HP NonStop TCP/IP Programming Manual

HP Part Number: 524521-020 I
Published: March 2014
Edition: J06.04 and subsequent J-sries RVUs, H06.03 and subsequent H-series RVUs, G06.00 and subsequent G-series RVUS@#4 nd subsequent
D-series RVUs

© Copyright 2010, 2014 Hewlett-Packard Development Company, L.P.
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial ltems are licensed to the U.S. Government under

vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall

not be liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S. Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
Java is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone and The Open Group are trademarks of The Open

Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Matif, and Motif are trademarks of the Open Software Foundation, Inc. OSF MAKES
NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall not be liable for errors contained herein or for

incidental consequential damages in connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. The OSF documentation and the OSF software to which it relates are derived in part
from materials supplied by the following:© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.

© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc. © 1987, 1988, 1989, 1990, 1991
Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992 International Business Machines Corporation. © 1988, 1989
Massachusetts Institute of Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 1990, 1991,

1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun Microsystems, Inc. © 1989,
1990, 1991 Transarc Corporation.OSF software and documentation are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. OSF acknowledges the following individuals and institutions for their role in its development: Kenneth
C.R.C. Amnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983, 1985,
1986, 1987, 1988, 1989 Regents of the University of California.

Contents

About This DoCUMENt..........uuiiiiiiiiee e 11
Supported Release Version Updates (RVUS)........ccooiiiiiiiiiieiiiiiiiee et 11
INfeNded AUIENCE.eeiiiiiiiee ettt ettt 11
New and changed information for March 2014 (524521-020)........cccciiiiiiiiiiiieiiiiiee e, 11
New and changed information for February 2013 (524521-019).....ccciiiiiiiiiiiiieiiiiiee e, 11
New and changed information for July 2012 (524521-018).....cccoiuiiieiiiiieeeiiiiee e, 11
New and changed information for February 2012 (524521-017).....cccoiuviieiiiiieeiiiie e, 11

New and changed information for August 2011 (524521-016)........ccccvviiiiiiiieeiiieeeeiiiee e 12
New and Changed Information for October 2010 (524521-015)........cvviiiiiiiiiiiiieeeiiiieee e, 12
Changes and Additions for September 2010 (524521-014)......ccoiiiiiiiiiiiiieiiieeeee e 12
Changes and Additions for March 2010 Update (524521-013)........cceviiiieeiiiieeeiiiiee e 12
Changes and Additions for September 2008 Update (524521-012)........cceeviiiieeeiiiieeeiiieeeenee. 12
Changes and Additions January 2007 Update (524521-010).........cceemiiiiiiniiiieiniiieeeeieeeeee 13
Changes and Additions for the H06.05 RVU (February 2006, 524521-009)........cccccceevvveeeenne.. 13
Changes and Additions for the G06.27 RVU (September 2005, 524521-007)..........cceeeeeeunnnen... 13
Changes and Additions for the H06.03 RVU (July, 2005 524521-000).......cccuvveeeiiiiieeiiiireaannee. 13
Correction Update (December 2004, 524521-005).........cccciiiiiiiiiiieiiiiiiiieeeeeeiee e 14
Correction Update (September 2004, 524521-004).......cccoiiiiiieiiiiieiiiiiiiieeeeeee e 14
Manual Consolidation Update (March 2004, 524521-003).........cciiiiiiiiiiiiiieeeeiiiiieee e 14
G06.22 RVU Update (December 2003, 524521-002).....cccuuvrieiiiiieeiiiiieeiiieee et 15
G06.20 RVU Update (May 2003, 524521-007).....ccciiuirieaiiiieeeiiiiee et 15
Document OrganiZOHON.ueiiiiie ettt 15
NOIGHON CONVENTIONS. ...ttt e e e 16
General Syntax NOTGHON.iiiiiiiii e e e eeeeeeeeeeeas 16
NOIGHON FOr MESSAGES.eeiiiiiiieiiiiie ettt ettt e et e e ettt e e ettt e e e et e e e eesaeeeennneeas 18
NOtAHON fOr SUBNET. ...ttt 19
Notation for Management Programming Interfaces...........c...ooiiiiiiiiiiiiiiiiiiieeeeee e, 19
Related INformation............iiii i 20
PUBIISING HISTOrY ittt e et e e et e e e nnaaeaeea 21
HP Encourages Your ComMmMENTS.coeiiiiiiiiiiiiiiiiiiii et e e 21
Request for Comments (RFC) STQIEMENT.........ooeiiiiiiiiiiiiie ettt 21

1 Introduction to Programming to the Guardian Sockets Library......................... 23
NonStop TCP/IP Subsystems and the Guardian Sockets Application Program Interface (API)............. 23
TCP/IP Programming FUndamentals.............ocouuiiiiiiiiieiiiiie e 24

Using NonStop TCP/IP and NonStop TCP/IPv6 or Parallel Library TCP/IP........ccvvveviiiiieiien 24
USING I e e e e e et ettt 24
TYPES OF SEIVICE. .. i ieiiiiiieeitie ettt e et e e et e e et e e e e etbbeeeesnaaaeeaas 25
The Socket LIbrary ROUNES.cciiiiiiiiiieiiiiie e 25
Stream-Oriented Protocol Considerations.ciiiuiiiiiiiieiiie e 26
Passive Connect Compared to Active CONNECt............ccieiiiiiiiiieiiiiiiiee e 26
Starting Clients ANd SEIVETS..........coiiiiiiiiie et e et 29
POI INUMDETS. ...ttt e et e e e et e e e e e e enneeeeaeeeann 31
Network and Host Order..........cooiiiiiiiiiiiiiiiiieeee et e e 32
Programming Using the Guardian Sockets Interface................oooviiiiiiiiiiiiiiiiiiiiicc e, 32
POrting ConSIAEraHONS.ceiiiiiiiiii e ettt e et e e e et e e e e e e eataaaeeeeeeae 32
NOWGIE 1/ O e e 32
Differences Between UNIX and NonStop Server Implementations.............cccccvviiiiiiiiiiiiiiieeennn, 33
BaSIC StePs fOr PrOgramMS.coiuiiiieiiiie ettt e 35
NonStop TCP/IP, Parallel Library TCP/IP, and NonStop TCP/IPvé Basic Steps.........cccuvvveveeenneee. 35
TCP Client and Server Programs.............iiieiiiiiiiiee et e e e 39
UDP Client and Server Programs...............uiiieiiiiiiiiieee e et e e et e e e e e e e e e eitaaeeeeeeae 40

Contents 3

Programmatic Interface 1o Raw SOCKets...........ooiiiiiiiiiiiiiiiii e 41

Programming ConsSiderations.............uuieiiueiee it e ettt et e et e e 43
Process INGIMES.cooiiiiii e e e e e e et 43
Multiple NonStop TCP/IP Processes and Logical Network Partitioning (LNP) (NonStop TCP/IPv6,
H-Series and G06.22 and Later G-Series RVUs Only).........uvviiiiiiiiiiiiiieeeeiieee e, 43

MUHICASHNG OPEIAHONS.tiiieeieiiiiii e ettt e e e ettt e e e e e ettt e e e e e e e ssreeeeeeesnnsaeeaeeeanns 44
Sending IPv4 Multicast Datagrams.............uuviiiiieiiiiiiiiee e 44
Receiving IPv4 Multicast Datagrams.eeeiuiiieeiiiiee et 45
Datagram Protocols and Flow Control.............cueiiiiiiiiiiiiiii e 46
Optimal Ways to Deal With Connection Management...............eeiiieiiiiiiiiiiee e 47
Using LISTNER for Custom Applications..........c..uiieiiiiiieiiiiiee e 48

INPUt/Output MUIPIEXING.eiiiiiiiiii e e e e e e e e 48

2 Porting and Developing IPvé Applications (NonStop TCP/IPvé and CIP Only)...49

Using AF_INET6-Type Guardian Sockets for IPvé Communications.............cceveevviiieeiiiieeeniiieenne, 49

Using AF_INET6 Guardian Sockets for IPv4 Communications............ccceveviiiiieiiiiiiieiiiiee e, 50

Using AF_INET6 Guardian Sockets to Receive Messages............ooeviiuiiiiiieeiiiiiiiiieee e, 51

AAressTesiNG IMOCIOS.uviiiiieee ittt e et e e e e ettt e e e e e ettt e e e e e e e enaeeeeeas 52

Porting Applications to Use AF_INET6 SOCkets............uviiiiiiiiiiiiiieeiiiiiiee e 53
ApPPlication ChANGES.coiiiiiiii e 54

Multicast Changes for IPVO...........ooiiiiiiiiii et 59
Sending IPv6 Multicast DOtagrams.cuueieeiiiiie ettt 59
Receiving IPv6 Multicast Datagrams............oeeiiiiiiiiiiee ettt e e e e 60

3 Data SHUCHUIES. .. 62

LIBrary HEQAers.ooiiiieeiie ettt e e e e e et a e e 62

Data SHUCHUIES. ...t ettt e e 63
oTe L [T o Y PSPPSR SPPRRP 64
0T o T=Te TSP 65
10T 1= 1 PP 66
M OMEINAEX . 67
=Y T ST T TS USSP SO UPPRRRPSPPRN 68
I AT e e 69
NG AT e 70
o T4 C=Te TSP SUPP PR 70
1o iz T 11 T4=Y PO PP UPPPTUPPPRRRPN 71
011 (=T TP OO PP R TP PPPPPPPTI 71
OPEN_INfO_MESSAGE. ..o iiiiiiieiiiie ettt ettt e et e e e e e e e 72
0o 1o =Y 3 OO PPPPPTR 73
=101 1Y PSSP SPPPPRRN 74
SN W STl e e e 75
sendto_recVIrOm _BUT. ... o 76
SEIVENT. ettt ettt e e e e e e e e et ettt ee et 76
SOCKAAAI .. 77
SOCKAAAT 1M1 e e 78
SOCKAAAT TNO.. .o 78
YoYe] Ce e o [g oY Te 1= TR PSP RSP PRP 79

4 LIbrary ROUHNES.uuiiiiiiiiiee e 81

Socket LIbrary ROUHNES.........eiieiiiiiiiie ettt e e e ettt e e e e e e ianeeeaeeeeans 81
CRE-Dependent Socket Library.............oooiiiiiiiiiieiiiiiiie e 81
CRE-Independent Socket LIbrary.............coooouiiiiiiiiiiiiie e 81

SUMMAIY Of ROUHNES.......oiiiiiiiiiiiiii ettt e e e e e e e e siaaaaeeeeeeaes 81

Syntax and Semantics of Socket Library Routines................coooiiiiiiiiiiiiiiiiiccee e 85
NOWGITE ROUHNES. ... e e e e e et e et e 85
e f T @eTy Yo 1 oY o TSP ERRUUUPPPPRRRN 85

4 Contents

Interfacing TAL Programs to the Socket Librarycccooviiiiiiiiiiiiii e, 86

PrOCEAUIE PrOtOTYPES. . .vviiiiiieeiiiii ettt e et e e e et e e e e e et aaeeeeeaae 87
Implications of the C Socket Library.............ooooiiiiiiiiiiiiiii e 87
Usage/Bind Considerations..............ouiueiiiireeieiiiiie ettt e e e e e e e 87
TAL 10 PTAL CONVEISION ISSUES ...eeeiiiiiiiiiiiiiiiiiit e 88
CRE CONSIAEIAHONS.ee ettt ettt ettt e et e et e et e e e 88
NGHVE MOAE C/ Cad ISSUBS. ..ot 89
o Tl ol=Y o BSOSO PPRR SO 89
TS ettt 90
Usage GUIdeliNes..........ooiiiiiiii et 90
EXOMPIES ...t e et e e et a e e e 90
o Telel=Y o) 0 PP PP PP PPPP 91
BrTOrS ettt 92
USOGE GUIARINES. ...eeiiiiiiiee et 92
EXOAMIPIE. ..ot 92
o Telr=Y o) S0 1 OSSP 94
£ £ PPPPRRRSSPPIN 95
Usage GUIdElNES..........oiiiiiiiiiiii et e e e e e e 95
FoTelel=Y o) 0 PP PPP PP 95
B0 ettt 96
USOGE GUIARINES. ...eeeiiiiiieiie ettt 96
EXAMPIE. ..o e e e e e e e e et 97
oTe =Y o1 T F TP PSP PRSP 97
B0 e 98
Usage GUIdElNES.........oiiiiiiiiiiiiic et e e e e 98
DN, DINA MW e 98
0TS ettt 99
Usage GUIdeliNes..........oeiiiiiii e 100
EXAMPIES. ..ttt e e e et a e e e 101
CONNECE, CONNEEE MW\ ittt e ettt et e e e enes 102
BT O e 103
USOGE GUIARINES.eeiiiiiieiiit et 103
EXAMPIES. ...t 103
Fre@addrinfo. ... i e 104
£ £ SUPPR P RSPPPPN 104
Usage GUIdElNES.........uiiiiiiiiiiiii et e e 105
EXAMPIES ...t e e e e e e e 105
FrEENOSIENT. ... 105
USAGE GUIARINES. .. .eeiiiiii e 105
G _SITITON ...ttt e e e e e e 105
Usage GUIdElNES.........ueiiiiiiieii et e e 106
EXOMIPIE. ottt e et a e e e e e e e e e 107
BrTOS et 107
GEtAAANINTO. ..o 107
EXOMIPIE. 1t e e e e 108
Usage GUIdeliNes..........ooiiiiiiieii e e 108
gethostbyaddr, host_file_gethostbyaddr..............ccoiiiiiiiiiii 109
BT O et 110
Usage GUIAEINES.........viiiiiiiiiiiii et e e ea e 110
gethostbyname, host_file_gethostbyname..............ccccooiiiiiiiiii e 110
BT OTS e e et 111
Usage GUIdeliNes..........ooiiiiiiii e 111
o121 o)=Y USRS PPPRR 111
gethostbYNAME2......oiiiii e 112
BT 0TS et 112

Contents 5

6

EXOMIPIE. et e et e e e e e e e e e 113

USOGE GUIARINES. .. eeeiiiiiieiiie et 113
GEHNOSTI. ..o e 113
BT O S ettt 113
GEtOSINAME. ...t e e e e e e e e e e e e 113
BT O S et 114
getipnOdebyaddr.........ooiiiiiii e 114
USOGE GUIARINES. .. eeeiiiiiieiiie e 115
BT e et 115
getiPNOdEbYNAME.oiiiiii e 116
o111 o)=Y USRS PRRR 116
Usage GUIdElNES.........oviiiiiiiiiiii et e e e 117
BT O ettt ae 117
GOINAMEINTO. ...t 117
USOGE GUIARINES. ...eeiiiiiiieiiie et 119
EXAMPIE. .o e e aaaa e as 119
BT O S e 119
GetNEIDYAAAr. ...t e e e 119
BT O e eeeeeeeeeeeeeeeeeeeeeeeeae 120
USAGE GUIAEIING.....eeeiiiiiieiie et 120
GEtNEIbDYNAME. ...oiiiiiiii e e 120
BT O S ettt 121
Usage GUIdElNES.........ueiiiiiiieii et e e 121
gelPeername, getPEEIMOME_NW......ciiiiiiiiii ettt ettt e e s 121
BT O e eeeeeeeeeeeeeeeeeeeeeeeeae 122
USAGE GUIARINES. .. eeeiiiiiieiiiie e e 122
GEtPIOOBYNAME. ... 122
BT O S ettt 123
Usage GUIdElNES.........ueiiiiiiieii et e e 123
EXOMIPIE. et e e et e e e e e ea e e e 123
getProtObYNUMbET. ... 123
BT O S ceceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeae 124
USAGE GUIARINES. ...eeeiiiiiieeiie et e 124
EXAMPIE. .o e e a e e e e e as 124
GEESEIVDYNAME. ... et e e e e e e aeeaeas 124
BT O e eeeeeeeeeeeeeeeeeeeeeeeea 125
Usage GUIAEINES.........oiiiiiiiiiiii et e e e 125
GEESEIVIOYPOI 125
BT O S eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 125
Usage GUIdeliNes..........ooiiiiiiiii et 126
getsockname, getSOCKNAME_NW........uuiiiiiiiiii e 126
BT 0TS e eeeeeeeeeeeeeeeeeeeeeeeea 127
Usage GUIAEINES.........oiiiiiiiiiiii et e e e 127
EXAMPIES. ...t e e a e e e 127
getsOCkopt, GEtSOCKOPT_NMW.....iiiiiiiiie it 128
BT O S ettt ae 130
Usage GUIdElNES.........uiiiiiiiii et e e e 130
EXAMPIES. ..t e e e e e a e e e 130
I B rONAMEINAGX. ..ot 130
BT O eeeceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 131
USAGE GUIARINES. ...eeeiiiiiieeiie et e 131
EXOAMPIES. ..ottt e e e e e e e e e e e 131
TN EXEONGME. e e e 131
BT 0TS e eeeeeeeeeeeeeeeeeeeeeeeea 132
Usage GUIdElNES.........oiiiiiiiiiiiii et e e ree e 132
Contents

EXAMPIES ...t e e et ee e e e 132

M OMEINAGX e e e e e e 132
BT O S ettt 133
Usage GUIdeliNes..........ooiiiiiiii et 133
EXAMPIES. ..ot e et e e e e a e e e 133

H MOMEIOINAEX ettt 133
Usage GUIAElNES.........uiiiiiiiiiiiiic et e e e e 134
EXOMIPIE. et e e e e e e e e 134

INEE AT e e 134
BT O S et ae 135
o111 o)=Y USRS PPRR 135

TNEE IGO0 . e e e e 135
BT 0TS ecceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeae 135

INEE MAKEAAAI ... e 135
BT O S eeeeeeeeeeeeeeeeeeeeeeeeeeeeae 136

INEE NEIOT e 136
£ £ SUPPRRURSPPPPIN 136

TNEE NEIWOTK. .o 136
BT 0TS ecceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeae 137

10=3 H 1) (o1« FEURT TR TSP TP RO TUSOPRPRN 137
BT O S eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeae 137

Y= 011 o TSP 138
£ £ SUPPPPRSPPPPN 139
Usage GUIdElNES.........uiiiiiiiiiiiii ettt e e e 139

Y= o] (o o T PRSPPI 139
o £ PSPPI 140
USOGE GUIARINES. .. eeeiiiiiieeiie e e 140

IWres_fre@addrinfo.o 140
Usage GUIdElNES.........ueiiiiiiieii et e e 140

IWEES_FrEEROSIENT. ... e e 141
Usage GUIAEINES.........viiiiiiiiiiiii et e e ea e 141

ot Lo T 17T a o) S PSPPSR PPPR 141
(o &SSP 142
EXAMPIE. . e e e aaaaaa e 142
Usage GUIdElNES.........ueiiiiiiieii et e e 142

IWres_getaddrinfo.......ccuviiiiiiii e 142
(o & OSSO PP PSPPI 143
EXOMIPIE. et e et e e e e e e e 143
USAGE GUIARINES. .. .eeiiiiii e 144

Iwres_gethostbyaddr.........oooiiiii e 144
e PP OP PP POPPRN 145
EXOMIPIE. ottt e et a e e e e e e e e e 145
Usage GUIAEINES.........viiiiiiiiiii et e e 145

IWres_gethostbyNamME.ooiiiiiiiii e 145
(o &SSP 146
EXAMPIE. . o e e aaaaaaaa s 146
Usage GUIdElNES.........uiiiiiiiii et e e e 146

Iwres_gethostbyname2........ccoiiiiiiiiiii e 146
(o & PRSP PPPT PSPPI 147
EXOMIPIE. et e et e e e e e e e 147
USOGE GUIARINES. ...eieiiiiiieeiie et e 147

Iwres_getipnodebyaddr.o e 147
£ £ SUPPRRRSPPPPN 148
Usage GUIdElNES..........oiiiiiiiiiiii e e e e e 148

lwres_getipnodebyname...........c.uviiiiiiii e 149

Contents 7

8

Br 0TS e 150

EXOMIPIE. 1t e e e e e e e e e e 150
USOGE GUIARINES.eeiiiiiieiiie et 150
IWres_getnamMEINfO.ooiiiiiiiie e 150
£ £ SUPPRPRURPPPN 152
e T1T o)L=V PSP PPPRRR 152
Usage GUIAEINES.........viiiiiiiiiiii et e e e 152
WIS SITEITON ... 152
(o &SSP SPPPPIN 152
T 1= PO T T T OO P PP PP PP U USRS URRRRRRPP 153
£ £ SUPUPPURSPPPPN 153
EXOMIPIE. ottt e e e e e e e e e e e e 153
TECV, TECV_ MW ..ttt ittt et et ettt et e e et e et e e e e e e e et ea et e e et et et et e e et et et e e e ane e ens 153
oo PP P PR PPPPPNN 155
USOGE GUIARINES. ...eeiiiiiiieiiie et 155
EXAMPIE. .o e e aaaa e as 155
TEEVOA |, TEEV NWOA oo 155
(oY & PO PPPTR PSPPI 157
Usage GUIAEINES.........viiiiiiiiiiiie et e e araee e 157
EXOMIPIE. ettt e e e e e e 157
PECVITOM. L.ttt et e e e et e e e et a e e e e e 158
£ £ OSSP RUPPPPN 159
Usage GUIdElNES.........ueiiiiiiieii et e e 159
EXOMIPIE. et e et e e e e e e e e e 159
FECVITOMOA oo 160
(o &SSP SPPPPIN 161
USOGE GUIARINES. .. eeeiiiiiieeiie e e 161
EXAMPIE. o o a e e e e e s 161
T OV IO W e 161
(oY & PSPPSR PPPTR PSPPI 163
Usage GUIAEINES.........viiiiiiiiiiiiie et e e e 163
EXAMPIES. ...t e e e e e e e e 163
FECVITOM WO .o 164
o £ £ U SUPPRPRUPPPPN 165
Usage GUIdElNES.........ueiiiiiiieii et e e 166
EXAMPIES. ..o e e e e a e e e 166
Y10 T« RT O PP PP PR PPPP 166
(o & PSSP SOPPPIN 167
USOGE GUIARINES. .. eieiiiiiie ettt 168
EXAMPIE. . e aaaaaaa s 168
SENAOD .., 168
(oY & PSPPSR PPPTR PSPPI 169
Usage GUIAEINES.........oiiiiiiiiiiii et e e e 169
EXOMIPIE. et e et e e e e e e e e 169
BB W .o 169
B 0TS e e e e e e 171
Usage GUIdElNES.........uiiiiiiiii et e e e 171
e T1T o) [V PSR PPPRRR 171
SENA WO oo 171
(o &SSO SOPPPIN 173
USAGE GUIARINES. ...eeeiiiiiieeiie et e 173
EXAMPIE. .o e e a e e e e e as 173
SENA MW 2. e 173
(oY & PSPPSR PPPTR PSPPI 174
Usage GUIdElNES.........oiiiiiiiiiiiii et e e ree e 175
Contents

