAGES  B-2
DEFINETOG  3-15
ENDIF  3-15
ENV  17-39
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Directives (continued)
file names  14-9
HEAP  17-41
IF  3-15
IFNOT  3-15
overview of  3-18
SAVEGLOBALS  14-23
SEARCH  14-12, 14-23
SOURCE  14-10
specifying in compilation command  14-4
specifying in source files  14-7
USEGLOBALS  14-23

Disk file names  E-1
DISPLAY command, Inspect product  16-5
Displaying program values  16-5
Division by powers of two  5-30
Division operator

signed  5-16
unsigned  5-18
unsigned modulo  5-18

DO keyword
DO statement  12-10
FOR statement  12-12
WHILE statement  12-8

DO statement  12-10
Documenting source code

See  Comments
Doubleword  5-6
DOWNTO keyword, FOR statement  12-12
DROP statement with FOR statement  12-15

E
E register  4-5
E suffix, REAL numbers  5-9
Edit-file line numbers, compiler listing  15-3
ELEMENTS keyword

group comparison expression  13-7
move statement  7-16

Ellipsis (...) in labeled CASE statement  12-5
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ELSE keyword
IF expression  13-4
IF statement  12-2

ENDIF directive  3-15
Entry points

entry-point identifiers
procedures  3-7
subprocedures  3-11

procedure identifiers  3-7
recorded in PEP and XEP tables  11-1
subprocedure identifiers  3-11

Enumeration variables in C  17-27
ENV directive  17-39
Environment register  4-5
Equivalenced variables

definition structures  10-10
indexing  10-19
kinds of  10-1
referral structures  10-14
simple pointers  10-6
simple variables  10-2
structure pointers  10-16

Error handling
ASSERT statement  12-17
ASSERTION directive  12-17
CRE math routine errors  17-49
file-system errors  5-25
hardware indicators, testing  5-25
sample program

input file module  A-15
output file module  A-18

Errors, run-time  16-3
ESE instruction, EXTENSIBLE procedures  11-47
Executing programs and object files

See  Running object files
Exponents

REAL numbers  5-9
REAL(64) numbers  5-9
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Expressions
arithmetic expression  5-15
assignment expression  13-2
Boolean operations  5-22
CASE expression  13-3
conditional expression  5-21
constant expression  5-1
data types  5-6
description  5-1
fixed-point, scaling of  5-17
group comparison expression  13-5
IF expression  13-4
logical operations  5-20
precedence of operators  5-13
relational operations  5-23

.EXT (extended indirection symbol)
arrays  7-1
definition structures  8-3
referral structures  8-8
simple pointers  9-2
structure pointers  9-12

EXTDECS (system external declarations file)  14-11
Extended data segments  4-2

automatic
allocation  4-10
organization of  4-4
TAL and C guidelines  17-33

explicit
accessing data  B-14
creating  B-10
managing  B-13, B-21
TAL and C guidelines  17-33

size of  4-4
Extended indirection

description  4-7
TAL and C guidelines  17-18

Extended pointers
accessing data

simple pointers  9-10
structure pointers  9-22

accessing explicit extended data segments  B-10, B-14
accessing user code segment  B-9
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Extended pointers (continued)
declaring

simple pointers  9-2
structure pointers  9-12

description  9-1
format  B-1
performance guidelines  C-1

Extended relocatable data blocks  14-17
Extended stack

organization of  4-4
pointers (#SX, #MX)  4-11
storage allocation  4-11

$EXTENDED#STACK  4-11
EXTENDED#STACK#POINTERS  4-11
EXTENSIBLE procedures

checking for parameters ($PARAM)  11-10
converting from VARIABLE  11-13
declaring  11-10
parameter area  11-45
parameter masks  11-42
passing as parameters  11-25
procedure entry sequence  11-47

External declarations (SOURCE directive)  14-11
External Entry Point table  11-1
EXTERNAL procedure declarations  11-9
External references (SEARCH directive)  14-12

F
F suffix, FIXED numbers  5-9
%F suffix, FIXED numbers  5-9
File ID  E-2
File name map, compiler listing  15-10
File names

defaults, specifying  E-4
directives that accept  14-9
disk  E-1
incomplete, resolving  E-9
internal  E-4
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File names (continued)
logical

directives that accept  14-9
TACL ASSIGN command  E-8
TACL DEFINE command  E-4

File records
See  Structures

File type, interlanguage correspondence  F-4
File-system errors, testing for  5-25
FILLER declaration  8-16
FIXED data type

arrays  7-6
fpoint  6-11
numeric constants  5-9
range of values allowed  5-4
scaling of operands  5-17
simple variables  6-11

FIXED parameter type
description  11-20
reference parameters  11-32
value parameters  11-22

FIXED(*) data type
arrays  7-6
range of values allowed  5-4
simple variables  6-11