EXOMIPIE. .t e e e e e e e e e e e 175

SENA MW 2 B4 e 175
B O e 176
Usage GUIdeliNes..........ooiiiiiiii et 177
o111 o)=Y USRS PPRR 177

SENAIO. .. o o e 177
B O e 178
USAGE GUIARINES. .. eeeiiiiiieiiie et 178
EXAMPIES. ...t 178

SENAIOOA .. e 179
o 4o £ TSP 180
Usage GUIdElNES.........uiiiiiiiiiiiii et e e 180
EXOMIPIE. et e e e e e e e e e e 180

SENAIO MW .o e 180
B O e 181
Usage GUIdeliNes..........ooiiiiiiiii et 181

SENAIO NWOA e 182
B O e 183
Usage GUIAEINES.........viiiiiiiiiiii et e e raea e 183
EXOMIPIE. 1ot e e e e e e e e nnes 183

SetSOCKOPT, SEISOCKOPI_NW.....iiiiiiiiiiiiiii e e 184
B O e 188
Usage GUIdElNES.........ueiiiiiiieii et e e 188
EXAMPIES. ..o e e e e e e e 188

ShUTdOWN, SRUTdOWN MW i 189
B O e e 189
USOGE GUIARINES. .. eeeiiiiiieeiie e e 190
EXAMPIE. .o aaaaaa s 190

SOCK _ClOSE TOUSE MW . e 190
B O e 191
Usage GUIAEINES.........viiiiiiiiiiiii et e e ea e 191

SOCKEY, SOCKET MW .. e e 191
B O e 193
Usage GUIdeliNes..........ooiiiiiiii e 193
o121 o)=Y USSP PSR 193

SOCKET_DACKUD . ..t 193
B O e 194
USAGE GUIAEIING. .. .eiiiiiiiieiie e 194

SOCKET_ G INFO. . ettt 194
EXOMPIES. ..ottt e e e e e e e e e e e 195
o 4o £ TP 195
Usage GUIEliNe.veeiiiieeee et 195

SOCKET_GEI_IBN. . e 195
B O e 196
USAGE GUIAEIING. .. .eieiiiiiieeie et 196

socket_get_OpPeN_info.......ouiiiiii e 196
B O e 196
Usage GUIdElNES..........oiiiiiiiiiiii e e e e e 197

socket 10CH, SOCKET TOCH MW ..oiiee e e 197
B O e 198
USOGE GUIARINES. ...eieiiiiiieeiie et e 198
Socket /O Control Operations.............cooiuuiiiiieieeciiiee et 199
EXAMPIES. ..ot e e e e e e e e 200

SOCKE! SEE INEE NAME. .o 200
B O e 201

Contents 9

(o £SO PPPRRTRSPPPPIN 202

USOGE GUIARINES.eeiiiiiieiiie et 202

FreCVIFOM WO e 203

£ £ SUPPRPRURPPPN 204

Usage GUIdElNES..........oiiiiiiiiiiii et e e 204

b SN O MW 204

(o & SO PPPUPTRSPPPPIN 205

USAGE GUIARINES.eeiiiiiieiiie et e 205

FSENAIO NWOA .o 206

£ £ SUPUPPURSPPPPN 207

Usage GUIdElNES.........oviiiiiiiiiiii et e e e 207

5 Sample Programs.............uuuuuiiiiiieiiiiie e 208

Programs Using AF_INET SOCKELS.ccoiiiiiiiiiiiie it 208

AF _INET Client STUD ROUNNE. .. et 208

AF _INET Server Stub ROUNNE.ouniiie e 210

AF_INET No-Wait Server Stub ROUNNE.cooveiiiiieee e 212

C TCP Client Program.........eiiiee ettt e e e e et e e e e e e eee e e e enenaeeeas 215

C TCP SEIVEr PrOgraim....... ettt 217

Client and Server Programs Using UDP............cccuiiiiiiiiiiiiiie et 219

TAL Echo Client Programming Example............oooiiiiiiiiiiiiiiiece e 231

USING AF_INETE SOCKELS.eeeeiiiiiiiii ettt et e e e e e e e 235

AF_INET6 Client STUb ROUNNE.coveeiiie e 235

AF_INET6 Server Stub Program............eiiiiiiiiiiii e 238

A Well-Known IP Protocol Numbers.............ccooiiiiiiiiiiiiiiiiiec e 241

TCP and UDP Port NUMDBETS.oiiiiiiiiiiiiee ettt e e e e e 241

B SOCKet ErrOrs. .. .vvueeeieee e 243

INAEX e 254
10 Contents

About This Document

This manual describes application development for the NonStop TCP/IP, Parallel Library TCP/IP,
NonStop TCP/IPv6, and CIP subsystems using the HP Guardian socket library routines.

Supported Release Version Updates (RVUs)

TCP/IP: D40.00 and all subsequent D-series RVUs, G06.00 and all subsequent G-Series RVUs,
and H06.03 and all subsequent H-series RVUs until otherwise indicated by its replacement
publication

Parallel Library TCP/IP: G06.08 and all subsequent G-series RVUs until otherwise indicated by its
replacement publication

NonStop TCP/IPv6: G06.20 and all subsequent G-series RVUs, H06.05 and all subsequent H-series
RVUs until otherwise indicated by its replacement publication

Cluster 1/O Protocols (CIP): J06.04 and all subsequent J-series RVUs until otherwise indicated by
its replacement publication

Intended Audience

This manual is intended for experienced C and TAL programmers. You must be familiar with the
following protocols and products:

o The standard TCP/IP family of protocols described in various Requests for Comments (RFCs)

o The Berkeley socket interface

e Use of NonStop systems, including the HP NonStop operating system

New and changed information for March 2014 (524521-020)

This edition of the manual includes the following changes:

o Changed “address” word to “value” for flags “Al_NUMERICHOST” (page 64) and
“Al_NUMERICSERV" (page 64).

e Added “Note” in the section “socket_set_inet_name” (page 200).

New and changed information for February 2013 (524521-019)
This edition of the manual includes the following changes:

e Added a new note in the “Usage Guidelines” (page 103) section.

New and changed information for July 2012 (524521-018)
This edition of the manual includes the following changes:

o Added the function details and usage consideration in the “accept_nw3” (page 97) section.

e Added the usage guidelines for the functions gethostbyname and
host_file gethostname”Usage Guidelines” (page 111).

e Added new guideline for the section “Usage Guidelines” (page 108).

New and changed information for February 2012 (524521-017)

This edition of the manual includes the changes to enable 64-bit support:

e Added the 64-bit APls, send64_ (page 168), sendto64_ (page 179), send_nwb4_ (page 171),
send_nw?2_64_ (page 175), recvb4_, recv_nwb4_ (page 155), recvirom_nwb4_ (page 164),

Supported Release Version Updates (RVUs) 11

recvfromé4_ (page 160), t_sendto_nwé4_, t_recvirom_nw64_ (page 203) and sendto_nwé4_
(page 182).

e Changed the data type of length parameters to socklen t in inet ntop, getnameinfo,
gethostname, gethostname, lwres getipnodebyaddr and lwres getnameinfo

APls.
New and changed information for August 2011 (524521-016)

This edition of the manual includes the following changes:

e Added hostname and IP address resolution in the “Domain Name Resolution” (page 26)
section.

e Updated text for SO_REUSEPORT in the “setsockopt, setsockopt_nw” (page 184) section.

e Added TCP"RESOLVER"ORDER description in “Using the DEFINE Command” (page 29)
table.

New and Changed Information for October 2010 (524521-015)

This edition of the manual includes changes to the usage guidelines in:
e “accept_nw” (page 91)
e ‘“accept_nw1” (page 94)

e “setsockopt, setsockopt_nw” (page 184)

Changes and Additions for September 2010 (524521-014)

This edition of the manual included changes to the usage guidelines in:
e “accept_nw” (page 91)

e “accept_nwl” (page 94)

e “accept_nw2” (page 95)

e “setsockopt, setsockopt_nw” (page 184)

Changes and Additions for March 2010 Update (524521-013)

Changes in the -013 edition of the manual include:
e A missing error definition was added to the send (page 166) routine.

e Information regarding rogue clients was added to “Usage Guidelines” for the “bind, bind_nw”
(page 98) routines.

e The input value was updated for SO_ERROR in the “setsockopt, setsockopt_nw” (page 184)
routines.

o Corrected the protocol listed for the ntp service in “Port Numbers for Host-Specific Functions”
(page 242).

e Updated “Client and Server Programs Using UDP” (page 219) to describe how to use NonStop
TCP/IPv6 to call the socket_ioctl function, including configuring the Provider attribute for an
address family.

e Updated several socket error definitions for “Socket Errors” (page 243).

Changes and Additions for September 2008 Update (524521-012)
This edition of the manual has been updated to reflect support for Cluster 1/O Protocols (CIP).

Other changes include:

Descriptions of the “t_recvirom_nw” (page 201) and
“t_sendto_nw"” (page 204) socket routines, removed in an earlier edition, have been restored.

The description of “sock_close_reuse_nw” (page 190) has been updated to describe error
4123.

IPV6_V6ONLY has been added to the descriptions of the “getsockopt, getsockopt_nw”
(page 128) and “setsockopt, setsockopt_nw” (page 184) routines.

Library routine parameters have been identified as input or return values in their definitions.

Changes and Additions January 2007 Update (524521-010)

Changes in this edition of the manual include:

Missing error definitions were added to accept_nw (page 91).
A missing error definition was added to send_nw?2 (page 173).

Corrections were made to recvfrom (page 158) and recvfrom_nw (page 161).

Changes and Additions for the H06.05 RVU (February 2006, 524521-009)

Updates in this edition show that the lightweight resolver library calls are supported on H06.05
and later H-series RVUs. (See Chapter 4 (page 81).)

Hyperlinks in New and changed information for February 2012 (524521-017) for previous editions
fixed. (See “Changes and Additions for the H06.03 RVU (July, 2005 524521-006)" (page 13).)

A note has been added to the new and changed library routines in Chapter 4 (page 81) to indicate
that they are only supported on G06.27 and later G-series RVUs and are not supported on H06.03
and later H-series RVUs until otherwise indicated in a replacement edition.

Changes and Additions for the G06.27 RVU (September 2005, 524521-007)

Twelve new functions have been added to NonStop TCP/IPvé6 to support the lightweight resolver
library for DNS. These new functions are:

gethostbyname?2 (page 112)
Iwres_freeaddrinfo (page 140)
Iwres_freehostent (page 141)
lwres_gai_strerror (page 141)
Iwres_getaddrinfo (page 142)
Iwres_gethostbyaddr (page 144)
Iwres_gethostbyname (page 145)
Iwres_gethostbyname?2 (page 146)
lwres_getipnodebyaddr (page 147)
lwres_getipnodebyname (page 149)
lwres_getnameinfo (page 150)

lwres_hstrerror (page 152)

Changes and Additions for the H06.03 RVU (July, 2005 524521-006)

Information about the HP Integrity NonStop NS-series server was added to this edition of the
manual.

New and changed information for February 2012 (524521-017) 13

Correction

In addition, the following corrections were made:

Sample programs were modified to show Include statements.

TAL syntax diagrams were updated to show INT(32) declarations instead of INT since the
WIDE model is more frequently used.

The description of inet _ntop inTable 13 (page 83) was corrected.
There was a correction to the code example for freeaddrinfo (page 104).

Since you no longer have to define the SRL before starting the TCP6SAM process (as of
G06.24), the table of DEFINEs in the section Using the DEFINE Command (page 29) was
changed to reflect that the SRL only needs to be defined for TCPSAM processes and TCP6SAM
processes for pre-G06.24 RVUs of NonStop TCP/IPvé.

Statements for including the appropriate header files were added to the syntax declarations
for the data structures shown in Chapter 3 (page 62).

TAL definitions for library-routine syntax in Chapter 4 (page 81) were modified wherever INT
declarations were made so that INT(32) is shown instead.

A correction was to the errors defined for if_nameindex (page 132).

The introductory paragraph for the example for if_freenameindex (page 130) was corrected
to refer to the 1 £ _nameindex function demonstrated in the sample.

Update (December 2004, 524521-005)

The TAL synopsis for the sock_close_reuse_nw library routine was added under
sock_close_reuse_nw (page 190).

The description of the flags parameter of the socket, socket_nw (page 191) was modified.

The usage guidelines of the socket, socket_nw library routine was modified under Usage
Guidelines (page 193)Usage Guidelines.

A sample program for AF_INET No-Wait Server Stub Routine was added underAF_INET
No-Wait Server Stub Routine (page 212).

These sample programs have been modified to run without warnings:

o AF_INET Server Stub Routine (page 210)
o CTCP Client Program (page 215)

o CTCP Server Program (page 217)

o UDP Client Program (page 219)

°© UDP Server Program (page 223)

Correction Update (September 2004, 524521-004)

Information has been added to the error descriptions for accept_nw?2 (page 95).

Manual Consolidation Update (March 2004, 524521-003)

Information about the Parallel Library TCP/IP subsystem has been added to this manual; all
three NonStop TCP/IP subsystems are now documented in this manual and the TCP/IP and
IPX/SPX Programming Manual has been changed to the IPX/SPX Programming Manual.

Overview information about the three NonStop TCP/IP subsystems has been added to NonStop
TCP/IP Subsystems and the Guardian Sockets Application Program Interface (API) (page 23).

Sample TCP/IP programs have been moved to this manual from the TCP/IP and IPX/SPX
Programming Manual in Chapter 5 (page 208).

Other minor changes have been made to the manual to incorporate the Parallel Library TCP/IP
subsystem.

G06.22 RVU Update (December 2003, 524521-002)

Information about using sockets in both the conventional NonStop TCP/IP and NonStop
TCP/IPvé environments has been added. (See Using NonStop TCP/IP and NonStop TCP/IPvé
or Parallel Library TCP/IP (page 24).)

The limitations of raw-socket support for NonStop TCP/IP have been documented. (See
Programmatic Interface to Raw Sockets (page 41).)

Information about using the new logical network partitioning feature has been added. (See
Multiple NonStop TCP/IP Processes and Logical Network Partitioning (LNP) (NonStop TCP/IPvé,
H-Series and G06.22 and Later G-Series RVUs Only) (page 43) and accept_nw?2 (page 95).)

Procedures for determining process names has changed. (See Process Names (page 43).)

New TCP retransmission timers have been documented (getsockopt, getsockopt_nw (page 128)
and setsockopt, setsockopt_nw (page 184)).

The buffer size for SO RCVBUF and SO_SNDBUF has been corrected for NonStop TCP/IPvé.
(See Usage Guidelines for setsockopt, setsockopt_nw (page 184).)

Considerations for the use of sock _close reuse nowait have been added
(sock_close_reuse_nw (page 190)).

The setsockopt level definitions have been reorganized to separate ITPROTO 1P and
IPPROTO_IPV6 (setsockopt, setsockopt_nw (page 184)).

More information has been added to the error message EACCES (4013) in Appendix B
(page 243). In addition, this error has been added to sendto (page 177) and sendto_nw
(page 180).

Use of the word subnet has been clarified to distinguish between the generic-networking term
and the NonStop TCP/IPv6 SCF object. See Notation for Subnet (page 19).

G06.20 RVU Update (May 2003, 524521-001)
This manual was new for the G06.20 RVU.

Document Organization

This document is organized as follows:

Chapter 1 (page 23) provides an overview of the three HP NonStop TCP/IP subsystems, some
TCP/IP fundamentals, considerations for programming in the Guardian environment, and
information about multicasting and multiplexing.

Chapter 2 (page 49) provides procedures for porting your applications for IPvé use or
protocol-independence and procedures for developing new IPv6 applications.

Chapter 3 (page 62) provides the definitions of the Guardian sockets library data structures.

Chapter 4 (page 81) provides the definitions and usage guidelines for the Guardian sockets
library routines.

Chapter 5 (page 208) provides sample server and client code for both IPv4 and IPvé.

Appendix A (page 241) lists the protocol numbers most commonly used with the raw socket
(IP) interface, together with the names that you can use for these protocols in programs.

Appendix B (page 243) describes the error conditions for the socket routines and explains how
a program can recover from the errors.

Document Organization 15

Notation Conventions

General Syntax Notation

This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS

Uppercase letters indicate keywords and reserved words. Type these items exactly as shown.
ltems not enclosed in brackets are required. For example:

MAXATTACH

Italic Letters

ltalic letters, regardless of font, indicate variable items that you supply. ltems not enclosed in
brackets are required. For example:

file-name
Computer Type
Computer type letters indicate:

e C and Open System Services (OSS) keywords, commands, and reserved words. Type
these items exactly as shown. ltems not enclosed in brackets are required. For example:

Use the cextdecs.h header file.

e Text displayed by the computer. For example:
Last Logon: 14 May 2006, 08:02:23

e Alisting of computer code. For example
if (listen(sock, 1) < 0)

{

perror ("Listen Error");
exit (-1);
}
Bold Text
Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

[] Brackets
Brackets enclose optional syntax items. For example:

TERM [\system-name.] $terminal-name

INT [ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or none.
The items in the list can be arranged either vertically, with aligned brackets on each side of
the list, or horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

FC [num]
[-num]
[text]

K [X | D1 address

{ } Braces

A group of items enclosed in braces is a list from which you are required to choose one item.
The items in the list can be arranged either vertically, with aligned braces on each side of the
list, or horizontally, enclosed in a pair of braces and separated by vertical lines. For example:

LISTOPENS PROCESS { Sappl-mgr-name }
{ $process-name }
ALLOWSU { ON | OFF }

| Vertical Line

A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:

INSPECT { OFF | ON | SAVEABEND }
... Ellipsis

An ellipsis immediately following a pair of brackets or braces indicates that you can repeat
the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]..

-1 {o|1]2|3]4|5]6|7]|8]|9}-
An ellipsis immediately following a single syntax item indicates that you can repeat that syntax
item any number of times. For example:

"g-char.."

Punctuation

Parentheses, commas, semicolons, and other symbols not previously described must be typed
as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU S$process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a required
character that you must type as shown. For example:

"[" repetition-constant-list "]"
ltem Spacing

Spaces shown between items are required unless one of the items is a punctuation symbol such
as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no spaces
are permitted between the period and any other items:

$process-name. #su-name
Line Spacing
If the syntax of a command is too long to fit on a single line, each continuation line is indented

three spaces and is separated from the preceding line by a blank line. This spacing distinguishes
items in a continuation line from items in a vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE
[, attribute-spec]..

Notation Conventions 17

liand lo
In procedure calls, the !i notation follows an input parameter (one that passes data to the called
procedure); the lo notation follows an output parameter (one that returns data to the calling
program). For example:

CALL CHECKRESIZESEGMENT (segment-id i
, error) lo
li,o
In procedure calls, the i,0 notation follows an input/output parameter (one that both passes
data to the called procedure and returns data to the calling program). For example:
error := COMPRESSEDIT (filenum) ; 11,0
lizi
In procedure calls, the li:i notation follows an input string parameter that has a corresponding
parameter specifying the length of the string in bytes. For example:
error := FILENAME COMPARE (filenamel:length 1i:1
, filename2:length) ; 'i:1
lo:i

In procedure calls, the lo:i notation follows an output buffer parameter that has a corresponding
input parameter specifying the maximum length of the output buffer in bytes. For example:

error := FILE GETINFO_ (filenum i
, [filename:maxlen]) ; lo:i

Notation for Messages

This list summarizes the notation conventions for the presentation of displayed messages in this
manual.

Bold Text
Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
Nonitalic Text

Nonitalic letters, numbers, and punctuation indicate text that is displayed or returned exactly
as shown. For example:

Backup Up.
Italic Text
ltalic text indicates variable items whose values are displayed or returned. For example:

p-register

process-name

[] Brackets
Brackets enclose items that are sometimes, but not always, displayed. For example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be displayed, of
which one or none might actually be displayed. The items in the list can be arranged either
vertically, with aligned brackets on each side of the list, or horizontally, enclosed in a pair of
brackets and separated by vertical lines. For example:

proc-name trapped [in SQL | in SQL file system]
{} Braces

A group of items enclosed in braces is a list of all possible items that can be displayed, of
which one is actually displayed. The items in the list can be arranged either vertically, with
aligned braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown.

| Vertical Line

A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:

Transfer status: { OK | Failed }
% Percent Sign

A percent sign precedes a number that is not in decimal notation. The % notation precedes an
octal number. The %B notation precedes a binary number. The %H notation precedes a
hexadecimal number. For example:

%005400
%¥B101111

$H2F
P=%p-register E=%e-register

Notation for Subnet
The following describes the notation conventions for SUBNET and subnet used in this manual.
UPPERCASE LETTERS

Uppercase letters indicate the NonStop TCP/IP, Parallel Library TCP/IP or NonStop TCP/IPvé
SCF SUBNET obiject. For example:

Port A is identified by logical interface (LIF) 018, which uses a SUBNET on the TCP/IP process
named $ZB018 in processor O.

lowercase letters
Lowercase letters indicate the general networking term for subnet. For example:

Multicast datagrams that have a Time-To-Live (TTL) value of 1 are forwarded only to hosts on
the local subnet.

Notation for Management Programming Interfaces

This list summarizes the notation conventions used in the boxed descriptions of programmatic
commands, event messages, and error lists in this manual.

Notation Conventions 19

UPPERCASE LETTERS

Uppercase letters indicate names from definition files. Type these names exactly as shown. For
example:

ZCOM-TKN-SUBJ - SERV
lowercase letters

Words in lowercase letters are words that are part of the notation, including Data Definition
Language (DDL) keywords. For example:

token-type

The !r notation following a token or field name indicates that the token or field is required. For

example:
ZCOM-TKN - OBJNAME token-type ZSPI-TYP-STRING. 'r
lo
The lo notation following a token or field name indicates that the token or field is optional. For
example:
ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. lo

Related Information

20

It you are writing programs that use the socket routines described in this manual, you should refer
to the following manuals:

o TCP/IPv6 Configuration and Management Manual for complete descriptions of NonStop
TCP/IPv6, including file formats and other specific information that applies to the whole
subsystem. This manual also describes the Subsystem Control Facility (SCF) interactive interface

that allows operators and system managers to configure, control, and monitor the NonStop
TCP/IPv6/IP subsystem.

e TCP/IP Configuration and Management Manual for information about the architecture and
management of the NonStop TCP/IP subsystem.

o TCP/IP (Parallel Library) Configuration and Management Manual for information about the
architecture and management of the Parallel Library TCP/IP subsystem.

e LAN Configuration and Management Manual for descriptions of the SLSA subsystem, which
provides parallel LAN 1/O for NonStop S-series systems. In particular, this manual provides

information about logical interfaces (LIFs) and physical interfaces (PIFs) which are key concepts
for NonStop TCP/IP, Parallel Library TCP/IP, and NonStop TCP/IPvé.

o TCP/IP Applications and Utilities User Guide describes the interactive interfaces to the following
TCP/IP applications: ECHO, FINGER, FTP, LISTNER, TFTP, TELNET, and TN6530. Server
information is included for FTP, TFTP, and TELNET.