FIXED(*) parameter type  11-22
Fixed-point

arithmetic  5-17
implied setting  5-5
interlanguage correspondence  F-3
numbers

description  5-9
ranges by data type  5-4

scaling  5-17
setting (fpoint)  6-11

Floating-point
interlanguage correspondence  F-3
numbers

description  5-9
ranges by data type  5-4
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FOR keyword
FOR statement  12-12
group comparison expression  13-6
move statement  7-15

FOR loops
See  FOR statement

FOR statement
description  12-12
optimized  12-15
standard  12-13

Formal parameters
See  Parameters

Format of programs  3-13
FORTRAN environment, ENV directive  17-39
FORTRAN LANGUAGE attribute, TAL procedures  17-2
FORWARD procedures  11-8
fpoint

of reference parameters  11-32
of value parameters  11-22
positive or negative  5-5
scaling in expressions  5-17
specifying  6-11

Fractions
FIXED numbers  5-9
REAL numbers  5-9
REAL(64) numbers  5-9

Functions
declaring and calling  11-8
in arithmetic expressions  5-15
RETURN statement  12-21
standard, by categories  5-12

Future software platforms  xxviii

G
GETPOOL system procedure

extended data segment  B-16
upper 32K-word area  B-7

Getting started  2-1
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#GLOBAL
allocation  14-17
description  14-16
listing  15-14

$#GLOBAL
description  14-17
listing  15-14

.#GLOBAL
description  14-17
listing  15-14

Global data
declaring  3-5
scope of  3-3
sharing C data with TAL modules

using BLOCK declarations  17-18
using pointers  17-16

sharing TAL data with C modules
using pointers  17-15

Global data blocks
and SECTION directive  14-20
and SOURCE directive  14-20
declaring  14-14
sharing among source files  14-20
specifying locations of  14-15
storage allocation  14-16

Global data declarations
blocked  14-14
saving and retrieving  14-23
unblocked  14-16

Global map, compiler listing  15-9
Global scope

data  3-5
data blocks, relocatable  3-5
identifiers  3-3
procedure entry points  3-7
procedures  3-6

Global storage area
extended data segment  4-4
user data segment  4-9
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GOTO statement
description  12-24
local (with local labels)  11-48
sublocal (with local labels)  11-49
sublocal (with sublocal labels)  11-50

Group comparison expressions
description  13-5
in conditional expressions  5-21

H
%H prefix,  hexadecimal constants  5-7
Hardware indicators, testing  5-25
HEAP directive  17-41
#HEAP (CRE user heap)  17-41
Hexadecimal number base  5-7

I
I register  4-5
I/O

See  Input/output
Identifiers

rules for specifying  5-2
scope of  3-3
structure pointers, qualifying  9-18
structures, qualifying  8-27
TAL and C guidelines  17-9

IF directive  3-15
IF expressions

description  13-4
modular sample program  A-16
performance guidelines  C-3

IF statement
description  12-2
sample program

binary-to-ASCII conversion  A-6
input file module  A-15
mainline module  A-10
message module  A-20
string entry  A-3

IFNOT directive  3-15
Implicit pointers  4-6
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Improving performance
addressing  C-1
arithmetic expressions  C-3
general guidelines  C-1
indexing  C-2
STACK and STORE statements  C-2

IN file
compilation command  14-2
RUN command  16-1

Index registers, as value parameters  11-27
Indexing

arrays  7-12
description  4-7
equivalenced variables  10-19
performance guidelines  C-2
simple pointers  9-10
structure pointers  9-20, 9-22
structures  8-28, 8-30
upper 32K-word area  B-8

Indirection
arrays  7-2
definition structures  8-3
description  4-6
TAL and C guidelines  17-18

INHIBITXX directive
and indexing

structure pointers  9-23
structures  8-30

and relocatable data blocks  14-21
with USEGLOBALS  14-25

Initialization module, sample program  A-12
Initializations

arrays  7-2
simple pointers  9-3
simple variables  6-2
structure pointers  9-13

INNERLIST compiler listing  15-7
Input file module, sample program  A-14
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Input/output sample programs
input file module  A-14
output file module  A-17
string display  A-1
string entry  A-3

Inspect product
and SYMBOLS directive  16-4
commands

BREAK  16-5
CLEAR  16-8
DISPLAY  16-5
RESUME  16-8
STEP  16-5
STOP  16-5

overview  16-4
sample session  16-6
specifying  16-4
starting  16-4
stopping  16-5

Instruction register  4-5
INT attribute, structure pointers  9-13
INT data type

arrays  7-5
numeric constants  5-8
range of values allowed  5-4
simple variables  6-6

INT parameter type  11-20
INT(16), alias of INT  5-4, 5-6
INT(32) data type

arrays  7-5
numeric constants  5-8
range of values allowed  5-4
simple variables  6-8