If you are writing programs that use the socket function calls described in this manual, read the
following manuals for background and reference information:

e The C/C++ Programmer’s Guide provides information about the HP C language and compiler,
including the supplementary functions for the NonStop operating system environment.

o The TAL Reference Manual provides information about the HP TAL language and compiler.
o The TAL Programmer’s Guide provides information on mixed-language programming.

o The CRE Programming Manual provides information about programming sockets in the Common
Run-Time Environment (CRE) using the HP TAL language and compiler.

o The Guardian Programmer’s Guide describes how to program in the NonStop operating
system environment.

o The Guardian Procedure Calls Reference Manual lists the syntax and semantics of the NonStop
system procedure calls whose functions are not available in the HP C language.

o The Guardian Procedure Errors and Messages Manual describes the Guardian messages for
NonStop systems that use the NonStop operating system.

o The HP NonStop Kernel Programmer’s Guide provides information on programming for the
NonStop operating-system environment.

o The TCP/IPv6 Migration Guide provides a comparison of NonStop TCP/IPvé, NonStop TCP/IP
and Parallel Library TCP/IP.

Publishing History

Part Number Product Version Publication Date
524521-009 N.A. February 2006
524521-010 N.A. January 2007
524521-011 N.A. August 2008
524521-012 N.A. September 2008
524521-013 N.A. March 2010
524521-014 N.A. September 2010
524521-015 N.A. October 2010
524521-016 N.A. August 2011
524521-017 N.A. February 2012
524521-018 N.A. June 2012
524521-019 N.A. February 2013
524521-020 N.A. March 2014

HP Encourages Your Comments

HP encourages your comments concerning this document. We are committed to providing
documentation that meets your needs. Send any errors found, suggestions for improvement, or
compliments to:

pubs.comments@hp.com

Include the document title, part number, and any comment, error found, or suggestion for
improvement you have concerning this document.

Request for Comments (RFC) Statement

This document uses information derived from RFC 2553, Basic Socket Interface Extensions for IPvé.
The following copyright statement, copied from RFC 2553, is included in compliance with RFC
2553 copyright specifications:

Copyright (C) The Internet Society (1999). All Rights Reserved. This document and translations of
it may be copied and furnished to others, and derivative works that comment on or otherwise
explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this
paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to the

Publishing History 21

mailto:pubs.comments@hp.com

22

Internet Society or other Internet organizations, except as needed for the purpose of developing
Internet standards in which case the procedures for copyrights defined in the Internet Standards
process must be followed, or as required to translate it into languages other than English.

1 Introduction to Programming to the Guardian Sockets
Library

This section discusses topics relating to sockets programming in the Guardian environment, including:

“NonStop TCP/IP Subsystems and the Guardian Sockets Application Program Interface (API)”
(page 23)

e “TCP/IP Programming Fundamentals” (page 24)

e “Programming Using the Guardian Sockets Interface” (page 32)
e “Basic Steps for Programs” (page 35)

e “Programmatic Interface to Raw Sockets” (page 41)

e “Programming Considerations” (page 43)

e “Multicasting Operations” (page 44)

e “Input/Output Multiplexing” (page 48)

NonStop TCP/IP Subsystems and the Guardian Sockets Application
Program Interface (API)
This manual documents the Guardian sockets API for the following four NonStop TCP/IP subsystems:
e NonStop TCP/IP (also called conventional TCP/IP)
o Parallel Library TCP/IP

NOTE: Parallel Library TCP/IP is only supported on NonStop S-series servers.

e NonStop TCP/IPvé
e Cluster I/O Protocols (CIP)

Parallel Library TCP/IP and NonStop TCP/IPv6 share the same architecture; however, their
architectures differ from that of conventional NonStop TCP/IP. For the most part, the different
subsystem architectures do not affect the sockets API, with some exceptions. (See Multiple NonStop
TCP/IP Processes and Logical Network Partitioning (LNP) (NonStop TCP/IPvé, H-Series and G06.22
and Later G-Series RVUs Only) (page 43)). For a comparison of the architectures of the three
subsystems, see the TCP/IPv6 Configuration and Management Manual.

The greater difference, from a program-interface standpoint, lies in the difference between support
for Internet Protocol version 4 (IPv4) and IPvé. NonStop TCP/IPv6 is the only NonStop TCP/IP
subsystem that supports IPv6 communications. Writing and porting applications for IPv6 is discussed
in Chapter 2. Where structures, header files, and library routines apply only to IPv6 and, therefore,
only to the NonStop TCP/IPv6 product, this restriction is indicated in the text.

NonStop TCP/IPvé has three operating modes: INET, INET6, and DUAL. When NonStop TCP/IPvé
runs in INET mode, it supports only IPv4 communications. In this mode, NonStop TCP/IPvé is similar
to Parallel Library TCP/IP and can be used instead of Parallel Library TCP/IP to achieve the same
architectural advantages without the need to use the IPvé capabilities. NonStop TCP/IPv6 continues
to be enhanced and contains new features not available in Parallel Library TCP/IP, such as logical
network partitioning. For this reason, your network administrator might have chosen to install the
NonStop TCP/IPv6 subsystem instead of Parallel Library TCP/IP. If so, you can use NonStop
TCP/IPv6 in INET or DUAL mode without any changes to your sockets applications. (In DUAL mode,
if you do not change your application to support IPv6 addresses, your application can use the IPv4
addresses supplied by the subsystem.)

Parallel Library TCP/IP and NonStop TCP/IPvé can coexist with conventional NonStop TCP/IP on
the same system but not with each other.

NonStop TCP/IP Subsystems and the Guardian Sockets Application Program Interface (APl) 23

CIP can coexist with NonStop TCP/IPv6 and conventional NonStop TCP/IP on the same system
but not with Parallel Library TCP/IP since Parallel Library TCP/IP is not supported on J-series RVUs.
CIP also supports IPvé.

CIP architecture differs from that of NonStop TCP/IPv6 and conventional NonStop TCP/IP; these
differences affect the sockets API. For details about the CIP architecture and application compatibility,
see the Cluster |/O Protocols (CIP) Configuration and Management Manual.

NOTE: Parallel Library TCP/IP is only available on NonStop S-series servers.

For information about transport-service provider names, see Process Names (page 43).

TCP/IP Programming Fundamentals

This subsection defines basic TCP/IP programming terms, concepts, and procedures:
e Using NonStop TCP/IP and NonStop TCP/IPvé or Parallel Library TCP/IP

e Types of Service (page 25)

o The Socket Library Routines (page 25)

e Starting Clients and Servers (page 29)

e Port Numbers (page 31)

e Network and Host Order (page 32)

Using NonStop TCP/IP and NonStop TCP/IPv6 or Parallel Library TCP/IP

An application process can have sockets associated with the NonStop TCP/IP, NonStop TCP/IPv6,
and CIP environments; or the Parallel Library TCP/IP environment.

NOTE: Parallel Library TCP/IP is only available on G-series RVUs.

Using CIP

Applications that use the NonStop TCP/IP, Parallel Library TCP/IP, or TCP/IPv6 API might be
affected by behavioral differences in the CIP API. For details on these differences, see the Cluster
I/O Protocols Configuration and Management Manual. If you determine that these differences do
not cause serious problems for your application, you can use an error suppression feature to allow
the application to continue running if minor differences in the CIP environment are detected. This
feature is described in the following subsection.

Suppressing Compatibility Errors

24

If you run an application in CIP that contains features that CIP does not support, compatibility errors
result. To allow applications not expecting these errors to run without modification, CIP provides

a DEFINE to suppress errors caused by incompatibility:

ADD DEFINE =CIP“COMPAT"ERROR, FILE SUPPRESS

If this DEFINE is set when an application starts, socket calls that result in a behavior allowed in a
previous implementation, but not in CIP, return as if successful, even though the behavior did not
occur as expected. If the DEFINE is not set or if the file name is not SUPPRESS, behaviors that CIP
does not support cause socket calls to return an error.

Introduction to Programming to the Guardian Sockets Library

Types of Service

Depending on the type of communications service required, your application uses one or more of
the following protocols:

e The Transmission Control Protocol (TCP) provides reliable end-to-end data transfer. TCP is a
stream-oriented protocol that has no concept of packet boundaries. TCP guarantees that all
data sent is received and that the data arrives in the same order in which it was sent.

o The User Datagram Protocol (UDP) provides unreliable datagram service. The integrity of the
packets sent is maintained; that is, when a packet is received, it matches exactly what was
sent. However, neither the delivery of the datagrams nor the order in which the datagrams
are received is guaranteed.

e The Internet Protocol (IP) allows data to be transferred between heterogeneous networks. It
also services various host-to-host protocols. IP provides many capabilities at the network level
and is the foundation of the NonStop TCP/IP subsystems. TCP and UDP use the Internet Protocol
(IP). In addition, applications can provide their own Transport Layer protocols, built directly
on IP.

The Socket Library Routines

All NonStop TCP/IP subsystems provide a socket interface that uses the HP NonStop operating
system file-system procedures for interprocess communication and that provides socket library
routines for the integration of UNIX and NonStop systems. You can use the socket library routines
to access the socket interface programmatically.

A socket is an end point for communication. An application process calls a socket routine to request
that the TCP/IP subsystem create a socket when needed and specify the type of service desired.
Applications can request TCP and UDP sockets, as well as raw sockets, for direct access to the IP.
(A raw socket allows direct access to a lower-level protocol.) The TCP/IP subsystem returns a socket
number, which the application uses to reference the new socket.

After creating a socket, the application optionally binds the socket to a specific local address and
port, and sends or receives data on the socket. When the transfer is complete, the application can
shut down the socket and close it.

The NonStop server socket interface is modeled after the Berkeley Software Distribution (BSD)
sockets interface to allow you to port existing UNIX TCP/IP applications to run on a NonStop
system. For a description of the available socket-library routines, see Chapter 4 (page 81). For a
summary of the differences between the NonStop TCP/IP socket interface and the 4.3 BSD UNIX

interface, see Programming Using the Guardian Sockets Interface.

Although the NonStop server socket-library routines are based on the sockets programmaticinterface
primitives in the 4.3 BSD release of the UNIX operating system, the NonStop server routines do
not map exactly to the 4.3 BSD release function calls or functionality. The NonStop server routines
include extensions to adapt the Berkeley sockets interface to HP fault-tolerant, operating-system
features such as nowait I/0.

Beginning with the D30 RVU of NonStop TCP/IP, the socket library supports HP fault-tolerant
applications (process pairs) written in either the C or TAL languages. This support is provided by
two socket-library routines that permit the opening of sockets by a backup application. These
routines are described in Chapter 4 (page 81) of this manual.

Servers and Clients

The terms server and client are used in the NonStop TCP/IP subsystems as they are customarily
used in TCP/IP documentation. A server is a process that offers a service that can be used over
the network; a server accepts requests, performs the specified services, and returns the results to
requesters. A client is one of the processes that sends requests to the server and waits for it to
respond. The client-server model is the same model known in other HP documentation as the

TCP/IP Programming Fundamentals 25

Stream-

requester-server model—that is, a client is the same as a requester. Programming Using the Guardian
Sockets Interface (page 32), explains how to develop client and server programs that use sockets.

Oriented Protocol Considerations

Unlike a protocol that sends and receives blocks or buffers of packets at a time, TCP is a
stream-oriented protocol. The data has no boundaries except those put there by applications using
TCP/IP. For example, the fact that the application sent 1,000 bytes does not mean the receiving
end receives 1,000 bytes. The receiving end may only receive one byte; the network may only
deliver in small chunks. The act of sending simply buffers the data for transfer, it does not imply
that data has been sent or received. Completion of a receive simply provides the data that has
been correctly received up to that point, up to the amount requested by the receive. When the
application issues a receive function, all it specifies is how much data it can receive, that is, how
big the buffer is. The application may get less data than it can receive.

If your application must be able to examine a whole record or block of data, it must embed data
that marks or describes the blocks in the data. On the receiving end, the application receives the
stream and looks for the block or record marks or has a previous definition of the record size. That
is, it the application had a fixed record size of 80 bytes, the application would have to fragment
the data itself. For example, if your application posted a receive for 1,000 bytes and received
800 (10 records X 80 bytes) the application would not need to fragment the data. But if the
application posted a receive for 1,000 bytes and received 850 bytes, the application would have
10 whole records and one partial record and would need to keep track of the partial record,
posting more receives to get the remaining data. The application also needs to know when it is
finished, either through loss of connection, a pattern of bytes in the stream, a particular record
type, or from some other event.

Passive Connect Compared to Active Connect

Domain

Passive connect means that the application sits listening for incoming connections, that is, passive
connect posts an accept call. (In the OSS socket programming model, you would post a 1isten
call.)

A server would most likely use the passive connect model.

The active connect model means the application initiates a connect by calling connect (or
connect_nw). This call makes a connection to somebody listening for connections. Servers typically
listen for connections.

Name Resolution

When your program requests information about a host, the Domain Name resolver provides
name-address resolution services. The Domain Name resolver is a programmatic interface consisting
of socket-library support routines that get information about hosts, networks, protocols, and services.
See Table 12 (page 82) for a list of these routines.

Depending on which support routine your program calls and the value defined for

=TCPIP HOST"FILE at the time the program runs, the Domain Name resolver accesses either a
name server or one or both of two special host files that contain a list of Internet addresses and
each of the corresponding hostname and alias(es) for those addresses. The default names of these
files are $SYSTEM. ZTCPIP.HOSTS and $SYSTEM. ZTCPIP.IPNODES. (IPNODES is available
for NonStop TCP/IPvé or CIP.) If the address information is contained in some other file, each user
running the program must define a value for =TCPIP*HOST"FILE and, for NonStop TCP/IPvé
or CIP, =TCcPIP*NODE*FILE. Add DEFINE for =TCPIP*NODE"FILE, only when you want to
place the IPNODES file in a location other than the default $sYSTEM. ZTCPIP.

The socket library uses the DEFINE command to resolve file names or process names. The DEFINE
command is described in the TACL Reference Manual. Information about using the DEFINE command
is in the HP NonStop Kernel Operating System Users Guide.

26 Introduction to Programming to the Guardian Sockets Library

Also, see Using the DEFINE Command (page 29) for more information about setting file names
and process names.

Your program calls gethostbyname and getaddrinfo routines to get the hostname and IP

addresses. Guardian socket library gets the hostname and IP addresses as follows:

1. If there is a DEFINE for =TCPIP*HOST*FILE, and if hostname is found, it is returned from
this file.

It =TCPIP"HOST"FILE is not defined, DNS is queried for the hostname. If hostname is found,
it is returned.

If hostname is not found in DN, default hosts file $SYSTEM. ZTCPIP.HOSTS is searched,
and if found, hostname is returned.

If hostname is not found in hosts file, HOST_NOT _FOUND error is returned in h_errno
parameter.

2. If there is a DEFINE for =TCPIP*NODE"FILE, IP addresses for the given host are searched,
and if IP addresses are found, they are returned.

If host is not found in =TCPIP*NODE*FILE, and =TCPIP*HOST FILE is defined, IP addresses
are searched for in this file. If found, IP addresses are returned from the hosts file.

If =TCPIP"HOST"FILE is not defined, Guardian socket library queries DNS for hostname.

NOTE: Define =TCPIP"HOST"FILE to avoid querying DNS for IP addresses.

You can override the Guardian socket library's default behavior for hostname search by using

PARAM, as shown below:
PARAM TCPIP"RESOLVER"ORDER value
where value is one of
DNSONLY
Guardian socket library queries only DNS for the hostname.
HOSTFILEONLY
Guardian socket library searches only the hosts file for hostname.
DNS-HOSTFILE
Guardian socket library queries DNS. If hostname is not found, searches the hosts file for

hostname.

HOSTFILE-DNS

Guardian socket library searches the hosts file. If hostname is not found, it queries DNS for
hostname.

NOTE: PARAM name and value are not case sensitive.

When the process has no PARAMs and DEFINEs, Guardian socket library queries the DNS for
hostname.

Resolving Names With a Name Server

It a name server is available on the network, the recommended method for resolving names is to
access the name server. To ensure that the resolver accesses a name server rather than a host file,
your program should call the gethostbyname or gethostbyaddr routine or getaddrinfo
or getnameinfo (for NonStop TCP/IPvé or CIP), and program users should not define a value
for =TCPIP*HOST*FILE.

To access a name server, the resolver uses information specified in a resolver configuration file.
The default name for this file is $SYSTEM. ZTCPIP.RESCONF. (For a description of this file, see
the TCP/IPv6 Configuration and Management Manual or the Cluster |/O Protocols Configuration

and Management Manual.)

TCP/IP Programming Fundamentals 27

28

The NonStop server socket library uses the DEFINE command to resolve the file names and process
names used by the socket library. See Using the DEFINE Command (page 29), for more information
about the DEFINE command.

When a program sends a name-resolution request to the resolver, the resolver tries to send the
query to the servers listed in the RESCONF file, sending the request to the server that has the highest
priority first. The priority of a server depends on its position in the RESCONF file; the server listed
first, called the primary server, has the highest priority. The RESCONF file can contain a
maximum of 16 servers but must contain at least one server.

The resolver sends the request to the primary server using TCP port 53. If the primary name server
does not respond within 4 seconds, the resolver tries to access the secondary name server; if that
server does not respond within 4 seconds, the resolver tries to access the fertiary name server.

If none of the name servers responds within 4 seconds, the resolver retries the primary name server;
however, this time the resolver waits up to 8 seconds for a response. If the primary name server
does not respond within 8 seconds, the resolver tries the secondary name server. If that server does
not respond within 8 seconds, the resolver tries the tertiary name server.

The resolver continues trying to access each name server, increasing the time it waits for a response,
from 4 to 8 to 16 and then to 32 seconds in each of the subsequent retry cycles. Failure conditions
are stored in the external variable h_errno. The errors returned in h_errno are described along
with the gethostbyaddr and gethostbyname functions in Chapter 4 (page 81).

If the name server cannot be accessed (that is, does not respond to requests), the HOSTS-type file

is accessed in an attempt to resolve the name. If the name server can be accessed but cannot
resolve the name, the resolver routine returns an error and the HOSTS-type file is not checked.

NOTE: Beginning with the D40.00 RVU of NonStop TCP/IP, the socket-library routine
gethostbyname() was changed with respect to name server lookups. If the name server cannot
resolve the name, or the name server does not respond, the HOSTS-type file is accessed.

Resolving Names by Using a HOSTS-Type File

It @ name server is not available on the network, you can resolve names by using a HOSTS-type
file. This nonstandard technique for resolving names can be implemented using either of two
methods:

e From a program, call one of the following routines:
° host file gethostbyname

° host file gethostbyaddr

Defining a value for =TCPIP*HOST"FILE is optional for this method. The only reason
for defining a value for =TCPIP*HOST"FILE is to specify a file other than the default
file to resolve names.

e From a program, call one of the following routines:
° gethostbyname
° gethostbyaddr
° getaddrinfo (NonStop TCP/IPvé)

° getnameinfo (NonStop TCP/IPvé)
With this method, users running the program must define a value for =TCPIP*HOST"FILE
before running the program.

With either method, TCP/IP resolves the names by using either the $SYSTEM. ZTCPIP.HOSTS,
the $SYSTEM. ZTCPIP. IPNODES (for NonStop TCP/IPvé and CIP) file or a file name specified

Introduction to Programming to the Guardian Sockets Library

in a previous ADD DEFINE command that defines a value for =TCPIP*HOST*FILE or
=TCPIP"NODE"FILE.

The socket library uses the DEFINE command to resolve the file names and process names used
by the socket library. For more information, see Using the DEFINE Command (page 29).

ND6HOSTD Process for NonStop TCP/IPvé

The ND6HOSTD process for NonStop TCP/IPvé is a utility process that you can run to receive and
process router advertisement (RA) packets and update the global address information in the DNS.
The ND6HOSTD process is a Guardian process started by the $ZPM persistence manager. It runs
in one or more processors in which a TCP6MON is running. For more information about

ND6HOSTD, see the TCP/IPv6 Configuration and Management Manual.

Starting Clients and Servers

Typically, a client program is started by an application user at a terminal. A server might be started
by an operator or system manager, or by the LISTNER process, depending on the way you design
and set up the server. When a client or server program is started, the person starting the program
might need to set one or more TCP/IP attributes to control how the program operates.

NOTE: You should use the standard configuration, so that users running the client and server
programs do not need to enter DEFINE commands. Use a nonstandard approach only when the
normal one does not meet the needs of your application. However, if you are using CIP, you might
want to set the compatibility error suppression DEFINE, as described under “Suppressing
Compatibility Errors” (page 24). For descriptions of CIP compatibility considerations, see the Cluster
I/O Protocols (CIP) Configuration and Management Manual. You can use this information to
determine how your application might be affected by compatibility issues and whether or not to
set the compatibility error suppression DEFINE.

Using the DEFINE Command

The socket library uses values defined by the ADD DEFINE command to resolve file names and

process names as well as to provide some other functions for the library. The following DEFINE

names affect the operation of NonStop TCP/IP, Parallel Library TCP/IP, NonStop TCP/IPvé, and
CIP programs (both those provided by HP and the ones you develop):

=PTCPIP"FILTER"KEY Defines the key or password for round-robin. (Parallel Library TCP/IP and
NonStop TCP/IPvé only)

=PTCPIP"FILTER"TCP"PORTS Limits the TCP ports that applications share in round-robin filtering (Parallel
Library TCP/IP and NonStop TCP/IPv6 only)

=PTCPIP"FILTER"UDP"PORTS Limits the UDP ports that applications share in round-robin filtering (Parallel
Library TCP/IP and NonStop TCP/IPv6 only)

=TCPIP HOST"FILE Specifies the name of the HOSTS-type file to be used to resolve names

=TCPIP"NODE"FILE Specifies the name of the IPNODES file to be used to resolve names
(NonStop TCP/IPvé only)

=TCPIP"NETWORK"FILE Specifies the network addresses and names for getnetbyaddr and
getnetbyname functions

=TCPIP*PROTOCOL"FILE Specifies protocol names and port numbers for getprotobyname and
getprotobynumber functions

=TCPIP"RESOLVER"“NAME Specifies the name of the resolver configuration file to be used to get
name server information

=TCPIP"SERVICE FILE Specifies service by port number and name for get servbyname and
getservbyport functions

= SRL 01 Defines the SRL for the TCPSAM process. (Parallel Library TCP/IP and

pre-G06.24 RVU NonStop TCP/IPvé only.)

TCP/IP Programming Fundamentals 29

30

=TCPIP*PROCESS NAME Specifies the name of the NonStop TCP/IP process or TCPSAM or
TCP6SAM process name

=CIP"COMPAT"ERROR, FILE SUPPRESS When set with a file name of “SUPPRESS”, specifies that when an
application starts, socket calls that try to invoke a behavior allowed in a
previous implementation, but not in CIP, return as if successful even though
the behavior did not occur as expected.