INT(32) parameter type  11-20
INT(64), alias of FIXED(0)  5-4, 5-6
INT32INDEX directive

extended indexing
structure pointers  9-24
structures  8-32

with USEGLOBALS  14-25
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Integers
by data type  5-8
interlanguage correspondence  F-2

Interface declaration in C  17-13
Interlanguage type correspondence

character strings  F-3
complex  F-3
files  F-4
fixed  F-3
floating  F-3
integers  F-2
logical  F-4
pointers  F-5
sets  F-4
structures  F-4

Internal file names  E-4

K
Keywords  5-3

L
L register  4-5
L suffix, REAL(64) numbers  5-9
Labeled CASE statement

See  CASE statement, labeled
Labels

declaring and using  11-48
local (with local GOTOs)  11-48
local (with sublocal GOTOs)  11-49
local (with sublocal variables)  11-49
local scope  3-8
sublocal (with sublocal GOTOs)  11-50
sublocal scope  3-12
undeclared  11-51

LAND operator  5-20
LANGUAGE attribute, procedures  17-2
Layout

definition structures  8-3
structures  8-2
substructures  8-12
template structures  8-7
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Left shifts, bit  5-29
Lexical-level counter, compiler listing  15-4
LIB option, RUN command  16-1
Library code space  4-1
LIBRARY directive  14-6
Library file, binding  14-6
Limitations

See Size
Line length, maximum  3-13
Listings

See  Compiler listing
LITERALs

declaring  5-11
in arithmetic expressions  5-15
modular sample program  A-19
with C enumeration variables  17-27

Load map, compiler listing  15-13
Local data

accessing  11-4
declaring  3-8
scope of  3-3

Local map, compiler listing  15-6
Local register  4-5
Local scope

data  3-8
identifiers  3-3
labels  3-8
statements  3-8
subprocedure entry points  3-11
subprocedures  3-10

Local storage area  4-9
Logical file names

in directives  14-9
TACL ASSIGN command  E-8
TACL DEFINE command  E-4

Logical operators  5-20
Logical type, interlanguage correspondence  F-4
LOR operator  5-20
Lower 32K-word area  4-2
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M
MAIN procedures  11-7
Mainline module, sample program  A-10
Manuals

program development  xxx
programming  xxx
system  xxix

MAP DEFINE command  E-5
#MCB (CRE master control block)  17-39
MEM option, RUN command  16-2
Memory models, TAL and C guidelines  17-11
Message module, sample program  A-19
Minus operator

binary signed  5-16
binary unsigned  5-18
unary  5-16

Mixed-language programming
BLOCK declarations  17-1
CRE guidelines  17-37
LANGUAGE attribute, procedures  17-2
NAME declarations  17-1
parameter pairs  17-6
procedure public name  17-3
routines as parameters  17-4
TAL and C guidelines  17-9

Modular programming
compiling with saved global data  14-23
declaring relocatable data blocks  14-14
description  3-1
sample program  A-7

Modulo division operator  5-18
Move statement

arrays  7-14
sample program

binary-to-ASCII conversion  A-6
mainline module  A-11
string display  A-1
string entry  A-3

simple pointers  9-9
structure pointers  9-19
structures  8-39
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Multidimensional arrays  8-13
Multiplication by powers of two  5-30
Multiplication operator

signed  5-16
unsigned  5-18

#MX (extended stack pointer)  4-11

N
NAME declarations

description  14-14
in program structure  3-5
mixed-language programming  17-1
sample program

CRE  17-50
mainline module  A-10

Named data blocks
See  NAME declarations

NEUTRAL  keyword, ENV directive  17-39
Next address

group comparison expression  13-7
move statement  7-17

NOCROSSREF directive  14-26
Node name in file names  E-2
NOLIST directive and SOURCE  14-10
NOT operator  5-22
NOWAIT option, RUN command  16-2
Null statements  3-18
Number bases, formats of  5-7
Numbers, description by data type  5-8

O
Object files

binding  14-5
description  14-1
generating  14-2
running

getting started  2-5
with run-time options  16-1

stopping
CRE_TERMINATOR_  17-45
TACL STOP command  16-3
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Object files, accelerated  xxviii
OBJECT, default target file  14-4
Octal code, compiler listing  15-9
Octal number base  5-7
OF keyword

CASE expression  13-3
CASE statement, labeled  12-5

Offsets, equivalenced variables  10-19
OLD keyword, ENV directive  17-39
Operands

accessing  5-27
in arithmetic expressions  5-15
in expressions  5-2

Operators
arithmetic

signed  5-16
unsigned  5-18

bit-shift  5-29
Boolean  5-22
in expressions  5-13
logical  5-20
precedence of  5-13
relational  5-23