The runtime entries for various files should be:

ADD DEFINE =TCPIP*HOST"FILE, FILE $SYSTEM.ZTCPIP.HOSTS

ADD DEFINE =TCPIP*NODE“FILE, FILE $SYSTEM.ZTCPIP.IPNODES

ADD DEFINE =PTCPIP"FILTER“KEY, CLASS MAP, FILE file-name

ADD DEFINE =TCPIP"NETWORK*FILE, FILE $SYSTEM.ZTCPIP.NETWORKS

ADD DEFINE =PTCPIP*FILTER"TCP"PORTS, FILE Pstartport.Pendport
ADD DEFINE =PTCPIP"FILTER"UDP"“PORTS, FILE Pstartport.Pendport
ADD DEFINE =TCPIP*PROTOCOL*FILE, FILE $SYSTEM.ZTCPIP.PROTOCOL
ADD DEFINE =TCPIP*RESOLVER"NAME, FILE $SYSTEM.ZTCPIP.RESCONF

ADD DEFINE =TCPIP*SERVICE*FILE, FILE $SYSTEM.ZTCPIP.SERVICES

ADD DEFINE = SRL 01, CLASS MAP, FILE ZTCPSRL

ADD DEFINE =TCPIP"PROCESS”NAME, FILE $ZTCO

ADD DEFINE =CIP*“COMPAT”ERROR, FILE SUPPRESS

A value for =TCPIP*PROCESS*NAME must be defined only if both the following conditions exist:

o The transport-service-provider process on your system has been configured with a name other
than $ZTCO.

o The program that is going to be run does not call the socket set inet name routine to
specify a NonStop TCP/IP, TCPSAM, TCP6SAM, or CIP process name. A call to this routine
overrides both the default name $ZTCO and =TCPIP*PROCESS”NAME (if it is defined).

A value for =TCPIP*RESOLVER"NAME must be defined only if both the following conditions exist:

o The program that is going to be run calls the gethostbyname, gethostbyaddr,
getnameinfo, or getaddrinfo routines.

e The name-server information normally contained in the $SYSTEM. ZTCPIP.RESCONF file is
contained in some other file.

For a DEFINE name to be available to a program, the DEFINE name must be defined prior to
running the program. When you define a DEFINE name during an interactive session at a terminal,
the DEFINE name stays in effect until you clear it (using the DELETE DEFINE command), redefine
it through another ADD DEFINE command, or log off from the session. You can also use the SHOW
DEFINE command to list DEFINE name values you have defined. The attributes of an established
DEFINE name can be changed using the ALTER DEFINE command. Descriptions of the various
DEFINE commands appear in the TACL Reference Manual.

The following example shows you how to use the ADD DEFINE command to set up the host file.
Here, STESTV.TSUBV.HOSTXX is defined to be the file used for resolving domain names. Then,
a server program named XXTEST (which uses the HOSTXX file to resolve domain names) is run:

TACL 3> ADD DEFINE =TCPIP"“HOST"FILE,FILE $TESTV.TSUBV.HOSTXX

TACL 4> RUN XXTEST
Always specify a fully qualified file name for the =TCPIP*HOST*FILE value.

If your system has been configured to have a TCP/IP process named $ZTCM, you must define
=TCPIP"PROCESS*NAME before running any clients or servers that use the TCP/IP subsystem (the
operator or system manager who starts the NonStop TCP/IP, Parallel Library TCP/IP, NonStop
TCP/IPv6, or CIP process must also define =TCPIP*PROCESS NAME):

TACL 5> ADD DEFINE =TCPIP"PROCESS”NAME, FILE $ZTCM

Introduction to Programming to the Guardian Sockets Library

LISTNER Process

The LISTNER process functions as a “super server” for some application servers provided by HP
(such as the FTP server). LISTNER invokes the appropriate NonStop server as connection requests
for services are received on well-known TCP poris (in the default configuration). These services do
not apply to UDP ports. The use of a single super server—in this case, the LISTNER process—to
invoke several other servers, effectively reduces the load on the system.

To use the LISTNER process, you must configure the PORTCONF file and start the LISTNER process.
The PORTCONTF file defines the servers to be invoked when a request comes in from another system
on the Internet. Once started, LISTNER reads the SERVICES file to resolve the services configured
in the PORTCONTF file. (The SERVICES file is provided with the NonStop TCP/IP, Parallel Library
TCP/IP, NonStop TCP/IPvé, and CIP software.) LISTNER checks that the service name and

corresponding port are valid.

You can configure the SERVICES and PORTCONF files using port numbers other than the well-known
port numbers for the services. For information about configuring and starting the LISTNER process,

see the TCP/IP Applications and Utilities User Guide.

Once the accuracy of the PORTCONTF file contents is verified by using the SERVICES file, LISTNER
“listens” to the configured ports that are waiting for incoming connection requests from the remote
client. The TCP/IP process notifies the LISTNER process when a request is pending.

When the LISTNER process receives the notification, it starts the server targeted by the request.
The target server creates a socket using host-name and source-port information, then accepts the
pending connection request on the newly created socket.

Data can be transferred between the NonStop target server and the remote client through the newly
created socket until either the remote client or the target server terminates the connection.

Port Numbers

Both TCP and UDP use a 16-bit port number to select a socket on the host. Client programs normally
use more or less random port numbers; however, specific port numbers—called well-known
ports—are assigned for use by server programs.

Each well-known port is associated with a specific service. A client requesting a particular service
(such as file transfer) specifies as the destination port the port associated with that particular service.
The server program monitors that port for file-transfer requests. The well-known port numbers for
TCP and UDP are listed in Appendix A (page 24 1) in this manual.

In TCP, the combined remote IP address, remote port number, local IP address, and local port
number uniquely identify a connection. In UDP, the same four parameters identify a temporary
source and destination. These four parameters are part of every TCP or UDP packet that passes
over the Internet.

Each separate session must have a unique combination of these four parameters. However, any
three of the parameters can be the same as long as the fourth is different. For instance, two different
applications on the same host can send files at the same time to another host, which can also be
the same, as follows:

IP Addresses Port Numbers

(source, destination) (source, destination)
Session 1 122.1.7.19, 101.3.5.2 1281, 21
Session 2 122.1.7.19, 101.3.5.2 1282, 21

Because the same host systems are involved, the IP addresses are the same. Because both sessions
are file transfers, one end of both sessions involves the well-known FTP port number 21 (for the
filetransfer service). The only difference in the two sessions lies in the port numbers for the
applications requesting the service.

TCP/IP Programming Fundamentals 31

Generally, at least one end of the session requests a port number that is guaranteed to be unique.
The client program normally requests the unique port number, because the server typically uses a
well-known port.

Network and Host Order

In the descriptions of some of the support routines in the socket library, this manual refers to IP
addresses or port numbers as being in network order or in host order. These terms refer to the
routines the order in which the octets are stored in arguments passed to or returned by the routines.
On NonStop operating systems, network order is the same as host order.

The Internet standard for the transmission of 32-bit integers specifies that the most-significant octet
should appear first. However, not all hosts store integers in the same way. Thus, copying octets
directly from one host to another can change the value of a number. The Internet standard specities
that sending hosts must translate from their local integer representation (local order) to network
order (most-significant octet first). Receiving hosts are required to translate from network order to
local order.

Programming Using the Guardian Sockets Interface
This subsection provides guidelines for programming to the Guardian sockets library, including:
e Porting Considerations
e Nowait I/O (page 32)
e Differences Between UNIX and NonStop Server Implementations (page 33)
e NonStop TCP/IP, Parallel Library TCP/IP, and NonStop TCP/IPvé Basic Steps (page 35)

Porting Considerations

The socket library routines are based on the 4.3 BSD implementation of the UNIX operating system.
However, there are some differences, mostly resulting from differences between the NonStop
operating system and the UNIX environment. Therefore, some parts of your programs need to
change if you are porting them from the 4.3 BSD UNIX operating system or from some other TCP/IP
implementation.

Nowait |/O

Nowait 1/O in the NonStop operating-system environment is similar to nonblocking /O in UNIX,
but there are important differences. First, nowait 1/O can be performed only over a socket that
was created for nowait /O (with a call to the socket nw function). Once a socket is created, it
cannot be switched from one mode to the other.

The following nonstandard socket calls are available for nowait I/O:

accept nw getsockopt nw shutdown nw
accept_nwl recv_nw socket_nw
accept nw2 recvirom nw t_recvfrom nw
bind_ nw send_nw* t_sendto_nw
connect nw send nw2 t sendto nwé64
getpeername_nw sendto_nw sendto_nwé64 _
getsockname nw sendto nwé64 sendto nw2 64
recvfrom nwé4 setsockopt nw recv_nwé4
send_nw2_64_ t_recvirom nwé64_

In most cases, the parameters for these calls are identical to those of the corresponding waited
calls, with the addition of extra parameters for NonStop operating system requirements. The

32 Introduction to Programming to the Guardian Sockets Library

exceptions to this rule are accept nw2, recvfrom nw, recvfrom nwé4 ,send nw2,
send nw2 64 , sendto_nw, sendto nwé64 , t recvfrom nw, t recvifrom nwé4
t sendto nwand t_sendto nwe4 , which "have different sefs of parameters.

7

In addition, a nowait |/O operation is never performed synchronously, and the error
EWOULDBLOCK is never returned. After performing a nowait /O operation, your program must
check for completion by issuing a call to the AWAITIOX or FILE AWAITIO64 procedure call.

The examples in Figure 1 (page 33) summarize the procedural differences between 4.3 BSD UNIX
nonblocking /O and NonStop operating system nowait |/O.

In 4.3 BSD UNIX, the application tests (polls) a socket (f1) by using the select call check whether
I/O activity, in this case receiving data, can occur on the socket. If the socket can receive data,
the application issues the recv call; otherwise, the application continues processing, then again
issues the select call to poll the socket.

In the NonStop operating-system environment, the application issues the recv_nw call on a socket
(f1) to attempt to receive data on a socket. The application continues processing, then calls
AWAITIOX fo determine if the recv_nw call has completed.

Figure 1 4.3 BSD UNIX Nonblocking I/O Compared to Guardian Nowait /O

BsD 4.3 LIMIX Guarchan
Monblocking 110 using selecti) Meweait 110
Frocess Execution [s] Process Exscution fls]
clectl) Execution R Execution
True
recvifl, ..} + *
F &5 . F 55
Falze rOFE : Continues reeEss
recw(f1,..) recy._ nw
R =it Processing Fequest
Continue FAMES
" ! Frocessaing i
¥
Caontinue AWAITIOX, ..

WETO dovmd

Differences Between UNIX and NonStop Server Implementations

The NonStop server socket routines also differ from the 4.3 BSD UNIX socket routines in the following
ways:

o The select routine is not supported. Instead, use the nowait |/O capability to test /O
completion by issuing the AWAITIO [X] call on specific sockets.

o Include files are in the $SYSTEM.ZTCPIP subvolume, rather than in the /usr/include directory.

e The NonStop operating system does not have a facility corresponding to UNIX signals.
Therefore, the NonStop TCP/IP, Parallel Library TCP/IP, and NonStop TCP/IPv6 software
returns the error EHAVEOOB fo indicate that urgent (out-of-band) data is pending. Whenever
this error occurs, your program must clear the out-of-band data before proceeding, by calling
either recv or recv_nw with flags set to MSG_OOB.

e The I/O Control operations available for sockets are restricted. Although most of the socket
|/O Control operations are available, STOCGIFCONF and FIONBIO are not supported. Those
I/O Control operations available are accessed through the socket ioctl function. For a
complete list of the I/O Control operations supported, see Table 16 (page 199).

Programming Using the Guardian Sockets Interface 33

e Because of differences between the UNIX and NonStop operating system /O environments,
some differences exist in the errors returned in errno by the socket routines. Although errors
that have the same names are compatible, some error numbers do not match those returned
by UNIX implementations. Programs that refer to errors by number rather than by name require
a greater conversion effort.

In particular, those socket errors that represent UNIX operating-system-dependent errors are
not returned, and NonStop operating system file-system errors can be returned. For details,
see Appendix B.

o Sockets can be closed or removed only by calling the file-system procedures FILE _CLOSE
or CLOSE.

o File control provided by the UNIX fcnt1 system call is not supported.

o The functions recv[from] nwand t_recvfrom nw require the use of the AWAITIOX
procedure to determine the number of characters read.

o The function send [to] nw requires the use of the AWAITIOX procedure to determine the
number of characters sent. If the amount of data sent is less than the length of the message,
issue another pair of send _nw and AWAITIOX calls.

To determine the number of characters sent through a call o send nw or t_sendto_nw,
you can alternatively look at nb_sent, which is the first parameter of struct send nw_str.
See the description of the send_nw routine in Chapter 4 for information about this structure.

e The NonStop server implementation of database-support routines such as gethostbyaddr,
gethostbyname, getnameinfo, and getaddrinfo, are all waited calls.

e NonStop TCP/IP, Parallel Library TCP/IP, and NonStop TCP/IPvé sockets provide the
sockaddr data structure for IP address, address family, and port information as a pointer to
the HP-defined sockaddr_in data structure. Functionality for both data structures is identical.

e In the NonStop TCP/IP, Parallel Library TCP/IP, and NonStop TCP/IPvé implementations,
Read and Write operations are not supported for Guardian sockets.

Asynchrony and Nowaited Operations

34

Asychrony mechanisms differ depending on whether you are dealing with OSS sockets or Guardian
sockets (for OSS, see the Open System Services Programmer’s Guide). Asynchrony refers to the
issuance and completion of an operation occurring at different times. Synchronous operations
happen stepwise when your program runs; that is, the completion occurs as a result of returning
from the function.

In Guardian, specific versions of the library routines (functions) end in _nw; for example, send_nw
and recv_nw. nw stands for nowait. (See Nowait |/O (page 32) for more information.)

A function is initiated upon return of the function call but the function is not necessarily completed.
At some point, for a Guardian program, the application runs out of things to do and is ready to
wait for notification about completion of all the different asynchronous functions that the application
has initiated. This behavior is typical of servers. Servers cannot afford to wait for operations to
complete because waiting means they are not serving someone else. Eventually, the server calls
AWAITIOX which is a Guardian function that allows the application to rendezvous and either wait
or get any completions that are pending. If no functions are finished, AWAITIOX waits as long as
you specified in a parameter that you sent to AWAITIOX. This wait time can be anywhere from 0
to infinity. Eventually, when the completion occurs, AWAITIOX returns and tells the application
why it woke up (AWAITIOX can wait for multiple reasons.)

When the application gets a return from AWAITIOX, the parameter returned is a file number which
corresponds to the socket. A tag is also returned. One parameter to recv_nw, send_nw, is a

tag, because if the application is doing multiple operations at once, it must be able to differentiate
between the operations. So a unique value is associated with each operation (for example, multiple

Introduction to Programming to the Guardian Sockets Library

sends on the same socket). AWAITIOX returns a tag and a socket ID so the application can identify
which operation just completed. At that point, the application issues a FILE GETINFO call using
that file number to get back the completion status of the operation the application just performed
(and any other fields such as return length, depending on the operation).

Considerations for Using socket_nw

If you have a server which cannot afford to wait, rather than using the socket call, you should use
socket nw. Similarly, if your server cannot afford to wait, use send_nw.

Concurrency and Considerations for Blocking and Nonblocking

Asynchrony is a way an application can achieve concurrency of your server’s execution with the
execution of the TCP/IP protocol. By using asynchronous operations, you ensure the concurrent
execution of your program with the completion of the work done by the TCP/IP protocol stack.

In OSS, mechanisms for asynchrony are similar to but distinct from the Guardian mechanisms for
asynchrony. The OSS mechanism is derived from the UNIX world, where instead of waited and
nowaited operations, you have the notion of blocking and nonblocking operations. Blocking
operations are similar to Guardian waited operations. Control does not return back fo your program
until the operation has completed.

Nonblocking means that the application can issue an operation as nonblocking and the application
can get the completion of the operation later. This way, the operation proceeds concurrently with
your application’s operation. (See Nowait |/O (page 32) for a more in-depth comparison of waited
and nowaited operations compared to blocking and nonblocking operations.)

NOTE: A receive must be posted on a socket for the data to be acted on.Your application should
post the receive before the send is issued so there is no time lag.

Considerations for a Server Posting Receives

From a system standpoint, a server should post the biggest receives it can consistent with the
maximum size of what the other can send. The larger the receive the server can post, the better.
If the other side has control over how much can be sent, the more sent the better. A server should
have at least one receive pending on every socket on which it can simultaneously receive data.
Because TCP is a streaming protocol, you might want to have more than one receive pending on
any socket because you may get data coming in a little at a time. More importantly, you want to
ensure a large enough receive-space parameter by setting a socket option (SO_RCVBUF).

Basic Steps for Programs

This subsection summarizes the basic steps performed by a client and server program for the

NonStop TCP/IP, Parallel Library TCP/IP, and NonStop TCP/IPv6 subsystems.
NonStop TCP/IP, Parallel Library TCP/IP, and NonStop TCP/IPvé Basic Steps

The basic steps performed by a client or server program are the same whether your program uses
TCP sockets, UDP sockets, or RAW sockets. This subsection summarizes these steps for each type
of program. Important considerations for each type of program are presented later in this section.

Client Program

The basic steps performed by a client program are:

Designate the NonStop TCP/IP, Parallel Library TCP/IP, or TCP6SAM process name (optional).
Create a socket.

Bind the socket to any port (optional; not done for RAW).

Connect the socket (required for TCP; optional for UDP and RAW).

Start data transfer.

Ok wN

Basic Steps for Programs 35

36

6. Shut down the socket (optional for TCP; not done for UDP or RAW).
7. Close the socket.

Designating the NonStop TCP/IP, TCPSAM, or TCP6SAM Process Name

To create a socket, the socket-interface library opens a file to communicate with the NonStop
TCP/IP, TCPSAM, or TCP6SAM process. Therefore, the socket library must know the name of this
process before any sockets are created. Programs can specify this process explicitly by calling the
function socket set inet name.

If a program has not called socket set inet name before creating a socket, the function that
creates a socket makes default assumptions about the process name. The function uses the value
of TCPIP*PROCESS”NAME, if it exists (usually declared using the DEFINE command); otherwise,
it uses the process name $ZTCO. See Using the DEFINE Command (page 29), for more information
about the value of TCPIP*PROCESS *NAME.

Creating a Socket

A program calls the socket function to create a socket. The socket function returns a descriptor.
The program passes this socket descriptor to subsequent calls for operations on that socket.

Binding a Socket

A program can associate the socket with a local address and port number by calling the bind
function. This call is optional for client programs. If the program does not call bind, the connect
function performs the binding.

For UDP and RAW, calls to bind and connect are unnecessary because UDP and RAW datagrams
contain all the addressing information needed. UDP datagrams contain information about source
and destination addresses and port numbers. RAW datagrams contain information about source
and destination addresses; however, unlike UDP, the RAW datagrams use protocol numbers instead
of port numbers. You specify the protocol number in the socket call.

Connecting a Socket

The connect function associates a remote address and port number with the socket. For TCP,
connect issues a request for an active connection. For UDP and RAW, no active connection
exists; connect merely serves as a convenient means to permanently specify the remote address
and port number (or protocol number) so that each call to transfer data does not need to specify
this information. For UDP or RAW, your program can either call connect to specify the remote
address and port/protocol number once, or the program can use the sendto or recvfrom
routines.

Transferring Data

Two sets of routines are provided for sending and receiving data. One set, the send and recv
routines, uses the remote address and port number specified for the socket in a previous call to
connect. The other set, the sendto and recvfrom routines, uses the remote address and port
number passed as an argument in the call. The sendto and recvEfrom routines are provided for
use with connectionless protocols (UDP and RAW) in programs that do not call connect.

Shutting Down and Closing a Socket

The shutdown routine shuts down data transfer on an actively connected TCP socket, either
partially or completely (preventing further reads, writes, or both). Calling shutdown is optional;
if a program does not call shutdown, a call to the CLOSE or FILE CLOSE_ procedure performs
the shutdown procedure. Because shutdown applies to an active connection, a program using
UDP sockets or raw sockets does not need to call this routine.

When communication is complete, your program must close the socket explicitly by issuing a call
to FILE_CLOSE_ or CLOSE, passing it the socket number as is done for the socket routine calls.

Introduction to Programming to the Guardian Sockets Library

Server Program

The basic steps performed by a server program are:
1. Designate the NonStop TCP/IP, TCPSAM, or TCP6SAM process name (optional).
2. Create a socket.

3. Bind the socket to a well-known port (required for most servers; does not apply to RAW;
optional for servers started by the LISTNER process).

4. Listen for connections (required for TCP; not done for UDP or RAW).

5. Accept incoming connections. When a connection is received, create a new socket and accept
the connection on the new socket (required for TCP; optional for UDP; not done for RAW).

6. Start data transfer (if step 5 was done, use the new socket created in that step).

7. Shut down the socket (optional for TCP; not done for UDP or RAW).
8. Close the socket.

For servers, some of the calls or call requirements vary depending on the way the server operates.
Servers that operate at a well-known port (one that is associated with a specific service provided
by the server) must perform a call to bind to permanently associate the socket with that port.

Steps 1 through 3 and 6 through 8 are used in the same way by servers and clients. See TCP
Client and Server Programs (page 39) for descriptions of the similar steps. The steps for listening
for and accepting connections apply only to servers; these steps are described below.

Listening for Connections

The 1isten routine is provided in the 4.3 BSD UNIX operating system to set the queue length for
pending TCP connections on a socket. The NonStop TCP/IP process or Parallel Library TCP/IP, or
NonStop TCP/IPv6 subystem sets a default value of 5 for the queue length. Using the 1isten
routine, you can set the queue length to a value from 1 through 5; TCP servers must call 1isten
before accepting a connection.

Accepting a Connection

A server typically uses one socket to check for connections and another socket to transfer data (if
the same process performs both functions). This technique allows the server to check for a new
connection on the first socket, accept the new connection, and start data transfer on a second
socket. The server can then check for another new connection on the first socket without waiting
for the data transfer to complete. The accept routine permits this type of operation.

The accept routine performs three steps. First, the routine checks for connections on an existing
socket. Then, when a connection request arrives, accept creates a new socket for the data transfer.
Finally, it accepts the connection on the new socket. For nowait operations, a program must issue
a sequence of these calls to perform these functions:

accept_nw

AWAITIOX

socket nw

AWAITIOX

accept nwa2
AWAITIOX

Server Programs Started by LISTNER

The LISTNER process described in LISTNER Process (page 31), checks for connections. When
LISTNER receives a connection request, it starts another process and passes the connection
information to that process, which in turn handles the data transfer. The LISTNER process calls
accept_nw. Affer the AWATITIOX command completes, LISTNER passes the returned remote
address and port number to the second process.