OPTIMIZE directive, labeled CASE statement  12-7
$OPTIONAL function  11-12
OR operator  5-22
OTHERWISE keyword

CASE expression  13-3
CASE statement, labeled  12-5

OUT file
compilation command  14-2
RUN command  16-1

Output file module, sample program  A-17
Overflow

causes of  5-26
handling CRE math routine errors  17-49

P
P register  4-5
P-relative arrays  7-24
Page header, compiler listing  15-1
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$PARAM, checking for parameters
EXTENSIBLE procedures  11-10
VARIABLE procedures  11-9

PARAM BINSERV command  E-6
PARAM message, saving  17-44
PARAM SAMECPU command  E-6
PARAM SWAPVOL command  E-7
PARAM SYMSERV command  E-7
Parameter area

procedures  11-36
EXTENSIBLE  11-45
VARIABLE  11-40

subprocedures  11-36
Parameter list

procedures  11-3
subprocedures  11-15

Parameter masks
EXTENSIBLE procedures  11-42
procedures as parameters  11-25
VARIABLE procedures  11-38

Parameter pairs
declaring  17-6
passing

conditionally  11-12
mixed-language guidelines  17-7
unconditionally  11-11

Parameter types  11-20
Parameters

See also  Reference parameters
See also  Value parameters
address conversions by compiler  11-35
checking with $PARAM

EXTENSIBLE procedures  11-10
VARIABLE procedures  11-9

declaring
in procedures  11-3

in subprocedures  11-15
passing  12-19

conditionally  11-12
unconditionally  11-11

run-time  16-3
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Parameters (continued)
scope of  11-36
specifications  11-20

PASCAL LANGUAGE attribute, TAL procedures  17-2
Pascal variant parts, emulating  10-21
Passing parameters

CALL statement  12-19
conditionally  11-12
unconditionally  11-11

PEP table  11-1
Performance guidelines

addressing  C-1
arithmetic expressions  C-3
general  C-1
indexing  C-2
STACK and STORE statements  C-2

Platforms, software  xxviii
Plus operator

binary signed  5-16
binary unsigned  5-18
unary  5-16

Pointers
accessing explicit extended data segments  B-10
accessing upper 32K-word area  B-2
as reference parameters  11-33
as structure items  8-35
equivalencing

simple pointers  10-6
structure pointers  10-16

extended (32-bit) pointers  9-1
implicit pointers  4-6
interlanguage correspondence  F-5
simple pointers  9-2
standard (16-bit) pointers  9-1
structure pointers  9-12
TAL and C guidelines  17-25

POP prefix, directives  14-8
Precedence of operators  5-13
Primary relocatable data blocks  14-17
Primary storage (global, local, sublocal)

allocation in  4-8
description  4-9
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PRINTSYM directive (with USEGLOBALS)  14-25
Private data area, as a TAL feature  1-1
Private data blocks

declaring  14-15
in program structure  3-5

PRIVATE keyword, BLOCK declaration  14-15
PROC keyword

function declaration  11-8
procedure declaration  11-2

PROC parameter type
description  11-23
mixed-language programming  17-4
passing C routines to TAL  17-32
passing TAL routines to C  17-30

PROC(32) parameter type
description  11-24
mixed-language programming  17-5
passing C routines to TAL  17-32
passing TAL routines to C  17-30

Procedure Entry Point table  11-1
Procedure entry sequence  11-47
Procedure mnemonics, compiler listing  15-9
Procedures

address of (PEP number)  11-52
as parameters  11-22

See  Value parameters
calling  11-2
compared to subprocedures  11-14
declaring  11-2
EXTENSIBLE  11-10
EXTERNAL  11-9
FORWARD  11-8
functions  11-8
LANGUAGE attribute  17-2
MAIN  11-7
parameters  11-3
public name  17-3
RETURN statement  12-21
scope of  3-6
storage allocation  11-5
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Procedures (continued)
typed

See  Functions
VARIABLE  11-9

Process environment  4-1
Processes  4-1
Processor, specifying for compiler  E-6
Program control

ASSERT statement  12-17
CALL statement  12-19
CASE statement, labeled  12-5
conditional expressions  5-21
DO statement  12-10
FOR statement  12-12
GOTO statement  12-24
IF statement  12-2
labeled CASE statement  12-5
relational expressions  5-24
RETURN statement  12-21
WHILE statement  12-8

Program flow, controlling  12-1
Program register  4-5
Programs

See also  Object files
formatting  3-13
modular  3-1
structuring  3-1

Public name, procedures  17-3
PUSH prefix, directives  14-8
PUTPOOL system procedure

extended data segment  B-16
upper 32K-word area  B-7

Q
Quadrupleword  5-6
Question mark (?) (directive line symbol)  14-7
Quotation mark (") (character string delimiter)  5-10
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R
Ranges, data types  5-4
Read-only arrays  7-24
REAL data type

arrays  7-5
numeric constants  5-9
range of values allowed  5-4
simple variables  6-9