It you are programming a server that you want LISTNER to start, your server program must call
socket to create a socket, call bind to bind the socket to a local address and port, and then calll
accept_nw2 to accept the connection for data transfer (passing to accept nw2 the socket

Basic Steps for Programs 37

number of the socket created by your server program and the remote address and port number
passed from LISTNER).

The programming example on the following pages uses LISTNER to start a server:

#include <socket.h>
#include <in.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
int Accept Conn(char*) ;
int sock = -1;
int main(int argc, char *argv[])
{
int nrecvd;
char buf[1024], *cp;
/*
* If this has been started by a server, then
* accept a connection; otherwise, echo to
* gstdout from stdin.

*
/
if (argv([1l] != (char *)NULL) ({
/*
* argv[l] must have port.hostname format.
*
/
if ((cp = strchr(argv [1], '.')) == (char *)NULL) {
fprintf (stderr, "Server: bad arg %$s\n", argv[1l]);
exit (1) ;
}
*cp = 0;
if (atoi(argv([1]) == 0) {
fprintf (stderr, "Server: bad arg %$s\n", argv[1l]);
exit (1) ;
}
*Cp - l.l,.
if (Accept Conn(argv[l]) == 0)
exit (1) ;

}
if (sock >= 0)
while ((nrcvd = recv(sock, buf, (int)sizeof (buf), 0)) > 0)
send (sock, buf, nrcvd, 0);
else
while ((nrcvd = read(fileno(stdin), buf, (int)sizeof(buf))) > 0)
write(fileno(stdout), buf, nrcvd) ;
exit (0) ;

/* Accept an incoming connection request.
* The argument passed to us in the form:

* PORT.HOST
*/
memset (&sin, 0, sizeof(sin));
int Accept Conn(char* cp)
struct sockaddr in sin;
/*
* Set up the sock addr in structure based on the
* argument.

*/
sin.sin port = atoi (cp);
cp = strchr (cp, '.') + 1;
if ((sin.sin addr.s addr = inet addr (cp)) == 0) {

printf ("Bad value for %$s\n", cp);

38 Introduction to Programming to the Guardian Sockets Library

return O;

sin.sin family = AF_INET;

/*
* Create a socket so that we can use it for
* accepting the connection.

*
/
if ((sock = socket (AF INET, SOCK STREAM, 0)) < 0) {
perror ("socket");
return 0;
b
* This is a waited socket, but we use the trick of
* nowait accept nw2, because this does just what we
* need (accept a connection as a new socket).
*
/

if (accept_nw2 (sock, (struct sockaddr*)&sin, 01) < 0) {
perror ("accept nw2");
return O;

}

return 1;

}
TCP Client and Server Programs

Table 1 lists the steps performed by a TCP client and a TCP server in waited operations. The calls
used to perform each step are given in parentheses; calls spelled out in uppercase letters are
NonStop operating system procedure calls.

Table 1 TCP—Waited Client and Server Steps

Client Server
1. Optionally, set NonStop TCP/IP or 1. Optionally, set NonStop TCP/IP or TCP6SAM
TCP6SAM process name process name (socket set inet name).

(socket_set inet name).

2. Create a socket (socket). 2. Create a socket (socket).

3. Optionally, bind the socket to any port 3. Bind the socket to a well-known port (bind).
(bind).

4, Connect the socket to the server 4, Listen for connections (1isten).
(connect).

5. Accept an incoming connection on a new socket
(accept).

5. Start data transfer (send and/or recv, 6. Start data transfer on the new socket (recv and/or
usually in a loop). send, usually in a loop).

6. Optionally, shut down the socket 7. Optionally, shut down one or both sockets
(shutdown). (shutdown).

7. Close the socket (CLOSE or 8. Close the socket (CLOSE or FILE_ CLOSE_).
FILE CLOSE).

Table 2 (page 40) shows the steps performed by a TCP client and a TCP server in nowait operations.
The calls used to perform each step are given in parentheses. Note the use of nowait versions of
most of the socket calls, followed by calls to the AWATTIOX procedure for completion of the call.

The nowait versions of the socket calls require the program to provide a tag parameter to identify
the particular operation. When AWAITIOX is called, it returns the tag that was passed to it in the
corresponding nowait socket call.

Sample TCP client and server programs are provided in Chapter 5.

Basic Steps for Programs 39

Table 2 TCP—Nowait Client and Server Steps

Client Server

1. Optionally, set NonStop TCP/IP, 1. Optionally, set NonStop TCP/IP, TCPSAM, or
TCPSAM, or TCP6SAM process name TCP6SAM process name
(socket set inet name). (socket_set inet name).

2. Create a socket (socket nw, followed 2. Create a socket (socket nw, followed by
by AWAITIOX). AWAITIOX).

3. Optionally, bind the socket to any port 3. Bind the socket to a well-known port (bind nw,
(bind_nw, followed by AWATTIOX). followed by AwAITIOX).

4. Connect the socket to the server 4, Listen for connections (1isten).

(connect_nw, followed by AWAITIOX).
5. Accept the connection.

a. Accept an incoming connection (accept nw,
followed by AwAITIOX).

b. Create a new socket (socket nw) with (flags
& 0200) nowait set.c. Call AWAITIOX, followed
by SETMODE 30, followed by AWAITIOX).

d. Accept the new connection on the new socket
(accept_nw2, followed by AWAITIOX).

5. Start data transfer (send_nw and/or 6. Start data transfer on the new socket (recv_nw
recv_nw, followed by AWAITIOX, and/or send_nw, followed by AWATITIOX, usually
usually in a loop). in a loop).

6. Optionally, shut down the socket 7. Optionally, shut down one or both sockets
(shutdown_nw, followed by AWATTIOX). (shutdown_nw, followed by AWAITIOX).

7. Close the socket (CLOSE or 8. Close the socket (CLOSE or FILE_CLOSE_).

FILE CLOSE).

UDP Client and Server Programs
Table 3 shows the steps performed by a UDP client and a UDP server in waited operations.
Table 3 UDP—Waited Client and Server Steps

Client Server

1. Optionally, set NonStop TCP/IP, TCPSAM, 1. Optionally, set NonStop TCP/IP, TCPSAM, or
or TCP6SAM process name TCP6SAM process name
(socket set inet name). (socket set inet name).

2. Create a socket (socket). 2. Create a socket (socket).

3. Optionally, bind the socket to any port 3. Bind the socket to a well-known port (bind).
(oing).

4. Start data transfer (sendto and/or 4. Start data transfer (recvfrom and/or sendto,
recvirom, usually in a loop). usually in a loop).
OR OR
Specify the remote address for the socket Specify the remote address for the socket
(connect). Then, start data transfer (send (connect). Then, start data transfer on the socket
and/or recv, usually in a loop). (recv and/or send, usually in a loop).

5. Close the socket (CLOSE or 5. Close the socket (CLOSE or FILE_CLOSE_).

FILE CLOSE).

40 Introduction to Programming to the Guardian Sockets Library

See Usage/Bind Considerations (page 87) for information about the HP implementation that
handles the binding of UDP sockets. The implementation ensures that the correct process is notified
when a broadcast message arrives.

Table 4 shows the steps performed by a UDP client and a UDP server in nowait operations.

Table 4 UDP—Nowait Client and Server Steps

Client Server

1. Optionally, set NonStop TCP/IP, 1. Optionally, set NonStop TCP/IP, TCPSAM, or
TCPSAM, or TCP6SAM process name TCP6SAM process name
(socket set inet name). (socket set inet name).

2. a. Create a new socket (socket nw)with 2. a. Create a new socket (socket nw) with (flags
(flags & 0200) nowait set.b. Call & 0200) nowait set.b. Call AWATTIOX, followed
AWAITIOX, followed by SETMODE 30, by SETMODE 30, followed by AWAITIOX).
followed by AWATITIOX).

3. Optionally, bind the socket to any port 3. Bind the socket to a well-known port (bind nw,
(bind nw, followed by AWAITIOX). followed by AWAITIOX).

4, Start data transfer (t_sendto_nwand/or 4. Start data transfer on the new socket
t_recvirom nw, followed by (t_recvirom nwand/or t_sendto nw,
AWAITIOX, usually in a loop). followed by AWAITIOX, usually in a loop).
OR OR
Specify the remote address for the socket Specify the remote address for the socket
(connect_nw, followed by AWAITIOX). (connect_nw, followed by AWAITIOX). Then,
Then, start data transfer (send_nw and/or start data transfer on the socket (recv_nw and/or
recv_nw, followed by AWAITIOX, send_nw, followed by AWAITIOX, usually in a
usually in a loop). loop).

5. Close the socket (CLOSE or 5. Close the socket (CLOSE or FILE_CLOSE_).

FILE CLOSE).

Programmatic Interface to Raw Sockets

A raw socket allows direct access to a lower-level protocol—in this case, IP. Access to linklevel
(Layer 2) protocols is not supported for NonStop TCP/IP, Parallel Library TCP/IP, or NonStop
TCP/IPv6. Raw sockets are intended for processes that require the use of some protocol feature
not directly accessible through the normal interface, or are intended for the development of new
profocols.

Only limited support exists for programming to the raw sockets interface for NonStop TCP/IPv6
and Parallel Library TCP/IP. An application can transmit from any processor using the raw-socket

interface but can only receive transmissions in the processor that contains the master TCP6MON
or master TCPMON.

Programming at the IP level and using raw sockets requires more work on the part of application
clients and servers than programming at the TCP level. First, the application must provide underlying
support for whatever transport protocol is used above IP. (For a list of possible protocols, refer to
RFC 1010, “Assigned Numbers.”) Then, when performing the basic steps outlined at the beginning
of this section, clients and servers must build the transport-level message headers before sending
messages, and interpret transport-level message headers and IP headers (including checksums)
after receiving the messages. The format for these headers depends on the protocol; for details
about the protocol requirements, refer to the appropriate RFC for that protocol.

If your application program refers to a transport protocol by name, the protocol number and name
must be included in the file $SYSTEM. ZTCPIP.PROTOCOL, as described in the TCP/IPvé
Configuration and Management Manual.

Table 5 shows the steps performed by a RAW client and a RAW server in waited operations.

Programmatic Interface to Raw Sockets 41

42

Table 5 RAW—Waited Client and Server Steps

Client Server

1. Optionally, set NonStop TCP/IP, 1. Optionally, set NonStop TCP/IP, TCPSAM, or
TCPSAM, or TCP6SAM process name TCP6SAM process name
(socket set inet name). (socket_set inet name).

2. Create a raw socket (socket) assigning 2. Create a raw socket (socket) specifying the
a protocol number. The default protocol protocol number.
number is 255.

3. Optionally, bind the socket to any local 3. Bind the socket to a local IP address (bind).
IP address (bind).

4, Optionally, specify the remote address 4. Optionally, specify the remote address (connect).
(connect).

5. If sending messages, perform the 5. If receiving messages, perform the following,
following, usually in a loop: usually in a loop:
a. Build the header, as specified by a. Start data transfer (recvfrom if connect was
protocol, for type of message being sent. not called; recv if connect was called).
b. Start data transfer (sendto if connect b. Read and interpret message header and
was not called; send if connect was interpret IP header.
called).
If receiving messages, perform the If sending messages, perform the following, usually
following, usually in a loop: in a loop:
a. Start data transfer (recvErom if a. Build the header, as specified by protocol, for
connect was not called; recv if type of message being sent.
connect was called).
b. Read and interpret message header b. Start data transfer (sendto if connect was
and receive IP header preceding your not called; send if connect was called).
data.

6. Close the socket (CLOSE or 6. Close the socket (CLOSE or FILE_CLOSE_).

FILE CLOSE).

Table 6 shows the steps performed by a RAW client and a RAW server in nowait operations.

Table 6 RAW—Nowait Client and Server Steps

Client Server

1. Optionally, set NonStop TCP/IP, 1. Optionally, set NonStop TCP/IP, TCPSAM, or
TCPSAM, or TCP6SAM process name TCP6SAM process name
(socket set inet name). (socket set inet name).

2. a. Create a raw socket (socket nw)with 2. a. Create a raw socket (socket nw)with (Elags
(Elags & 0200) nowait set. & 0200) nowait set.
b. Call AWATITIOX, followed by SETMODE b. Call AWAITIOX, followed by SETMODE 30,
30, followed by AWATTIOX, specifying followed by AWAITIOX, specifying the protocol
the protocol number. number.

3. Optionally, bind the socket to a local P 3. Bind the socket to a local IP address (bind nw,
address (bind_nw, followed by followed by AWATITIOX).
AWAITIOX).

4, Optionally, specify the remote address 4. Optionally, specify the remote address
(connect_nw, followed by AWAITIOX). (connect_nw, followed by AWAITIOX).

5. If sending messages, perform the 5. If receiving messages, perform the following,

following, usually in a loop:

Introduction to Programming to the Guardian Sockets Library

usually in a loop:

Table 6 RAW—Nowait Client and Server Steps (continued)

Client Server
a. Build the header, as specified by a. Start data transfer (t_recvfrom nw if
protocol, for type of message being sent. connect was not called; recv_nw if connect
was called; each followed by AWAITIOX).
b. Start data transfer (t_sendto _nw if b. Read and interpret message header and
connect was not called; send _nw if interpret IP header.
connect was called; each followed by
AWAITIOX).
If receiving messages, perform the If sending messages, perform the following, usually
following, usually in a loop: in a loop:
a. Start data transfer (t_recvfrom nw a. Build the header, as specified by protocol, for
if connect was not called; recv_nw if type of message being sent.
connect was called; each followed by
AWAITIOX).
b. Read and interpret message header b. Start data transfer (t_sendto nw if connect
and IP header. was not called; send_nw if connect was called;
each followed by awa1TIOX).
6. Close the socket (CLOSE or Close the socket (CLOSE or FILE_CLOSE_).

FILE CLOSE).

Programming Considerations

When programming your applications, you should consider the following naming convention for
the processes and for the handling of buffers in data transfers.

Process Names

All NonStop TCP/IP processes, Parallel Library TCP/IP processes (TCPSAMs), and NonStop
TCP/IPv6 processes (TCP6SAMs) have a device type of 48 support calls to the FILE_GETINFO
procedure. This provision allows applications to scan for all devices of a specified type, thereby
finding all appropriate processes in a system.

NOTE: Parallel Library TCP/IP is only available on NonStop S-series servers.

Multiple NonStop TCP/IP Processes and Logical Network Partitioning (LNP) (NonStop
TCP/IPv6, H-Series and G06.22 and Later G-Series RVUs Only)

Logical network partitioning (LNP) is a feature in NonStop TCP/IPv6 that allows you to use the
transport-service provider as a way fo restrict application access to particular network interfaces.
In Parallel Library TCP/IP and in NonStop TCP/IPv6 without LNP configured, all applications in
the system have access to all the network interfaces.

When LNP is configured, the NonStop TCP/IPv6 subsystem resembles the conventional NonStop

TCP/IP subsystem with multiple TCP/IP processes. The actions necessary to support the application
in a multiple NonStop TCP/IP-process environment are similar to the actions necessary to support
the application in a multiple-LNP environment.

With LNP configured, applications that initiate connections must select the correct TCP6SAM process
as their transport-service provider. The destination IP addresses must be reachable through the
transport-service provider of that TCP6SAM. That is, the destination IP addresses must be accessible
through the LNP of the TCP6SAM.

For more information about LNP and about selecting the correct TCP6SAM process, see the TCP/IPvé
Configuration and Management Manual.

Applications doing ACCEPT_NW?2 can only see listening sockets in the same LNP.

Programming Considerations 43

Multicasting Operations

Internet Protocol (IP) multicasting provides applications with IP layer access to the multicast capability
of Ethernet and networks. IP multicasting, which delivers datagrams on a best-effort basis, avoids
the overhead imposed by IP broadcasting on uninterested hosts; it also avoids consumption of
network bandwidth by applications that would otherwise transmit separate packets containing
identical data to reach several destinations.

IPv4 multicasting achieves efficient multipoint delivery through use of multicast groups. A multicast
group is a group of zero or more nodes that is identified by a single Class D IP destination address
(IPv4) or a single multicast address (IPv6). An IPv4 Class D address has 1110 in the four high-order
bits. In dotted decimal notation, IP multicast addresses range from 224.0.0.0 to 239.255.255.255,
with 224.0.0.0 being reserved. An IPvé multicast address has the format prefix of FFOO::/8.

A member of a particular multicast group receives a copy of all data sent to the IP address
representing that multicast group. Multicast groups can be permanent or transient. A permanent
group has a well-known, administratively assigned IP address. In permanent multicast groups, it
is the address of the group that is permanent, not its membership. The number of group members
can fluctuate, even dropping to zero.

In IPv4, the All Hosts group (224.0.0.1) and in IPv6 the All Nodes group (FFO1::1 (node-local, or
scope 1) and FF02::1 (link-local, or scope 2)) multicast addresses are examples of permanent
groups. See RFC 1884: IPvé Addressing Architecture for more information about IPvé6 multicast
addresses.

IP addresses that are not reserved for permanent multicast groups are available for dynamic
assignment fo transient groups. Transient groups exist only as long as they have one or more
members.

IP multicasting is not supported over connection-oriented transports such as TCP.

NOTE: IP multicasting is implemented using options to the setsockopt library call, described
in Chapter 4 (page 81). Definitions required for multicast-related socket options are in the <in.h>
and <iné.h> header files. Your application must include this header file if you intend that the
application receive IP multicast datagrams.

Sending IPv4 Multicast Datagrams

44

This subsection describe IPv4 only. For information about multicast for IPv6, see Multicast Changes
for IPv6 (page 59).

To send IPv4 multicast datagrams, an application indicates the host group to send to by specifying
an IP destination address in the range of 224.0.0.0 to 239.255.255.255 in a sendto library
call. The system maps the specified IP destination address to the appropriate Ethernet multicast
address prior to transmitting the datagram.

An application can explicitly control multicast options by using arguments to setsockopt library
calls. The following options can be set by an application using setsockopt library calls:

e Time-to-ive field (IP MULTICAST TTL)
e Multicast interface (IP_ MULTICAST IF)
o Disabling loopback of local delivery (1P MULTICAST LOOP)

NOTE: The syntax for and arguments to the setsockopt library call are described in
Chapter 4 (page 81). The examples here illustrate how to use the set sockopt options that
apply to IPv4 multicast datagrams only.

The IP_ MULTICAST TTL option to the setsockopt library call allows an application to specify
a value between O and 255 for the time-to-live (TTL) field. Multicast datagrams that have a TTL
value of O restrict distribution of the multicast datagram to applications running on the local host.
Multicast datagrams that have a TTL value of 1 are forwarded only to hosts on the local subnet. If

Introduction to Programming to the Guardian Sockets Library

a multicast datagram has a TTL value greater than 1 and a multicast router is attached to the
sending host's network, multicast datagrams can be forwarded beyond the local subnet. Multicast
routers forward the datagram to known networks that have hosts belonging to the specified multicast
group. The TTL value is decremented by each multicast router in the path. When the TTL value is
decremented to O, the datagram is not forwarded further.

The following example shows how to use the TP MULTICAST TTL option to the setsockopt
library call:

u_char ttl;
ttl=2;

if (setsockopt (sock, IPPROTO IP, IP MULTICAST TTL, &ttl,
sizeof (ttl)) == -1)

perror ("setsockopt") ;
A datagram addressed to an IP multicast destination is transmitted from the default network interface
unless the application specifies that an alternate network interface is associated with the socket.
The default interface is determined by the interface associated with the default route in the kernel
routing table or by the interface associated with an explicit route, if one exists. Using the
IP_MULTICAST_ IF option tothe setsockopt library call, an application can specify a network
interface other than that specified by the route in the kernel routing table.

The following example shows how to use the TP MULTICAST IF option to the setsockopt
library call to specify an interface other than the default:

int sock;
struct in addr ifaddress;
char *if to use = "16.141.64.251";
1faddress s_addr = inet addr(if to use);
if (setsockopt(sock IPPROTO IP, IP MULTICAST IF,
ifaddress,
sizeof (ifaddress)) == -1)
perror ("error from setsockopt IP MULTICAST IF");
else
printf ("new interface set for sending multicast

datagrams\n")

If o multicast datagram is sent to a group of which the sending host is a member, a copy of the
datagram is, by default, looped back by the IP layer for local delivery. The 1P MULTICAST LOOP
option to the setsockopt library call allows an application to disable this loopback delivery.

The following example shows how to use the IP_ MULTICAST LOOP option to the setsockopt
library call:
u_char loop=0;

if (setsockopt(sock, IPPROTO_IP, IP MULTICAST LOOP, &loop

sizeof (loop

)) == -1)

perror ("setsockopt") ;
When the value of loop is O, loopback is disabled. When the value of loop is 1, loopback is
enabled. For performance reasons, you should disable the default, unless applications on the same
host must receive copies of the datagrams.

Receiving IPv4 Multicast Datagrams

This subsection describe IPv4 only. For information about multicast for IPv6, see Multicast Changes
for IPv6 (page 59).

Multicasting Operations 45

Before a host can receive IP multicast datagrams destined for a particular multicast group, an
application must direct the host to become a member of that multicast group. This section describes
how an application can direct a host to add itself to and remove itself from a multicast group.

An application can direct the host it is running on to join a multicast group by using the
IP_ADD MEMBERSHIP option to the setsockopt library call as follows:
struct ip mreq mreq;
if (setsockopt(sock, IPPROTO IP, IP ADD MULTICAST, &mreq
sizeof (mreq
)) == -1)
perror ("setsockopt") ;
The mreq variable has the following structure:
structip mreg{
struct in addr imr multiaddr; /* IP multicast
address of group */
struct in addr imr interface; /* local IP
address of interface */

}i
Each multicast group membership is associated with a particular interface. The same group can
be joined on multiple interfaces. The imr interface variable can be specified as INADDR ANy,
which allows an application to choose the default multicast inferface. Alternatively, specifying one
of the host's local addresses allows an application to select a particular, multicast-capable interface.
The maximum number of memberships that can be added on a single socket is subject to the
IP_MAX MEMBERSHIPS value, which is defined in the <in.h> header file.

To drop membership in a particular multicast group, use the TP DROP_MEMBERSHIP option to
the setsockopt library call:
struct ip mreq mreq;
if (setsockopt(sock, IPPROTO_IP, IP DROP_MEMBERSHIP, &mreq
sizeof (mreq

))== -1)
perror ("setsockopt") ;

The mreq variable contains the same structure values as those values used for adding membership.

It multiple sockets request that a host join a particular multicast group, the host remains a member
of that multicast group until the last of those sockets is closed or memberships are dropped from
all the sockets.

To receive multicast datagrams sent to a specific UDP port, the receiving socket must have bound
to that port using the bind library call. More than one process can receive UDP datagrams destined
for the same port if the bind library call (described in Chapter 4) is preceded by a setsockopt
library call that specifies the SO_REUSEPORT option. The following example illustrates how to use
the SO_REUSEPORT option to the setsockopt library call:
int setreuse = 1;
if (setsockopt (sock, SOL SOCKET, SO _REUSEPORT, &setreuse,
sizeof (setreuse)) == -1)

perror ("setsockopt") ;
When the SO REUSEPORT option is set, every incoming multicast or broadcast UDP datagram
destined for the shared port is delivered to all sockets bound to that port.