REAL parameter type  11-20
REAL(32), alias of REAL  5-4, 5-6
REAL(64) data type

arrays  7-6
numeric constants  5-9
range of values allowed  5-4
simple variables  6-10

REAL(64) parameter type  11-20
$RECEIVE, accessing in the CRE  17-48
Records

See  Structures
Recursion, as a TAL feature  1-2
Redefinitions

arrays  8-21
definition substructures  8-23
referral substructures  8-25
simple pointers  8-26
simple variables  8-21
structure pointers  8-26
TAL and C guidelines  17-24

Reference parameters
address conversions by compiler  11-35
array size  11-30
arrays  11-30
declaring  11-3
description  11-29
number of structure occurrences  11-32
pointers  11-33
simple variables  11-29
specifications  11-20
storage allocation  11-29
structures  11-31
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Referral structures
addressability  8-9
addressing  8-8
as reference parameters  11-32
declaring  8-8
equivalenced  10-14
storage allocation  8-9

Referral substructures
declaring  8-15
redefinitions  8-25
storage allocation  8-15

Register pointer  4-5
Register stack

description  4-5
performance guidelines  C-2

Registers in process environment  4-5
Relational expressions

description  5-21
program flow, controlling  5-24

Relational operators
conditional expressions  5-21
group comparison expression  13-9
signed  5-23
testing condition code indicator  5-25
unsigned  5-23

Relocatable data blocks
declaring  14-14
directives for  14-21

RELOCATE directive  14-21
Reserved keywords  5-3
RESUME command, Inspect product  16-8
RETURN statement

description  12-21
modular sample program  A-16

Return types
functions  11-8
interlanguage correspondence  F-2

Returning from procedures  11-7
Right shifts, bit  5-29
RISC systems  xxviii
Routines  1-3
RP  4-5
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RSCAN statement
arrays  7-19
example  7-21

RTLDECS (CRE external declarations file)  17-43
RUN command, TACL product

running object files  16-1
running the compiler  14-2

Run-time environment, specifying with ENV directive  17-39
Run-time errors  16-3
Run-time libraries

CLULIB  17-43
CRELIB  17-43
TALLIB  17-43

Run-time library, TALLIB  17-44
RUND command, TACL product  16-4
Running object files

getting started  2-5
with run-time options  16-1

Running programs
See  Running object files

S
S register  4-5
Saved Messages Utility routines  17-43
SAVEGLOBALS directive  14-23
Saving system messages  17-44
$SCALE, scaling FIXED values  5-17
Scaling, FIXED values  5-17
SCAN statement

arrays  7-19
sample program (string entry)  A-3
simple pointers  9-9
structure pointers  9-18

Scope
global  3-5
of identifiers  3-3
of parameters  11-36

SEARCH directive
compiling with search lists  14-12
retrieving saved global initializations  14-23

Search lists  14-12
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Search subvolume command  E-9
Secondary relocatable data blocks  14-17
Secondary storage (global, local)

allocation in  4-8
description  4-10

SECTION directive
and global data blocks  14-20
and SOURCE directive  14-10

Section names, in SOURCE directive  14-10
Segment specifier, extended pointer  B-2
SEGMENT_ALLOCATE_

TAL and C guidelines  17-33
TAL guidelines  B-10

SEGMENT_DEALLOCATE_
TAL and C guidelines  17-33
TAL guidelines  B-10

SEGMENT_USE_
TAL and C guidelines  17-33
TAL guidelines  B-10

Selector
CASE expression  13-3
CASE statement, labeled  12-5

Semicolon  3-17
Separate compilation

compiling with saved global data  14-23
declaring relocatable global data blocks  14-14
of source files  3-1
sample program  A-7

Set type, interlanguage correspondence  F-4
Sharing data

C data with TAL modules
using BLOCK declarations  17-18
using pointers  17-16

TAL and C general guidelines  17-15
TAL data with C modules

using BLOCK declarations  17-18
using pointers  17-15

Shifts, bit  5-29
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Simple pointers
accessing data

assignment statement  9-7, 9-9
indexing  9-10
move and SCAN statements  9-9
upper 32K-word area  B-2

addresses in  9-3
as structure items  8-17
declaring  9-2
equivalenced  10-6
redefinitions  8-26
storage allocation  9-6
@ operator  9-3, 9-7

Simple variables
accessing  6-4
as reference parameters  11-29
as structure items  8-9
as value parameters  11-21
assignments  6-4
by data type  6-5
declaring  6-1
dereferencing  5-27
equivalenced  10-2
initializing  6-2
redefinitions  8-21
storage allocation  6-3

Size
character strings  5-10
code segments  4-1
combined primary global data blocks  14-17
data types  5-4
definition structures  8-3
extended data segments  4-4
extended stack  4-11
identifiers  5-2
indexes

structure pointers  9-21
structures  8-30

parameter area
procedures  11-36
subprocedures  11-36

primary storage areas (global, local, sublocal)  4-9
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Size (continued)
procedures  11-1
referral structure occurrences  8-8
referral structures  8-8
secondary storage areas  4-10
storage units  5-6
sublocal storage area  11-15
user data segment  4-2

SMU (Saved Messages Utility) routines  17-43
Software platforms, future  xxviii
Source code, compiler listing  15-3
SOURCE directive

and global data blocks  14-20
compiling with  14-10
effect on other directives  14-10

Source files  14-1
compiling  2-4, 14-2
creating  2-2
modular  3-1
modular sample program  A-9

Special expressions  13-1
assignment expression  13-2
CASE expression  13-3
data types  13-1
group comparison expression  13-5
IF expression  13-4

SPOOL DEFINE command  E-5
Spooler

accessing in the CRE  17-47
settings, specifying

CRE_SPOOL_START_  17-47
TACL SPOOL DEFINE command  E-5

SSV, TACL ASSIGN commands  E-9
Stack register  4-5
STACK statement, performance guidelines  C-2
Standard files, CRE  17-46
Standard functions

by categories  5-12
for arrays  7-23
for structures  8-43
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Standard indirection
description  4-7
TAL and C guidelines  17-18

Standard input file, CRE  17-46
Standard log file, CRE  17-46
Standard output file, CRE  17-46
Standard pointers

accessing data
simple pointers  9-9
structure pointers  9-18

declaring
simple pointers  9-2
structure pointers  9-12

description  9-1
Startup message, saving  17-44
Statement mnemonics, compiler listing  15-7
Statements

ASSERT  12-17
assignment

arrays  7-13
simple pointers  9-7
simple variables  6-4
structure items  8-34
structure pointers  9-16

CALL  12-19
CASE, labeled  12-5
DO  12-10
FOR  12-12
GOTO  12-24
IF  12-2
local scope  3-8
move

arrays  7-14
simple pointers  9-9
structure pointers  9-19
structures  8-39

RETURN  12-21
RSCAN  7-19
SCAN

arrays  7-19
simple pointers  9-9
structure pointers  9-18
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Statements (continued)
sublocal scope  3-12
WHILE  12-8

STEP command, Inspect product  16-5
Stepping through programs  16-5
STOP command

Inspect product  16-5
TACL product  16-3

Stopping Inspect product  16-5
Stopping object files

CRE_TERMINATOR_  17-45
TACL STOP command  16-3

Storage allocation
arrays  7-8
arrays in structures  8-10
definition structures  8-4
definition substructures  8-14
extended data segment

automatic  4-10
explicit  B-13, B-21

global data blocks  14-16
object files bound with BLOCKs  14-19
parameter areas

EXTENSIBLE procedures  11-45
procedure  11-36
subprocedure  11-36
VARIABLE procedures  11-40

parameters
reference  11-29
value  11-21

procedure variables  11-5
referral structures  8-9
referral substructures  8-15
simple pointers  9-6
simple pointers in structures  8-18
simple variables  6-3
simple variables in structures  8-10
structure pointers  9-16
structure pointers in structures  8-20
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Storage allocation (continued)
user data segment

lower 32K-word area  4-8
upper 32K-word area  B-5

variables  4-8
Storage units, by data type  5-6
STORE statement, performance guidelines  C-2
STRING and C char variables  17-19
STRING attribute, structure pointers  9-13
STRING data type

arrays  7-4
numeric constants  5-8
range of values allowed  5-4
simple variables  6-5

STRING parameter type  11-20, 11-22
String-display sample program  A-1
String-entry sample program  A-3
Strings, character  5-10
STRUCT keyword, structures  8-3
Structure data items

arrays  8-9
definition substructures  8-12
referral substructures  8-15
simple pointers  8-17
simple variables  8-9
structure pointers  8-19

Structure items
See also  Structure data items
filler declarations  8-16

Structure pointers
accessing data

indexing  9-20
move statement  9-19
scan statements  9-18

as structure items  8-19
assignments

to data  9-18
to pointers  9-16

declaring  9-12
equivalenced  10-16
identifiers, qualifying  9-18
initialization  9-14
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Structure pointers (continued)
redefinitions  8-26
storage allocation  9-16
upper 32K-word area

copying data to  B-6
storing addresses  B-4

$OFFSET function  9-14
Structures

accessing  8-27
as parameters  11-31
assignments  8-34
declaring  8-1
definition structure  8-3
equivalenced

definition structures  10-10
referral structures  10-14

identifiers, qualifying  8-27
indexing  8-28
indirection

definition structures  8-3
referral structures  8-8

interlanguage correspondence  F-4
kinds of  8-1
layout  8-2
referral structures  8-8
storage allocation  8-4
TAL and C guidelines  17-20
template structures  8-7