Delivery of IP multicast datagrams to SOCK_RAW sockets is determined by the protocol type of the
destination.

Datagram Protocols and Flow Control

46

When using datagram protocols, the programmer must manage flow control. Lack of flow control
results in the receiver failing to keep up with the sender’s rate of transmission, causing a possible
overrun condition.

Introduction to Programming to the Guardian Sockets Library

Flow control can be achieved through:
e Rate-based

e Sliding window

o Explicit pacing

o Over subscription (guarantees that the sender cannot overrun the receiver’s capacity. The
receiver’s capacity is greatly in excess of the sender’s capacity).

A common misconception states that UDP is more efficient than TCP. However, that idea is only
true when you do not need flow control, data and session-loss detection, and accounting for
receiving out-of-sequence data. If you do need these properties, you have to provide them
programmatically.

However, all flow control must account for the possibility that a datagram could be lost by the
network due to congestion or other causes.

UDP is a datagram protocol and TCP is a stream-oriented protocol. TCP is also called
connection-oriented while UDP is called connectionless.

TCP guarantees all the properties not supplied by datagram protocols:
o Lloss of data detection (delivery assurance)

e Receiving data out of sequence

e Flow control

e Session loss detection

o Congestion avoidance

If these properties are implemented by a higher-level protocol that rides over UDP, you can use
UDP. Or, if these properties are not important (as is often the case with broadcast messages) you
can use UDP.

Optimal Ways to Deal With Connection Management

Since Guardian does not use signals (like OSS), for Guardian socket programs, the loss of
connection may be detected, but is not reportable until the next socket operation so issuing any
call might result in an immediate error. So it is possible that on issuing any of the calls, you may
get an immediate return indicating an error.

For both OSS and Guardian sockets, if you have lost a connection, send operations may not have
made it to the other side before the loss of connection. Therefore, if your application needs to
ensure data reception by the other side, you must have a higherlevel protocol that has some form
of feedback from the other side reflecting positive receipt of the data or the ability to reestablish

a synchronization point after the detection of loss of connection. Such a protocol would need, at
minimum, sequencing on the data and the ability, when the connection is reestablished, for the
receiving side to tell the sending side that it received data up to a specific point or to start over
again at a specific point. That process is the reestablishment of synchronization. The higher-level
protocol must reestablish synchronization because even TCP does not.

For example, if you are trying to send records of a files to the other side and you send records 1
through 1,000, you could get send completions for everything up to 1,000. But that only means
that your TCP/IP stack buffered everything, not that it successfully sent everything. In fact, an error
might occur, including loss of connection, after the data has been buffered. So, records 997 through
1,000 would still be sitting in the buffer and you would have no way to know that they never were
sent. A higher-level protocol would have numbered the records, then when the loss of connection
occurred, it would re-contact the other side and ask which records were sent.

FTP is an example of a higher-level protocol, but it does not do all of these functions. FTP makes
you start over from the beginning. FTP establishes synchronization at the end of file. When receiving
data, it looks for the start of the file, then everything in between, and then the end of the file. If a

Multicasting Operations 47

disconnect occurs before the end of file, FTP throws all the data away. FTP is still useful because
in fact, loss of connection does not happen often and the cost of retransmission is not always too
high. However, a transaction is being transmitted, you must know if it got there and was processed.
HP NonStop higher-level protocols frequently used for transaction processing include ODBC and
NonStop CORBA which are request/reply model protocols.

Using LISTNER for Custom Applications
It your application fits the standard listener model (see the TCP/IPvé Configuration and Management
Manual), you can use LISTNER to start your application programs just like it starts FTPSERV.
Input/Output Multiplexing

Multiplexing is a facility used in applications to transmit and receive |/O requests among multiple
sockets. HP NonStop systems support this facility with nowaited operations which also allow you
to multiplex socket 1/O with other kinds of I/O. The new IPvé library routines have not been
implemented in nowaited form. See Optimal Ways to Deal With Connection Management (page 47)
for information about nowaited operations.)

48 Introduction to Programming to the Guardian Sockets Library

2 Porting and Developin? IPv6 Applications (NonStop
TCP/IPv6 and CIP Only)

This section explains how to write Guardian socket applications for IPv4 and IPvé communications.
Topics include:

Using AF_INET6-Type Guardian Sockets for IPvé6 Communications
Using AF_INET6 Guardian Sockets for IPv4 Communications (page 50)
Using AF_INET6 Guardian Sockets to Receive Messages (page 51)
Address-Testing Macros (page 52)

Porting Applications to Use AF_INET6 Sockets (page 53)

Multicast Changes for IPv6 (page 59)

Using AF_INET6-Type Guardian Sockets for IPvé6 Communications

You can use AF_INETé-type Guardian sockets for IPvé communication as well as for [Pv4
communication. Table 7 (page 53) shows the sequence of events for a client application that uses
an AF_INET6-type Guardian socket to send IPvé packets.

Figure 2 Using AF_INET6 Sockets for IPv6 Communications

getaddrinfo -
Applhl%ngn [‘host1", ", hintz, rezult] ipnodes EOSEIJL
I'rc-sﬂ = Sffe1z00; 4 I P - I atabaze

a0z biffesd:0zke

connect 3

. ':l .-'- :
Sffe 1 20029001 | SR AF INETS sacket (TCF)

LIZer SEEIE =
kermel space

¥
Socket layer ‘

Sffe12000a00 .20 fe2d.02b2

¥
TCP UDP
™
S [] 3fte:1200:a00:2b i fe2ckozbe
IPva IFve | p
IFve
packet

WSTOZS v

Application calls getaddrinfo and passes the hostname (host1), the AF_INETé address family
hint, and the AI_ADDRCONFIG flag hints. The flag hints tell the function that if an IPv6 address
is found for host1, return it. See addrinfo for a description of hints fields and values.

The search finds an IPvé address for host1 in the hosts database, and getaddrinfo returns the
IPv6 address 3ffe:1200::a00:2bff:fe2d:02b2 in one or more structures of type addrinfo.

Using AF_INET6-Type Guardian Sockets for IPv6 Communications 49

3. The application calls socket to create an AF_INET6 socket, using the address family and socket
type contained in the addrinfo structure.

4. If the socket call is successtul, the application calls connect to establish a connection with

host1, using the host address and length in the addrinfo structure. If the connect call is
successful, the application sends information to the 3ffe:1200::a00:2bff:fe2d:02b2 address.

NOTE: After using the information in the addrinfo structures, the application calls freeaddrinfo
to free system resources used by the structures.

5. The socket layer passes the information and address to the UDP module.

6. The UDP module identifies the IPv6 address, puts the 3ffe:1200::a00:2bff:fe2d:02b2 address
into the packet header, and passes the information to the IPvé module for transmission.

From this point, the application can do the following:
e Call recv to wait for a response from the server system.

o Atfter the application receives a response, call getpeername, getpeername_nw to determine
the address of the connected socket. The address is returned in a structure of type sockaddr_iné.

o Call getnameinfo using the NI_NAMEREQD flag to obtain the server name.

o Call getnameinfo using the NI_NUMERICHOST flag to convert the server address to a text
string. Chapter 5 contains sample client program code that demonstrates these steps.

Using AF_INET6é Guardian Sockets for IPv4 Communications

You can also use an AF_INET6 socket for IPv4 communications. Figure 3 (page 50) shows the
sequence of events for a client application that uses an AF_INET6 socket to send IPv4 packets.
(For information about IPv4 mapped IPvé addresses, see the TCP/IPvé Configuration and
Management Manual.)

Figure 3 Using AF_INET6 Sockets for IPv4 Communications (Send)

getacldrinfo o
Apél?:gbn ("host1®, ", hintz, result) w 3 H'Z'St‘-‘:
I'r:-st1 = 1254 4— hostl =1.2.3.4 a4—0 'F' =2 [Database
[Pua Mapped |P+6 Address W

connect to 3
. . L] 3 -
o1 2.3.4 open AF_IMETE socket (TCF)

¥
‘ Sockst layer ‘
[5] 1254
TCP LICP
i IPve | | p
|Py4
pachket

VST s

50 Porting and Developing IPv6 Applications (NonStop TCP/IPv6 and CIP Only)

5.
6.

The application calls getaddrinfo and passes the hostname (host1), the AF_INET6 address
family hint, and the AI_ADDRCONFIG and Al_V4MAPPED flag hints. The flag hints fell the
function that if an IPv4 address is found for host1, return it as an IPv4-mapped IPv6 address.
See addrinfo for a description of hints fields and values.

The search finds an IPv4 address, 1.2.3.4, for host1 in the hosts database, and getaddrinfo
returns the IPv4-mapped IPvé address ::ffff:1.2.3.4 in one or more structures of type addrinfo.
The application calls socket to create an AF_INETé socket, using the address family and socket
type contained in the addrinfo structure. The socket is a datagram socket (UDP) in this example,
but could be a stream socket (TCP).

If the socket call is successful, the application calls connect to establish a connection to host1,
using the host address and length in the addrinfo structure. If the connect call is successful,
the application sends information to the ::ffff:1.2.3.4 address.

NOTE: After using the information in the addrinfo structures, the application calls freeaddrinfo
to free system resources used by the structures.

The socket layer passes the information and address to the UDP module.

The TCP module identifies the IPv4-mapped IPvé address, puts the 1.2.3.4 address into the
packet header, and passes the information to the IPv4 module for transmission.

From this point, the application can do the following:

Call recv to wait for a response from the server system.

After the application receives a response, call getpeername to determine the address of the
connected socket. The address is returned in a structure of type sockaddr_iné. If you want
your application to be protocol-independent, use the sockaddr_storage structure instead of
the sockaddr_iné structure.

Call getnameinfo using the NI_NAMEREQD flag to obtain the server name.

Call getnameinfo using the NI_NUMERICHOST flag to convert the server address to a text
string. Chapter 5 contains sample client program code that demonstrates these steps.

Using AF_INET6 Guardian Sockets to Receive Messages

AF_INET6 sockets can receive messages sent to either IPv4 or IPvé addresses. An AF_INET6 socket
uses the IPv4-mapped IPv6 address format to represent IPv4 addresses. Figure 2-3 shows the
sequence of events for a server application that uses an AF_INETé socket to receive IPv4 packets.

Using AF_INET6 Guardian Sockets to Receive Messages 51

Figure 4 Using AF_INET6 Socket for IPv4 Communications (Receive)

N

ok w

9.

User getnameinfo
Applzaticm (&zazalen &node nodelen, ', O, flags)
[2]hostt = offff1 2,54 4——host1 =1.2.5.4 -—

IFud Mapped IFvs Address
open AF_INETS zocket (TCF)
intialize sockacldr_storage structure
bind to ingaddr_ary
callz accept user space
E kernzl zpace

¥

Socket layer
A
TCP LDF
F

WETOET s

The application calls socket to create an AF_INET6 socket.

The application initializes a sockaddr_storage structure, and sets the family, address, and
port.

The application calls bind to assign in6baddr_any to the socket.

The application calls accept to mark the socket to listen and wait for incoming connections.
An IPv4 packet arrives and passes through the IPv4 module.

The TCP layer strips off the packet header and passes the information and the IPv4-mapped
address (:ffff:1.2.3.4) to the socket layer.

The socket layer returns the information to the application. The information from the socket is
passed to the application in a sockaddr_storage structure. (Using sockaddr_storage instead
of sockaddr_in6 makes the application protocol-independent.)

The application calls getnameinfo and passes the ::ffff:1.2.3.4 address and the NI_NAMEREQD
flag. The flag fells the function to return the hostname for the address. See getnameinfo
(page 117) for a description of the flags bits and their meanings.

The search finds the hostname for the 1.2.3.4 address in the hosts database, and getnameinfo
returns the hostname.

Chapter 5 contains sample server program code that demonstrates these steps.

Address-Testing Macros

In some cases, an application that uses an AF_INET6 socket for communications needs to determine
the type of address that is returned in the structure. For this case, the APl defines macros to fest the

52 Porting and Developing IPv6 Applications (NonStop TCP/IPv6 and CIP Only)

addresses. Table 7 lists the currently defined address-testing macros and the return value for a
valid test. To use these macros, include the following file in your application:

#include <iné6.h>

The address-testing macros return true if the address is of the specified type, otherwise, they return
false. The scope-testing macros test the scope of a multicast address and return true if the address
is a multicast address of the specified scope or false if the address is either not a multicast address
or not of the specified scope. IN6_IS_ADDR_LINKLOCAL and IN6_IS_ADDR_SITELOCAL return
true only for the two local-use IPvé unicast addresses; these two macros do not return true for IPvé
multicast addresses of either link-local scope or site-local scope.

Table 7 Address and Scope-Testing Macros

Address-Testing Macros Scope-Testing Macros

int IN6_ IS ADDR UNSPECIFIED int IN6_ IS ADDR MC NODELOCAL
(const struct in6 addr *); (const struct iné6 addr *);
int IN6 IS ADDR LOOPBACK int IN6 IS ADDR MC LINKLOCAL
(const struct iné addr *); (const struct iné addr *);
int IN6_IS ADDR MULTICAST int IN6_IS ADDR MC_SITELOCAL
(const struct in6_addr *); (const struct in6_addr *);
int IN6_ IS ADDR LINKLOCAL int IN6_ IS ADDR MC ORGLOCAL
(const struct iné6 addr *); (const struct iné6 addr *);
int IN6 IS ADDR SITELOCAL int IN6 IS ADDR MC GLOBAL
(const struct iné addr *); (const struct iné addr *);

int IN6_ IS ADDR_V4MAPPED
(const struct in6_addr *);

int IN6 IS ADDR V4COMPAT
(const struct iné6 addr *);

Porting Applications to Use AF_INET6 Sockets

AF_INET6 sockets enable applications to communicate using the IPvé protocol, IPv4 protocol, or
both. For IPv6 communication, RFC 2553, Basic Socket Interface Extensions for IPvé, specifies
changes to the BSD socket Applications Programming Interface (API). Table 2-2 summarizes these
changes.

Table 8 Summary of IPvé Extensions to the BSD Socket API

Category Changes

Core function calls None; basic syntax of socket functions stays the same. Applications must
cast pointers to the protocol-specific address structures into pointers to the
generic sockaddr address structure when using the socket functions. See
Making Structure Changes (page 54) for information on creating Internet
applications.

Socket address structure Specifies a new sockaddr iné structure for IPvé communications and a
sockaddr storage structure for protocol-independent communication.
The sockaddr_in structure remains for IPv4 communications. See Making
Structure Changes (page 54) for more information.

Name-to-address translation Specifies the getnameinfo, getaddrinfo, getipnodebyname, and
getipnodebyaddr functions for protocol-independent (IPv4 and IPv6)
communication. The gethostbyaddr and gethostbyname functions
remain for IPv4 communications only. See Making Library Routine Changes
(page 56) for more information.

Address conversion functions Specifies the inet _pton and inet ntop functions for
protocol-independent (IPv4 and IPvé) address conversion. The inet ntoa

Porting Applications to Use AF_INET6 Sockets 53

Table 8 Summary of IPvé Extensions to the BSD Socket API (continued)

Category Changes

and inet addr functions remain for IPv4 address conversion only. See
Making Library Routine Changes (page 56) for more information.

Socket options Specifies new socket options for IPv6 multicast. See Multicast Changes for
IPvé (page 59) for more information.

Application Changes

This subsection describes the changes you must make in your existing application code in order
to operate in an IPvé networking environment. When you have finished porting your applications
to IPvé, any existing IPv4 applications continue to operate as before and also interoperate with
your IPvé application.

Changes to your applications described in this subsection include:
e Making Name Changes

e Making Structure Changes

e Making Library Routine Changes (page 56)

e Making Other Application Changes (page 57)

Making Name Changes

Most changes required are straightforward and mechanical but some may require some code
restructuring. (For example, a routine that returns an int datatype holding an IPv4 address may
need fo be modified to take a pointer to an in6_addr structure as an extra parameter into which
it writes the IPv6 address). Table 9 summarizes the changes to make to your application's code.

Table 9 Name Changes

Search file for: Replace with:
AF_INET AF_INET6
PF_INET PF_INET6
INADDR_ANY in6baddr_any

Making Structure Changes

54

The structure names and field names have changed for the following structures:
e in addr

e sockaddr in

e sockaddr

° hostent

in_addr Structure Changes for Protocol-Independent Applications

Applications that use the in_addr structure must be changed, as needed, to use the in6_addr
structure, as shown in the following examples:

AF_INET Structure AF_INETé6 Structure
struct in_addr struct in6_addr
unsigned long s_addr u_char sa6_addr

Porting and Developing IPvé Applications (NonStop TCP/IPvé and CIP Only)

Make the following changes in your application, as needed:

Original Change fo
Structure Name in_addr in6_addr
Data Type unsigned long u_char
Field Name s_addr sab_addr

See Making Other Application Changes (page 57) for additional changes you might need to make
to your application. See also in6_addr (page 70) for alternative definitions of the in6_addr data
structure.

sockaddr_in Structure Changes for IPv6 Applications

Applications that use the 4.4 BSD sockaddr in structure must be changed, as needed, to use
the sockaddr iné structure for IPv6 sockets as shown in the following examples:

AF_INET Structure AF_INET6 Structure Comment

struct sockaddr_in unsigned char struct sockaddr_in6 uint8_t sin6_len length of this struct (24)AF_INETé
sin_len sa_family_t sin_family in_port_t sa_family_t sin6_family int_port_t familytransport layer port #IPvé address
sin_port struct in_addr sin_addr sin6_port struct in6_addr sin6_addr

NOTE: In addition to the fields shown above for INET6, there are two new fields in INETé:
sin6_flowinfo and siné_scope_id. See sockaddr_iné (page 78).

Make the following change in your application, as needed:

Original Change to
Structure Name sockaddr_in sockaddr iné
Data Type/Field Name unsigned char sin len u_int8 t siné len
Data Type/Field Name sa_family t sin family sa_family t sin family
Data Type/Field Name in port t sin port int_port t siné port
Data Type/Field Name struct in_addr sin addr struct iné_addr siné_addr

Applications that use the 4.3 BSD sockaddr_in structure must be changed, as needed, to use
the sockaddr_iné structure for IPvé sockets as shown in the following examples:

AF_INET Structure AF_INET6 Structure

struct sockaddr_in u_short sin_family in_port_t sin_port struct struct sockaddr_iné u_short sin6_family in_port_t sin6_port
in_addr sin_addr struct iné_addr sin6_addr

NOTE: In addition to the fields shown above for INET6, there are two new fields in INETé:
sin6_flowinfo and sin6_scope_id. See sockaddr_in6 (page 78).

Make the following change in your application, as needed:

Original Change to
Structure Name sockaddr in sockaddr iné6
Data Type/Field Name u_short sin family u_short siné family
Data Type/Field Name in _port_t sin_port in port_t siné port
Data Type/Field Name struct in addr sin addr struct iné_addr siné addr

Porting Applications to Use AF_INET6 Sockets 55

NOTE: In both cases, you should initialize the entire sockaddr _iné structure to zero affer your
structure declarations.

Making Library Routine Changes

56

You must make changes, as needed, to applications that use the following library routines:
° gethostbyaddr

e gethostbyname

e 1inet ntoa

e inet addr

gethostbyaddr Function Call

Change applications that use the get hostbyaddr function call to use the getnameinfo function
call, as shown in the following examples:

AF_INET Call AF_INETé6 Call
gethostbyaddr(xxx,4,AF_INET) getnameinfo(esockaddr, sockaddr len, node name,
name len,

service, service len, fl ags),’

Make the following changes in your application, as needed:

Change the function name from gethostbyaddr to getnameinfo and provide a pointer to the
socket address structure, a character string for the returned node name, an integer for the length
of the returned node name, a character string to receive the returned service name, an integer for
the length of the returned service name, and an integer that specifies the type of address processing
to be performed.

Alternatively, you can use getipnodebyaddr. The difference between getnameinfo and
getipnodebyaddr is that getnameinfo returns both the node name and the services name
and getipnodebyaddr returns just the node name. get ipnodebyaddr also requires another
call, freehostent, to free the hostent structure when the call is complete.

See getnameinfo (page 117) and getipnodebyaddr (page 114) for more information about these
library routines.
gethostbyname Function Calll

Applications that use the get hostbyname function call must be changed to use the getaddrinfo
function call, as shown in the following examples:

AF_INET Call AF_INET6 Call
gethostbyname(name) getaddrinfo(node name, service name, &hints,
&result);

freeaddrinfo(result);

Make the following changes in your application, as needed:

Porting and Developing IPv6 Applications (NonStop TCP/IPv6 and CIP Only)

1. Change the function name from gethostbyname to getaddrinfo.
2. Provide:

e a character string for the returned node name
e a character string for the service name
e a pointer to a hints structure that contains processing options

e a pointer to an addrinfo structure or structures for the returned address information.
(See getaddrinfo (page 107) for a description of hints fields and values.)

3. Add a call to the freeaddrinfo routine to free the addrinfo structure or structures when
your application is finished using them.

Alternatively, you can use getipnodebyname. The difference between getaddrinfo and
getipnodebyname is that getaddrinfo returns both the node address and the port number
and getipnodebyaddr returns just the node address. get ipnodebyname also requires another
call, freehostent, to free the hostent structure when the call is complete.

See getaddrinfo and getipnodebyname for more information about these calls.

If your application needs to determine whether an address is an IPv4 address or an IPvé address,
and cannot determine this information from the address family, use the IN6 IS ADDR V4MAPPED
macro. See Address-Testing Macros (page 52) for a list of IPvé address testing macros.

inet_ntoa Function Call

Applications that use the inet_ntoa function call must be changed to use the inet _ntop function
call, as shown in the following examples:

AF_INET Call AF_INET6 Call
inet_ntoa(addr) inet_ntop(family, &addr, &buff, len)

In your applications, change the function name from inet ntoa to inet ntop and provide the
family name (AF_INET or AF_INET®), the address of the input buffer containing the binary address,
a non-NULL address, and the size of the address to convert. See inet_ntop (page 138) for a
description of the |ibrqry routine.

inet_addr Function Call

Applications that use the inet_addr function call must be changed to use the inet pton function
call, as shown in the following examples:

AF_INET Call AF_INET6 Call
result=inet_addr(&string); result=inet_pton(family, &addr, &buff)

Make the following changes in your application, as needed:

Change the function name from inet addrto inet_pton and provide the family name (AF_INET
or AF_INET6), the address of the address string containing to be converted, and the address of
the buffer into which the function stores the numeric address upon return. See inet_pton (page 139)
for a description of hints fields and values.

Making Other Application Changes

In addition to the name changes, you should review your code for specific uses of IP address
information and variables.

Porting Applications to Use AF_INET6 Sockets 57

Comparing IP Addresses

If your application compares IP addresses or tests IP addresses for equality, the in6_addr structure
changes you made in Making Structure Changes (page 54) change the comparison of int quantities
to a comparison of structures. This modification breaks the code and causes compiler errors.

Make either of the following changes to your application, as needed:

AF_INET Code AF_INET6 Code
(addr1->s_addr == addr2->s_addr) (memcmp(addrl, addr2, sizeof(struct in6_addr)) == 0)

Change the equality expression to one that uses the memcmp (memory comparison) function.

AF_INET Code AF_INET6 Code
(addr1->s_addr == addr2->s_addr) IN6_ARE_ADDR_EQUAL(addr1, addr2)

Change the equality expression to one that uses the IN6 ARE ADDR EQUAL macro. See
Address-Testing Macros (page 52) for a list of IPv6 address testing macros.

Comparing an IP Address to the Wild Card Address

It your application compares an IP address to the wild card address, the in6 _addr structure
changes you made in Making Structure Changes (page 54) change the comparison of int quantities
to a comparison of structures. This modification breaks the code and cause compiler errors.

Make either of the following changes to your application, as needed:

AF_INET Code AF_INETé Code
(addr->s_addr == INADDR_ANY) IN6_IS_ADDR_UNSPECIFIED(addr)

Change the equality expression to one that uses the IN6 IS ADDR UNSPECIFIED macro. See
Address-Testing Macros (page 52) for a list of IPv6 address testing macros.

AF_INET Code AF_INET6 Code
(addr->s_addr == INADDR_ANY) (memcmp(addr, inbaddr_any, sizeof(struct in6_addr)) == 0)

Change the equality expression to one that uses the memcmp (memory comparison) function.

Using int Data Types to Hold IP Addresses

If your application uses int data types to hold IP addresses, the in6_addr structure changes you
made in Making Structure Changes (page 54) changes the assignment. This modification breaks
the code and causes compiler errors.

Make the following changes to your application, as needed:

AF_INET Code AF_INET6 Code
struct in_addr foo; struct iné_addr foo
int bar; struct iné_addr bar;
bar = foo.s_addr; bar = foo;

1. Change the data type for bar from int fo a struct iné_addr.
2. Change the assignment statement for bar to remove the s_addr field reference.

58 Porting and Developing IPv6 Applications (NonStop TCP/IPv6 and CIP Only)

Using Functions That Return IP Addresses

If your application uses functions that return IP addresses as int data types, the iné_addr structure
changes you made in Making Structure Changes (page 54) changes the destination of the return
value from an int to an array of char. This modification breaks the code and causes compiler

errors.

Make the following changes to your application, as needed:

AF_INET Code AF_INET6 Code
struct in_addr *addr; struct in6_addr *addr;
addr->s_addr = foo(xxx); foo(xxx, addr);

Restructure the function to enable you to pass the address of the structure in the call. In addition,
modify the function to write the return value into the structure pointed to by addr.

Changing Socket Options

If your application uses IPv4 IP-level socket options, change them to the corresponding IPv6 options.
See setsockopt, sefsockopt_nw (page 184) for more information.

Multicast Changes for IPvé

This subsection describes changes you need to make to perform multicast communications in [Pv6.
This subsection describe IPv6 sending and receiving only. For information about multicast for [Pv4
as well as overview information about IPv6 multicast communications, see Multicasting Operations
(page 44).

Sending IPv6 Multicast Datagrams

To send IPv6 multicast datagrams, an application indicates the multicast group to send to by
specifying an IPvé multicast address in a sendto library call. (See sendto (page 177).) The system
maps the specified IPvé destination address to the appropriate Ethernet or FDDI multicast address
prior to transmitting the datagram.

An application can explicitly control multicast options by using arguments to set the following
options in the set sockopt and setsockopt nw library calls:

e Hop limit (IPV6 MULTICAST HOPS)
e Multicast interface (IPV6_MULTICAST IF)
o Disabling loopback of local delivery (IPv6é _MULTICAST LOOP)

NOTE: The syntax for and arguments to the setsockopt library call are described in
setsockopt, setsockopt_nw (page 184). The examples here and in Chapter 4 illustrate how to
use the setsockopt options that apply to IPv6 multicast datagrams only.

The IPV6 MULTICAST HOPS option fo the setsockopt library call allows an application to specify
a value between 0 and 255 for the hop limit field.

e Multicast datagrams that have a hop limit value of O restrict distribution of the multicast
datagram to applications running on the local host.

e Multicast datagrams that have a hop limit value of 1 are forwarded only to hosts on the local

link.

It o multicast datagram has a hop limit value greater than 1 and a multicast router is attached to
the sending host's network, multicast datagrams can be forwarded beyond the local link. Multicast
routers forward the datagram to known networks that have hosts belonging to the specified multicast

group.

Multicast Changes for IPv6 59

The hop limit value is decremented by each multicast router in the path. When the hop limit value
is decremented to O, the datagram is not forwarded further.

The following example shows how to use the IPV6 MULTICAST HOPS option fo the set sockopt
library call:
setsockopt library call:
u_char hops;
hops=2;
if (setsockopt (sock, IPPROTO IPV6, IPV6 MULTICAST HOPS, &hops,
sizeof (hops)) < 0)

perror ("setsockopt: IPV6 MULTICAST HOPS error") ;
A multicast datagram addressed to an IPvé multicast address is transmitted from the default network
interface unless the application specities that an alternate network interface is associated with the
socket. The default interface is determined by the interface associated with the default route in the
kernel routing table or by the interface associated with an explicit route, if one exists. Using the
IPV6 MULTICAST IF option to the setsockopt library call, an application can specify a
network inferface other than that specified by the route in the kernel routing table.

The following example shows how to use the IPV6_MULTICAST IF option to the setsockopt
library call to specify an interface other than the default:

u_int if index = 1;

if (setsockopt (sock, IPPROTO IPV6, IPV6 MULTICAST IF, &if index,
sizeof (if index)) < 0)
perror ("setsockopt: IPV6 MULTICAST IF error");
else
printf ("new interface set for sending multicast datagrams\n") ;
The if index parameter specifies the interface index of the desired interface or O to select a
default inferface. You can use the if nametoindex routine to find the interface index.

It @ multicast datagram is sent to a group of which the sending node is a member, a copy of the
datagram is, by default, looped back by the IP layer for local delivery. The

IPV6 MULTICAST LOOP option to the setsockopt library call allows an application to disable
this loopback delivery.

The following example shows how to use the IPV6_MULTICAST LOOP option fo the set sockopt
library call:
u_char loop=0;
if (setsockopt(sock, IPPROTO IPV6, IPV6 MULTICAST LOOP, &loop,

sizeof (loop)) < 0)

perror ("setsockopt: IPV6 MULTICAST LOOP error") ;
When the value of 1oop is 0, loopback is disabled. When the value of 1o0p is 1, loopback is
enabled. For performance reasons, you should disable the default, unless applications on the same
host must receive copies of the datagrams.

Receiving IPvé6 Multicast Datagrams

60

Before a node can receive IPvé multicast datagrams destined for a particular multicast group other
than the a11 nodes group, an application must direct the node to become a member of that
multicast group.

This subsection describes how an application can direct a node to add itself to and remove itself
from a multicast group.

An application can direct the node it is running on to join a multicast group by using the
IPV6_JOIN_GROUP option to the setsockopt library call as follows:

struct ipvé _mreq imré6;

Porting and Developing IPv6 Applications (NonStop TCP/IPv6 and CIP Only)

imr6.ipvémr interface = if index;

if (setsockopt (sock, IPPROTO IPV6, IPV6 JOIN GROUP,
(char *)&imré6, sizeof (imré6)) < 0)
perror ("setsockopt: IPV6 JOIN GROUP error") ;

The / variable has the following structure:

struct ipvé mreq {
struct iné addr ipvémr multiaddr; /*IP multicast address of group*/
unsigned int ipvémr interface; /*local interface index*/

}i
Each multicast group membership is associated with a particular interface. It is possible to join the
same group on multiple interfaces. The ipvemr interface variable can be specified with a
value of O, which allows an application to choose the default multicast interface. Alternatively,
specifying one of the host's local interfaces allows an application to select a particular,
multicast-capable interface. The maximum number of memberships that can be added on a single
socket is subject to the ITPV6 MAX MEMBERSHIPS value, which is defined in the <iné6 . h> header
file.

Dropping Membership in a Multicast Group

To drop membership in a particular multicast group use the IPV6 LEAVE GROUP option to the
setsockopt library call (see setsockopt, setsockopt_nw (page 184)):

struct ipvé mreq imré6;

if (setsockopt(sock, IPPROTO_ IPV6, IPV6 LEAVE GROUP, &imreé,

sizeof (imr6)) < 0)
perror ("setsockopt: IPV6 LEAVE GROUP error") ;

The imr6 parameter contains the same structure values used for adding membership.

If multiple sockets request that a node join a particular multicast group, the node remains a member
of that multicast group until the last of those sockets is closed.

To receive multicast datagrams sent to a specific UDP port, the receiving socket must have bound
to that port using the bind library call. More than one process can receive UDP datagrams destined
for the same port if the bind library call (described in Chapter 4) is preceded by a setsockopt
library call that specifies the SO REUSEPORT option.

Delivery of IP multicast datagrams to SOCK_RAW sockets is determined by the protocol type of the
destination.

Multicast Changes for IPv6 61

3 Data Structures

This section describes the library header files and the data structures declared in the headers. The
function declarations and data structures contained in the header files are used by the socket library
routines described in Chapter 4.

Library Headers

The declarations of the functions in the socket library are provided in both C and TAL programming
languages. Other languages can be used to interface to the socket library, subject to C compiler
restrictions.

NOTE: Use the Common Run-Time Environment (CRE) when developing TAL socket applications.
CRE is described in the CRE Programming Manual.

All TAL declarations are in the $SYSTEM. ZTCPIP.SOCKDEFT file.

Each C header contains declarations for a related set of library functions, as well as constants and
structures that enhance that set. When you use a routine in the socket library, you must first make
sure that you have included the headers listed in the #include directives that precede the calling
syntax for that routine (see the syntax boxes in Chapter 4).

You should not declare the routine itself because the header files contain declarations for the
routines. Header declarations include directives stating whether you are compiling for the
large-memory model or the wide-data model.

The socket library header files are supplied in the subvolume, $SYSTEM. zTCPIP.

Table 10 lists the NonStop TCP/IP, Parallel Library TCP/IP, and NonStop TCP/IP C header files
and their contents. (TCP/IP/PL in this table denotes Parallel Library TCP/IP.)

NOTE: Parallel Library TCP/IP is only available on NonStop S-series servers.

Table 10 Summary of C Header Files and Contents

Header Files Subsystem Contents

it.h TCP/IP, Structures defining the network-level interface
TCP/IP/PL,
TCP/IPv6

in.h TCP/IP, Constants and structures defined by the Internet system
TCP/IP/PL,
TCP/IPvé

in6.h TCP/IPvé6 Constants and structures for IPvé.

ioctl.h TCP/IP, I/O control definitions
TCP/IP/PL,
TCP/IPv6

netdb.h TCP/IP, Structures returned by the network database library
TCP/IP/PL,
TCP/IPvé

route.h TCP/IP, Definitions related to routing tables
TCP/IP/PL,
TCP/IPv6

socket.h TCP/IP, Definitions related to sockets: types, address families, options
TCP/IP/PL,
TCP/IPvé

62 Data Structures

Some of the following C header files are used internally by the NonStop TCP/IP, Parallel Library
TCP/IP, and NonStop TCP/IPv6 subsystems; others are useful in some application programs. The
files are user-readable and contain comments describing their contents, as follows:

af.h insystm.h nameser.h sockvar.h tcpseqg.h udpvar.h
domain.h invar.h netisr.h syscal.h teptimr.h uio.h
icmpvar.h ip.h param.h tcp.h tcpvar.h user.h
ifarp.h ipicmp.h protosw.h tcpdeb.h time.h

ifether.h ipvar.h rawcb.h tcpfsm.h types.h

inpcb.h mbuf .h resolv.h tcpip.h udp.h

Data Structures

Several important data structures are used by the socket library routines. The data structures are
provided in the header files in the $SYSTEM. ZTCPIP subvolume. Table 11 lists the data structures,
indicating the page where its documented and the C header file in which each structure is declared
as well as the type of routine that uses that structure.

Table 11 Summary Data Structures and C Header Files

Structure Header File Type of Routine That Uses Structure
addrinfo (page 64) netdb.h Support

arpreq (page 65) ifarp.h Socket 1/0
hostent (page 66) netdb.h Support
if_nameindex (page 67)* if.h Socket I/O

ifreq (page 68) if.h Socket I/O
in_addr (page 69) in.h Socket

in6_addr (page 70)* in.h Socket
ipv6_mreq (page 71)* in.h Socket I/O
netent (page 71) netdb.h Support
open_info_message (page 72) netdb.h Support

protoent (page 73) netdb.h Support

rtentry (page 74) route.h Socket I/O
send_nw_str (page 75) netdb.h Socket (send_nw)
sendto_recvirom_buf (page 76) in.h Socket

servent (page 76) netdb.h Support
sockaddr (page 77) netdb.h Socket
sockaddr_in (page 78) in.h Socket
sockaddr_in6 (page 78)* in.h Socket
sockaddr_storage (page 79)* in.h Socket

* Applies to NonStop TCP/IPv6 only

See Chapter 4 (page 81), for more information about the different types of socket library calls;
the socket function calls are listed in Table 12 (page 82). The socket I/O control operations are
socket ioctl and socket ioctl nw. The socket |/O control operations and the structures
they use are listed in Table 16 (page 199).

Data Structures 63

The data structures used by the support routines are built from the following data files:
° SSYSTEM.ZTCPIP.HOSTS

° $SYSTEM.ZTCPIP.IPNODES (NonStop TCP/IPv6 only)

° SSYSTEM.ZTCPIP.SERVICES

° SSYSTEM.ZTCPIP.NETWORKS

o SSYSTEM.ZTCPIP.PROTOCOL

The formats of these four data files are given in the TCP/IPv6 Configuration and Management
Manual.

In this section, the description of each structure includes the following information:
e Purpose of the structure

e Structure declaration (enclosed in a box), for both C and TAL

o Description of each field in the structure declaration

o Type of routine that uses the structure

The structure descriptions are arranged alphabetically.

addrinfo

The address info structure is used by the network database library. This structure is defined in the
netdb.h header file. Use this structure in applications that assume some of the functions of a
transport protocol such as TCP or UDP.

C Declaration

#include <netdb.h>
struct addrinfo ({

int ai_flags; /*input flags */

int ai family; /*protofamily for socket */

int ai_socktype; /* socket type */

int ai_protocol; /* protocol for socket */

size t ai_addrlen; /* length of socket address /*

char *al canonname; /* ptr to canonical name for host*/

struct sockaddr *ai addr; /* ptr to socket address structure */
struct addrinfo *ai next; /* pointer to next in list */

}i

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT addrinfo (*);

INT (32) ai flags;
INT (32) ai family;
INT (32) ai socktype;
INT (32) ai protocol;
INT (32) ai_addrlen;

STRING .EXT ai_ canonname;
INT (32) .EXT ai addr (sockaddr) ;
INT (32) .EXT ai next (addrinfo) ;

ai_flags
contains a combination of one or more of the following flags:

Al_PASSIVE Returns an address that can be passed to the bind function. If
hostname is NULL, the address is set to INADDR_ANY or
in6addr_any, as appropriate for the address family. If this flag is

64 Data Structures

Al_CANONNAME

AI_NUMERICHOST

AlI_NUMERICSERV

Al_V4AMAPPED

ALALL

AI_ADDRCONFIG

Al_DEFAULT (AI_VAMAPPED |
AI_ADDRCONFIG)

not set, the returned address can be passed to the connect function. If
hostname is NULL, the address is set to the loopback address.

Requests the return of the canonical name for the host if the hostname
is not NULL.

Specifies that the hostname value is a numeric address string. If this
flag is set and hostname is not a numeric address string, the returned
value is set to EAI_NONAME. Use this flag to prevent calling a name
resolution service like DNS.

Specifies that the service value is a non NULL numeric port string. If
this flag is set and service is not a numeric port string, the returned
value is set to EAT_NONAME. Use this flag to prevent calling a name
resolution service like DNS.

Requests the return of all IPv4-mapped IPvé addresses when the address
family is AF_INET6 and no matching IPv6 addresses exist. This flag is
ignored if the address family is AF_INET.

Requests the return of all matching IPv4 and IPvé records. This flag is
ignored unless AT VAMAPPED is also set.

Requests the return of only IPvé records if a host has at least one IPv6
source address configured, or only IPv4 records if a host has at least
one IPv4 source address configured.

If ALADDRCONFIG | AI_V4MAPPED is specified, the A records are
returned as IPv4-mapped IPv6 addresses.

If no error is returned, points to a list of addrinfo structs. For each addrinfo struct, ai_family,
ai_socktype, and ai_protocol may be used as arguments to the socket function.

ai family

indicates a literal of the form PF_xxx, where xxx indicates the address family as a protocol
family name. This member can be used with the socket function.

ai socktype

indicates a literal of the form SOCK _xxx, where xxx indicates the socket type.

ali protocol

indicates either O (zero) or a literal of the form TPPROTO xxx, where xxx indicates the

protocol type.

ali_addrlen

is the length of the socket address.

ai_ canonname

is a pointer to the canonical name for the host.

ai addr

is a pointer to the socket address structure that can be used with any socket function that
requires a socket address. The length of a specific ai_addr value is described by the

member named ai_addrlen.

ai next

is a pointer to the next structure in the linked list.

arpreq

The ARP request structure is used by Address Resolution Protocol (ARP) I/O control operations.
This structure is defined in the i farp.h header file. Use this structure in applications that assume
some of the functions of a transport protocol such as TCP or UDP, or bootp.

C Declaration

#include <ifarp.h>
struct arpreq {

Data Structures 65

struct sockaddr arp pa;

struct
unsigned short sa family;
unsigned char sa datal[6];
}arp_ha;
short arp_flags;

}i

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT arpha (*);
BEGIN
INT sa family;
STRING sa datal[0:5];
END;

STRUCT arpredq;

BEGIN
STRUCT arp pa (sockaddr) ;
STRUCT arp ha (arpha) ;
INT arp flags;
END;
arp pa

contains the Internet address of the machine.

NOTE: Since arp_pa is a sockaddr struct, it contains fields for the port, address family,
and Internet address. However, ARP is only concerned with the Internet address. The programmer
is responsible for filling the port and address family fields with null values.

sa family

is the type of address. lts value is always AF_UNSPEC.
sa data

contains the Ethernet address of the machine specified in arp pa.
arp flags

contains a combination of one or more of the following flags:

ATF INUSE Indicates the entry is in use.

ATF_COM Indicates a completed entry (the Ethernet address is valid).
ATF_PERM Indicates a permanent entry.

ATF_PUBL Indicates a publish entry (that is, a response for another host).

hostent

This structure is used by the support routines to hold hostname and address information. It is defined
in the netdb . h header file.

C Declaration

#include <netdb.h>

struct hostent {

char *h name;

char **h aliases;

int h addrtype;

int h length;

char **h addr list;
#define h addr h addr 1ist[0]
}i

66 Data Structures

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT haliase (*);

BEGIN
STRING .EXT ptrs;
END;
STRUCT hptrs (haliase) [0:4];
STRUCT ha aliase (*);
BEGIN
STRING .EXT ptrs;
END;
STRUCT ha ptrs (ha aliase) [0:4];

STRUCT hostent (*);

BEGIN
STRING .EXT h _name;
STRING .EXT h aliases (hptrs);
INT (32) h addrtype;
INT (32) h length;
STRING .EXT h addr 1list (ha ptrs);
END;
h name

points to the official name of the host.
h aliases

points to an array of pointers to the various aliases assigned to the host.
h _addrtype

is the type of address. lts value is always AF_INET, indicating an Internet address.
h length

is the length, in bytes, of each entry pointed to by h_addr 1ist. Usually, the length is 4
bytes.

h addr list

points fo an array of nullterminated pointers to the addresses from the name server, in network
order.

if nameindex

The name index structure holds information for a single interface. This structure is defined in the
if .h header file. The if_nameindex function returns an array of if_nameindex structures with one
structure for each interface. The if_freenameindex function frees the memory used for this array of
structures. This structure applies to NonStop TCP/IP only.

C Declaration

#include <if.h>
struct if nameindex {

unsigned int i1f index;
char *1f name;
}i

TAL Declaration

?NOLIST, SOURCE SOCKDEFT

Data Structures 67

ifreq

68

STRUCT if nameindex tal (*);

BEGIN
INT (32) if index;
STRING .EXT if name;
END;
if index

specifies the index to be mapped to an interface name.

if name
specifies the buffer to receive the mapped name. The buffer must be at least IF. NAMESTZE
bytes long; IF_NAMESIZE is defined in the header file in.h.

The interface request structure is used for socket I/O control operations. All interface control
operations must have parameter definitions that begin with 1fr name. The remaining definitions
can be inferface-specific. This structure is defined in the i £ .h header file. Use this structure if you
are writing a transport protocol such as TCP.

C Declaration
#include <if.h>

struct ifreqg {
#if defined(_GUARDIAN TARGET) \\ defined (_GUARDIAN_SOCKETS)

unsigned long ifr filler;
#endif
#define IFNAMSIZ 16
char ifr name[IFNAMSIZ] ;
union {
struct sockaddr ifru addr;
struct sockaddr ifru dstaddr;
struct sockaddr ifru broadaddr;
short ifru flags;
int ifru metric;
caddr t ifru data;
int ifru value;
u_long ifru index;
} ifr ifru;
#define ifr addr ifr ifru.ifru addr
#define ifr dstaddr ifr ifru.ifru dstaddr
#define ifr broadaddr ifr ifru.ifru broadaddr
#define ifr flags ifr ifru.ifru flags
#define ifr metric ifr ifru.ifru metric
#define ifr data ifr ifru.ifru data

}i

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT ifreq (*);

BEGIN
INT (32) ifr filler;
STRING ifr name [0:IFNAMESIZ-1];
STRUCT ifr addr (sockaddr) ;
STRUCT ifr dstaddr (sockaddr) = if addr;
STRUCT ifr broadaddr (sockaddr) = if addr;
INT (32) ifr flags = if addr;
STRING .EXT ifr metric = if addr;
END;

Data Structures

ifr name [IFNAMESIZ]

contains the name of the SUBNET device. The name must begin with the pound sign (#),
followed by the interface name in all capital letters.

ifr addr
is the interface address.
ifr dstaddr
is the destination address at the other end of a point-to-point link.
ifr broadaddr
is the broadcast address of this interface.
ifr flags
contains a combination of one or more of the following flags:

IFF UP Indicates that the interface is up.

IFF_BROADCAST Indicates that this is a broadcast-oriented interface (such as Ethernet).
IFF_LOOPBACK Indicates that this is a loopback interface.

IFF_POINTTOPOINT Indicates that this is a point-to-point link.