Structuring programs  3-1
Sublocal data

declaring  3-12
scope of  3-3

Sublocal map, compiler listing  15-6
Sublocal scope

data  3-12
identifiers  3-3, 11-16
labels  3-12
statements  3-12
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Sublocal storage
description  4-9
formal parameters  11-15
limitations

parameters  11-18
variables  11-17

parameter area  11-36
Sublocal variables  11-16
Subprocedures

address of (PEP number)  11-52
compared to procedures  11-14
declaring  11-15
in program structure  3-10
parameter area  11-36
parameters  11-15
RETURN statement  12-21
sublocal storage area

limitations, parameters  11-18
limitations, variables  11-17
size  11-15

TAL and C guidelines  17-21
Substructures

declaring  8-12
definition substructures  8-12
referral substructures  8-15
storage allocation  8-15
TAL and C guidelines  17-21

Subtraction operator
signed  5-16
unsigned  5-18

Subvolume name
defaults, specifying  E-4
in file names  E-2

Suspending execution  16-5
Swap volume

DEFAULT DEFINE  E-6
PARAM SWAPVOL command  E-7

#SX (extended stack pointer)  4-11
SYMBOLS directive (with USEGLOBALS)  14-25
SYMSERV

description  14-1
specifying which one  E-7
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SYNTAX directive (with USEGLOBALS)  14-25
System code space  4-5
System library space  4-5
System messages, saving  17-44
System name, in file names  E-2
System procedures

overview of  2-3
sample program

mainline module  A-12
string display  A-1
string entry  A-3

with SOURCE directive  14-11
System services  1-3
Systems supported by TAL  xxviii

T
TACL commands

ASSIGN  E-8
ASSIGN SSV  E-9
DEFINE  E-4
directives that accept  14-9
PARAM  E-6
RUN (running object files)  16-1
RUND (debugging object files)  16-4
starting the compiler  14-2
STOP  16-3

TAL and C guidelines
arrays  17-19
arrays of structures  17-23
bit-field manipulation  17-28
C calling TAL  17-13
C enumeration variables  17-27
data sharing  17-15
data types  17-10
identifiers  17-9
indirection  17-18
memory usage  17-11
multidimensional arrays  17-23
passing C routines to TAL  17-32
passing TAL routines to C  17-30
pointers  17-25
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TAL and C guidelines (continued)
redefinitions and C unions  17-24
structures  17-20
TAL calling C  17-12
UNSIGNED and C bit fields  17-29

TAL calling C  17-12
TALLIB (TAL library file)  17-43
TAL_CRE_INITIALIZER_  17-44
Tandem NonStop Series system  xxviii
Tandem NonStop Series/RISC system  xxviii
TAPE DEFINE command  E-5
Target file

binding  14-6
compilation command option  14-4

Template blocks 
allocation  14-17
description  14-16

Template structures  8-7
Temporary files, specifying volume  E-7
Temporary pointer

See  Dereferencing operator
Terminating

See  Stopping
THEN keyword

IF expression  13-4
IF statement  12-2

TNS system  xxviii
TNS/R system  xxviii
TO keyword, FOR statement  12-12
Typed procedures

See  Functions

U
Underscore (_) in identifiers  5-2
Unions, C version of redefinitions  17-24
UNSIGNED data type

arrays  7-7
range of values allowed  5-4
simple variables  6-13
TAL and C guidelines  17-29

UNSIGNED parameter type  11-20
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UNSPECIFIED language attribute, procedures  17-2
UNTIL keyword, DO statement  12-10
Upper 32K-word area

accessing  B-2
indexing  B-8
managing storage allocation  B-5
organization  4-2

USE statement with FOR statement  12-15
USEGLOBALS directive

and CROSSREF directive  14-26
compiling with saved globals  14-23

User code segment
accessing  B-9
description  4-1

User code space  4-1
User data segment

description  4-2
organization  4-3
specifying size with DATAPAGES directive  B-2
storage allocation  4-8

User heap, CRE  17-41

V
Value parameters

addresses  11-26
declaring  11-3
description  11-21
index registers  11-27
procedures as parameters

EXTENSIBLE  11-25
mixed-language programming  17-4
passing C routines to TAL  17-32
passing TAL routines to C  17-30
PROC  11-23
PROC(32)  11-24
that have parameters  11-24
VARIABLE  11-25

simple variables  11-21
specifications  11-20
storage allocation  11-21
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VARIABLE procedures
checking for parameters ($PARAM)  11-9
converting to EXTENSIBLE  11-13
declaring  11-9
parameter areas  11-40
parameter masks  11-38
passing as parameters  11-25
sample program

initialization module  A-13
string display  A-1

Variables
getting the address of  5-27
in arithmetic expressions  5-15
kinds of  5-7

arrays  7-1
pointers  9-1
simple variables  6-1
structures  8-1

Variant parts, emulating  10-21
Volume name

defaults
DEFAULT DEFINE  E-6
specifying  E-4

in file names  E-2

W
WHILE keyword, WHILE statement  12-8
WHILE statement

description  12-8
sample program

binary-to-ASCII conversion  A-6
mainline module  A-11
string entry  A-3

width (INT, REAL, UNSIGNED)  5-5
Word  5-6
Word addressing  4-5
WORDS keyword

group comparison expression  13-6
move statement  7-16



Index

Index–46 096254 Tandem Computers Incorporated

X
$XADR

procedures as parameters  11-24
upper 32K-word area  B-8

XEP table  11-1
XOR operator  5-20

Z
ZZBInnnn target file  14-4

Special characters
" (character string delimiter)  5-10
#CRE_GLOBALS  (CRE control block)  17-39
#CRE_HEAP  (CRE run-time heap)  17-39
#GLOBAL

allocation  14-17
description  14-16
listing  15-14

#HEAP (CRE user heap)  17-41
#MCB (CRE master control block)  17-39
#MX (extended stack pointer)  4-11
#SX (extended stack pointer)  4-11
$#GLOBAL

description  14-17
listing  15-14

$CARRY function  5-26
$DBL

structure pointers  9-22
structures  8-30

$DBLL, accessing user code segment  B-9
$EXTENDED#STACK  4-11
$OPTIONAL function  11-12
$PARAM, checking for parameters

EXTENSIBLE procedures  11-10
VARIABLE procedures  11-9

$RECEIVE, accessing in the CRE  17-48
$SCALE, scaling FIXED values  5-17
$XADR

procedures as parameters  11-24
upper 32K-word area  B-8

% prefix,  octal constants  5-7
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%B prefix,  binary constants  5-7
%D suffix,  hexadecimal INT(32) numbers  5-8
%F suffix, FIXED numbers  5-9
%H prefix,  hexadecimal constants  5-7
&

concatenated move (copy) operations  7-18
prefix, template block name

allocation  14-17
description  14-16,
listing  15-14

'*' (unsigned multiplication)  5-18
'+' (unsigned addition)  5-18
'-' (unsigned subtraction)  5-18
'/' (unsigned division)  5-18
'<' (unsigned less than)  5-23
'<<' (unsigned left shift)  5-29
'<=' (unsigned less than or equal to)  5-23
'<>' (unsigned not equal to)  5-23
'=' (unsigned equal to)  5-23
':=' (left-to-right move operator)  7-14
'=:' (right-to-left move operator)  7-14
'>' (unsigned greater than)  5-23
'>=' (unsigned greater than or equal to)  5-23
'>>' (unsigned right shift)  5-29
'\' (unsigned modulo division)  5-18
( ) in expressions  5-14
(*)

FIXED(*) data type  5-5
template structures  8-7

* (asterisk)
in compiler listing  15-5
repetition factor, constant list  7-14
signed multiplication  5-16

+
binary signed addition  5-16
unary plus  5-16

-
binary signed subtraction  5-16
unary minus  5-16

-> (CASE statement, labeled)  12-5
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-> (next-address symbol)
group comparison expression  13-7
move statement  7-17

. (period)
bit extractions  5-28
dereferencing operator  5-27
in file names  E-2

. (standard indirection symbol)
arrays  7-1
definition structures  8-3
referral structures  8-8
simple pointers  9-2
structure pointers  9-12

.. (ellipsis in labeled CASE statement  12-5

.#GLOBAL
description  14-17
listing  15-14

.EXT (extended indirection symbol)
arrays  7-1
definition structures  8-3
referral structures  8-8
simple pointers  9-2
structure pointers  9-12

/ (signed division)  5-16
; (semicolon)  3-17
< (signed less than)  5-23
<< (signed left shift)  5-29
<= (signed less than or equal to)  5-23
<> (signed not equal to)  5-23
<n:n> (bit-extraction field)  5-28
= (signed equal to)  5-23
> (signed greater than)  5-23
>= (signed greater than or equal to)  5-23
>> (signed right shift)  5-29
? (directive line symbol)  14-7
@ operator

pointers  9-3
procedure/subprocedure addresses  11-52
procedures as parameters  11-24

[constant]
group comparison expression  13-5
move statement  7-15
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[n:n] bounds
arrays  7-1
structures  8-3, 8-8

: (colon)
bit extractions  5-28
entry-point identifiers

procedures  3-7
subprocedures  3-11

label identifiers  11-48
:= (assignment operator)

assignment expression  13-2
assignment statement  6-4

^ (circumflex) in identifiers  5-2
_ (underscore) in identifiers  5-2
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