IFF_RUNNING Indicates that the interface is active.

IFF_NOARP Indicates that the interface does not support ARP.

ifr metric
gets or sets the interface metric; it is used by routing programs. Refer to the TCP/IP Configuration
and Management Manual for details on routing.

ifr data

contains the data associated with the request.
ifr value

is any generic value.
ifr index

is an inferface index.

in_addr

This is a 4-byte structure that defines an Internet address. This structure is used by the socket routines
and is declared in the in.h header file.

C Declaration

#include <in.h>
struct in addr

in addr t s_addr;
}i

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT in_addr (*);
BEGIN
INT (32) s_addr;
END;

s _addr
is the Internet address.

Data Structures 69

in6_addr

This structure holds a single IPvé address. This structure is implemented with an embedded union
with extra fields that force an alignment level in a manner similar to BSD implementations of struct
in_addr. This structure is used by the socket routines and is declared in the in6 . h header file. This
structure applies to NonStop TCP/IP only.

C Declaration

#include <iné6.h>

struct iné_addr union {
u_char sa6_addr[le] ;

#define s6_addr s6_un.sa6_addr
u_short sa6 waddr[8];

#define s6_waddr s6_un.sa6_waddr
u_long sa6_laddr(4];

#define s6 laddr s6_un.sa6_ laddr

#ifdef IN6 HAS 64BIT INTTYPE
uint64 t sa6 gaddr[2];

#define s6 gaddr s6_un.sa6_gaddr
#endif
} S6_un;

7

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT .in6_addr;

BEGIN
STRING s6_addr[0:15]; 1128-bit IPv6 addr
INT s6_waddr = s6_addr; l!as 8 words
INT (32) sé6 laddr = s6_addr; las 4 longs
FIXED s6_gaddr = s6_addr; las 2 quads
END;
sa6 _addr[16]

a host address formatted as 16 u_chars.
sa6 waddr{8]

a host address formatted as eight u_shorts.
sa6_ laddr

a host address formatted as four u_longs.
sa6_gaddr

a host address formatted as two uint64 _ts.

ip_mreq
The IP multicast request structure is used for multicast socket /O control operations. This structure
is used by the socket routines and is declared in the in.h header file
C Declaration

#include <in.h>
struct ip mreq {

struct in addr imr multiaddr; /* IP multicast group
address */

struct in addr imr interface; /* local interface IP
address */

}i

TAL Declaration

70 Data Structures

?NOLIST, SOURCE SOCKDEFT
STRUCT ip mreq (*);

BEGIN
STRUCT imr multiaddr (in_addr); !IP multicast group address
!local interface
STRUCT imr interface (in_addr); !IP address
END;

imr multiaddr

contains the address of the IP multicast group to join membership to or drop membership from.

imr interface
is the interface IP address.

ipv6_mreq

The IP multicast request structure is used for IPv6 multicast socket 1/O control operations. This
structure is used by the socket routines and is declared in the in6 . h header file. This structure

applies to NonStop TCP/IP only.

C Declaration

#include <in6.h>
struct ipveé mreq {

struct iné_addr ipvémr multiaddr; /* IPv6 multicast address */
unsigned int ipvémr interface; /* interface index */

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT .1ipv6 mregq;

BEGIN
STRUCT siné_addr (iné_addr) ; ! IPv6 address
INT (32) ipvémr interface; !local interface
END;

ipvémr multiaddr

contains the address of the IPvé multicast group to join membership to or drop membership
from. Can be specified with a value of O, which allows an application to choose the default
multicast interface.

ipvéemr interface
is the local interface IPvé address.

netent

This structure is used by the support routines that deal with network names. It is defined in the
netdb.h header file. This structure is used by the getnetbyname and getnetbyaddr support
routines.

C Declaration

#include <netdb.h>

struct netent {
char *n_name;
char **n aliases;
int n_addrtype;

Data Structures 71

unsigned long n net;
}i

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT naliase (*);

BEGIN
STRING .EXT ptrs;
END;

STRUCT nptrs (naliase) [0:4];

STRUCT netent (*);
BEGIN
STRING .EXT n name;
STRING .EXT n aliases(nptrs);
INT (32) n_addrtype;
INT (32) n_net
END;

n_name
points to the official name of the network.

n aliases
points to an array of nullterminated pointers to various aliases for the network.

n_addrtype
indicates the type of network number returned; its value is always AF INET, indicating the
network part of an Internet address.

n_net
is the network number, in host order.

open_info_message

This structure is used by the routines that deal with obtaining information for the primary and
backup processes of a NonStop process pair. It is defined in the netdb . h header file. This structure
is used by the socket get open_info and socket backup routines. Additional information
about the parameters for this structure can be found in the description of the FILE_OPEN_ procedure
in the Guardian Procedure Calls Reference Manual.

C Declaration

#include <netdb.h>

struct open_ info message {
short filenum;
char file namel[32];
short filename len;
short flags;
short sync;
short access;
short exclusion;
short nowait;
short options;

}i

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT open_info message (*);
BEGIN
INT filenum;
STRING file name[0:31];

72 Data Structures

INT filename len;

INT flags;
INT sync;
INT access;
INT exclusion;
INT nowait;
INT options;
END;
filenum

specifies the file number of the opened file.

file name
is the name of the file.

filename len
is the length, in bytes, of the contents of file name.

flags

specifies flag values that affect the file.
sync

specifies the syncdepth value of the file.

access
is the access mode of the file.

exclusion
is the mode of compatibility with other openers of the file.

nowait
defines whether /O operations for the file are to be nowait operations.

options
is the optional characteristics of the file.

protoent

This structure is used by the support routines that deal with protocol names. This structure is defined
in the netdb . h header file.

C Declaration

#include <netdb.h>

struct protoent {
char *p name;
char **p aliases;
int p_proto;

}i

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT paliase (*);

BEGIN
STRING .EXT ptrs;
END;
STRUCT pptrs (paliase) [0:4];

STRUCT protoent (*);

BEGIN

Data Structures 73

rtentry

74

STRING .EXT p name;
STRING .EXT p aliases(pptrs);
INT (32) p_proto;

END;

p _name
points to the official name of the protocol.
p aliases
points to an array of nullterminated pointers to various aliases for the protocol.

p_proto
is the protocol number.

The route entry structure is used when adding or deleting routes. It is defined in the route.h
header file. NonStop TCP/IPvé and NonStop TCP/IPvé distinguish between routes to hosts and
routes to networks. When available, routes to hosts are preferred.

The interface to be used for each route is inferred from the gateway address supplied when the
route is entered. Routes that forward packets through gateways are marked so output routines can
determine that the packets are routed through a gateway, rather than directly to the destination
host.

C Declaration

#include <route.h>
#define RT_MAXNAMESIZ 12

struct rtentry ({
unsigned long rt_hash;
struct sockaddr rt dst;
struct sockaddr rt gateway;

short rt_flags;
short rt_refcnt;
unsigned long rt_use;
struct ifnet *rt ifp;
#ifdef _ TANDEM
double rt resettime;
unsigned char rt name[RT_ MAXNAMESIZ] ;
ushort context_val;

#endif /* _ TANDEM */
}i

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT rtentry (*);

BEGIN
INT (32) rt_hash;
struct rt _dst (sockaddr) ;
struct rt gateway (sockaddr) ;
INT rt_flags;
INT rt refcnt;
INT (32) rt_use;
INT (32) .rt ifp (ifnet);
REAL (64) rt resettime;
STRING rt_name[O:RT_MAXNAMESIZ—I];

END;

rt hash
is not used.

Data Structures

rt dst
is the destination of the route.

rt gateway
is the gateway to the destination.
rt flags
contains a combination of one or more of the following flags:

RTF_UP Indicates the route is up and can be used.

RTF_GATEWAY Indicates the destination is a gateway.

RTF HOST Indicates the route is a host entry in a point-to-point table. (Otherwise, the route is
an entry in a network table.)

RTF_MDOWN Indicates the route has been temporarily marked down.

RTF_DYNAMIC Indicates the route was created dynamically; that is, by redirection of an Internet

Control Message Protocol (ICMP) route.

rt_refcnt

is not used.
rt use

is not used.
rt ifp

is not used.
rt resettime

is not used.
rt name

is not used.
context val

is not used.

send _nw_str
This structure is used by the send_nw routine. It is defined in the netdb . h header file.

C Declaration

#include <netdb.h>

struct send nw str {
int nb_sent;
char nb datall];

}i

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT send nw_str(*);

BEGIN
INT (32) nb_sent;
STRING nb data [0:1];
END;
nb_sent
is the number of bytes sent by the send operation.
nb_data[l]

is the first character of the data to be sent.

Data Structures 75

sendto_recvfrom_buf

This structure is used by the recvfrom_nw and sendio_nw routines. It is defined in the in.h header
file.

C Declaration

#include <in.h>

struct sendto_recvfrom buf {
struct sockaddr in sb sin;
char sb_datalll;
yi
#define sb sent sb_sin.sin family

#define SOCKADDR IN
TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT sendto_recvfrom buf (*);

BEGIN
STRUCT sb_sin(sockaddr_ in) ;
STRING sb_datal0:1];
END;
sb _sin
is an address-port number combination based on the structure sockaddr_in.
sb_data

provides a symbolic name that can be used to locate the start of the user data.
sb_sent

is the number of bytes that have been transferred by a call to the t _sendto_nw function
(followed by a call to the AWATTIOX procedure). Check this value after the AWATTIOX call
completes.

servent

This structure is used by the support routines to convert service names to port numbers. It is defined
in the netdb . h header file. Use this structure if you are writing a network service manager similar
to the HP NonStop LISTNER process or the UNIX inetd daemon.

C Declaration

#include <netdb.h>

struct servent {
char *s name;
char **s aliases;
int s _port;
char *s proto;

}i

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT aliase (*);
BEGIN
STRING .EXT ptrs;
END;

STRUCT sptrs(aliase) [0:3];
STRUCT servent (*);

BEGIN
STRING .EXT s _name;

76 Data Structures

STRING .EXT s _aliases(sptrs);
INT (32) s _port;
STRING .EXT s proto;

END;

S name

points to the official name of the service.
s _aliases

points to an array of nullterminated strings to the various aliases for the service.
s port

is the port number associated with the service, in network order.

S _proto
points to the name of the protocol associated with the service.

sockaddr

This structure, defined in the in.h header file, is a pointer to the sockaddr in structure.

C Declaration

#include <in.h>

struct sockaddr {
sa_family t sa family;
char sa _datal[SA DATA SIZE];

}i

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT sockaddr (*) ;
BEGIN
INT sa family;
STRING sa datal0:SA DATA SIZE-1];
END;

sa family
is the address family.
sa data
contains up to 14 bytes of direct address.

Usage Guidelines

This structure makes the HP NonStop Kernel Operating System User’s Guide, Parallel Library
TCP/IP, and NonStop TCP/IP subsystems compatible with other implementations. When you pass
a parameter of this type to a socket routine, the fields filled or read are those of the sockaddr_in
structure.

For example, consider the following program excerpts:
#include "S$system.ztcpip.inh"

struct sockaddr_ in sin;

sl = socket (AF_INET, SOCK_STREAM, 0) ;

sin.sin family = AF INET; /* 2 byte short int */

sin.sin addr.s_addr = INADDR ANY; /* 4 byte Internet addr */

sin.sin port = port; /* 2 byEe short int */
bind (g1, (struct sockaddr *)&sin, sizeof (sin));

Data Structures 77

The #include directive contains the declaration of the sockaddr in structure. The program
declares that the sin structure is based on the sockaddr in structure. The socket s1 is created
by a call to the socket routine. The bind routine syntax requires that the address and port number
that you want to bind to the socket be stored in a structure based on the sockaddr_in structure.
The routine also requires that you pass a pointer to that structure (sin, in this example).

The following program excerpt shows an example for IPvé:
#include "$system.ztcpip.ineh"

struct sockaddr iné6 sin;

sl= socket (AF_INET6, SOCK STREAM, O0);
siné.sin6.family=AF INET6;
siné.sin6_port;
siné.sin6_addr=iné6addr_ any;

bind (s1,struck sockaddr *)&sin, sizeof(sin));

sockaddr_in

This structure defines an address-port number combination that is used by many of the socket
routines. It is defined in the in.h header file.

C Declaration

#include <iné.h> struct sockaddr in {
short sin family;
unsigned short sin port;
struct in_addr sin addr;
char sa_datal8]; };

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT sockaddr in (*);

BEGIN
INT sin family;
INT sin port;
STRUCT sin addr(in_addr) ;
STRING sa datal0:8];
END;

sin family
is the type of address. Its value is always AF_INET because only Internet addresses are
supported.
sin port
is the port number associated with the socket.
sin addr
is the Internet address (based on the in_addr structure) associated with the socket.
sa_data
is not currently used. It is reserved for future use.

sockaddr_iné

78

This structure specifies a local or remote endpoint address to which to connect a socket. This
structure is IPv6 specific and is defined in the in6 . h header file. This structure applies to NonStop
TCP/IPv6 only.

C Declaration

#include <iné6.h>

Data Structures

struct sockaddr iné ({

u_short siné family; /* AF_INET6 */

u_short siné port; /* Transport layer port # */

u_long siné flowinfo; / *IPvée flow info */

struct 1iné_addr siné addr; /* IPvée address */

u_long siné _scope id; / *set of interfaces for scope */

}i

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT sockaddr iné (*);

BEGIN
INT sin6 family;
INT siné port;

INT (32) siné flowinfo;
STRUCT sin6 _addr(in6_addr) ;
INT (32) sin6 scope 1id;

END;

siné family
is the type of address. lts value is always AF _INET6.
siné port
is the port number associated with the socket.
sin6 flowinfo
is the flow label value.
sin6 addr
is the Internet address (based on the in6_addr structure) associated with the socket.
siné scope id
is the set of interfaces that are associated with the scope.

sockaddr_storage

This structure defines an IPvé6 address-port number combination that is used by many of the socket
routines. This structure is defined in the socket . h header file. This structure applies to NonStop
TCP/IP only.

C Declaration

#include <socket.h>
struct sockaddr storage {

sa_family t _ ss family;

char __ss padl[SS PADISIZE];
inté64 t __ss align;

char __ss pad2[SS PAD2SIZE]; };

TAL Declaration

?NOLIST, SOURCE SOCKDEFT
STRUCT sockaddr storage (*);

BEGIN
INT _ss_family;
STRING _ss padll[0:5];
FIXED _ss align;
STRING _ss _pad2[0:111];
END;

__ss _family
is the address family.

Data Structures 79

___s8s padl

is a 6-byte pad up to the _ss_align field.
__ss_align

forces the alignment of the field.

88 padz
is the 112-byte pad to the desired size of the field.

80 Data Structures

4 Library Routines

This section contains the syntax and semantics for the socket-library routines provided by the
NonStop TCP/IP, NonStop TCP/IP, and NonStop TCP/IP products. These routines are compatible
with the socket routines in the 4.3 BSD UNIX operating system, except as noted here or in the
Porting Considerations (page 32).

In addition to the sockets library, which is implemented in the C language, NonStop TCP/IPvé,
NonStop TCP/IP, and NonStop TCP/IP provide a TAL binding to the sockets library to support

applications written in TAL.

Where this section documents library routines that are only available for the NonStop TCP/IP
subsystem, it is indicated in the description of the routine.

Socket Library Routines

The socket library routines are provided in two sets of three files each. One set is Common Run-Time
Environment (CRE) dependent (CRE-dependent) and the other set has no dependence on CRE
(CRE-independent). See CRE Considerations (page 88) for more information about CRE.

For enabling 64-bit features, call 64-bit APIs in the application and recompile with 'lp64' complier
option.

CRE-Dependent Socket Library

The CRE-dependent socket library is neutral with respect to the Common Runtime Environment
(CRE), in that it uses no routines that depend on CRE; however, this library does depend on CRE
for the global errno data variable which permits applications to use the perror function. The
CRE-dependent, non-native, socket library routines are provided in two versions for data storage:
one for the large-memory model and one for the wide-data model.

The large-memory-model routines are in the file $SYSTEM. zTCPIP . LIBINETL. The wide-data-model
routines are in $SYSTEM. ZTCPIP.LIBINETW. TAL routines are provided by the prototype
procedures contained in SOCKPROC.

Native C users should use the SRL version of the socket library, ZINETSRL.

Current users of the wide-data-model routines, LIBINETW, require no changes to their application
code to utilize the D40-native socket library. These applications must, however, be recompiled
using the D40 header files.

Applications using the large-memory-model routines, LIBINETL, need to verify that the correct data
types are used in function calls to the socket library. If the correct data types are specified, the
only requirement is a recompilation using the D40 header files. Otherwise, the data types must be
changed to reflect the function descriptions in this manual.

Refer to the C/C++ Programmer’s Guide for more details on memory models.

CRE-Independent Socket Library

The CRE-Independent socket library routines are provided in three versions for data storage. Two
are non-native versions, one for the large-memory model and one for the wide-data model. The
large-memory-model routines are in the file $SYSTEM.ZTCPIP.LNETINDL. The wide-data-model
routines are in $SYSTEM . ZTCPIP.LNETINDW. The native-linkable version is in the file LNETINDN.

Refer to the C/C++ Programmer’s Guide for more details on memory models.

Summary of Routines

Both sets of the socket library contain two main types of routines: socket routines and support
routines.

Socket routines deal directly with connections and data transfer.

Socket Library Routines 81

Support routines assist in name translation, enabling you to use easy-to-understand symbolic names
for objects, hosts, and services. However, they are not essential for data transmission using the
socket library, and only two of them—gethostname and gethostid—communicate with the

TCP/IP process.

NOTE:

Certain socket options are supported differently in CIP. See the Cluster |/O Protocols

(CIP) Configuration and Management Manual for details.

Table 12 lists and briefly describes each socket routine and provides the page number where the

routine is described.

Table 12 Socket Routines

Name and Description Page

Function

accept (page 89)

accept_nw (page 91)
accept_nw1 (page 94)

accept_nw2 (page 95)

bind, bind_nw (page 98)
connect, connect_nw (page 102)

getsockname, getsockname_nw (page 126)

getsockopt, getsockopt_nw (page 128)
if_freenameindex (page 130)

recy, recv_nw (page 153)
recvé4_, recv_nwb4_ (page 155)
recvfrom (page 158)

recvfromé4 _
recvfrom_nw (page 161)
recvirom_nw64_ (page 164)

send (page 166)

send64_ (page 168)
send_nw (page 169)
“send_nwé4_" (page 171)
send_nw2 (page 173)
send_nw2_64_ (page 175)

sendfo (page 177)
sendto64_ (page 179)

Library Routines

Listens for connections on an existing socket, creates a new socket
for data transfer, and accepts a connection on the new socket
(waited)

Listens for connections on an existing socket (nowait)

Allows you to change queue length when listening for connections
on an existing socket (nowait)

Creates a new socket for data transfer and accepts a connection on
the new socket (nowait)

Binds a socket to an address and port number (waited or nowait)
Connects a socket to a remote socket (waited or nowait)

Gets the address and port number to which a socket is bound (waited
or nowait)

Gets socket options (waited or nowait)

Sets the queue length (provided for compatibility only; queue length
always set to 5)

Receives data on a socket (waited or nowait)
Receives data on a socket (waited or nowait) in 64-bit application.

Receives data on an unconnected UDP or raw socket (waited and
nowait)

Receives data on an unconnected UDP or raw socket (waited and
nowait) in 64-bit application.

Receives data on an unconnected UDP socket or raw socket created
for nowait operations

Receives data on an unconnected UDP socket or raw socket created
for nowait operations in 64-bit application.

Sends data on a socket (waited)

Sends data on a socket (waited) in 64-bit application.
Sends data on a socket (nowait)

Sends data on a socket (nowait) in 64-bit application.
Sends data on a socket without byte-count header (nowait)

Sends data on a socket without byte-count header (nowait) in 64-bit
application.

Sends data on an unconnected UDP or raw socket (waited)

Sends data on an unconnected UDP or raw socket (waited) in 64-bit
application.

Table 12 Socket Routines (continued)

Name and Description Page

Function

sendto_nw (page 180)
sendto_nw64_ (page 182)

sefsockopt, setsockopt_nw (page 184)
shutdown, shutdown_nw (page 189)
sock_close_reuse_nw (page 190)
socket, socket_nw (page 191)
socket_backup (page 193)
socket_get_info (page 194)

socket_get_len (page 195)
socket_get_open_info (page 196)

socket_ioctl, socket_ioctl_nw (page 197)

socket_set_inet_name (page 200)

Sends data on an unconnected UDP or raw socket without byte-count
header (nowait)

Sends data on an unconnected UDP or raw socket without byte-count
header (nowait) in 64-bit application.

Sets socket options (waited and nowait)

Shuts down data transfer on a socket (waited or nowait)
Marks the socket for reuse

Creates a socket (waited or nowait)

Allows an application to establish a backup TCP/IP process

Obtains address and length of data received from an unconnected
UDP or raw socket

Obtains byte count of data sent on a socket

Obtains parameters used to open a TCP/IP process. Used to
checkpoint* information for NonStop process pairs.

Performs a control operation on a socket (waited or nowait)

Sets the name of the NonStop TCP/IPv6, TCPSAM, or TCP6SAM
process

*“Checkpoint” here refers to sending state-change information from the primary to the backup process.

Table 13 (page 83) lists and briefly describes each of the support routines. All of the support calls

are waited calls.

Table 13 Support Routines

Routine Name

Functions

freeaddrinfo (page 104)

freehostent (page 105)

gai_strerror (page 105)

getaddrinfo (page 107)

gethostbyaddr, host_file_gethostbyaddr (page 109)

gethostbyname, host_file_gethostbyname
(page 110)

gethostbyname?2 (page 112)

gethostid (page 113)
gethostid (page 113)
gethostname (page 113)

Frees a specified address-information structure previously created
by the getaddrinfo function. (Supported by NonStop TCP/IPv6
only.)

Frees the memory of one or more hostent structures returned by
the get ipnodebyaddr or getipnodebyname functions.
(Supported by HP NonStop Kernel Operating System User’s Guide
only.)

Aids applications in printing error messages returned by
getaddrinfo. (Supported by NonStop TCP/IP only.)

Converts hostnames and service names into socket-address structures.
(Supported by NonStop TCP/IPv6 only.)

Gets the Internet address of the specified host.

Gets the name of the host with the specified Internet address.

Gets the Internet address (IPv4 or IPv6) of the host whose name is
specified.

Gets the ID of the current host.
Gets the ID of the current host.

Gets the name of the current host.

Summary of Routines 83

Table 13 Support Routines (continued)

Routine Name

Functions

getipnodebyaddr (page 114)

getipnodebyname (page 116)
getnameinfo (page 117)

getnetbyaddr (page 119)
getnetbyname (page 120)
getprotobyname (page 122)
getprotobynumber (page 123)
getservbyname (page 124)
getservbyport (page 125)
if_freenameindex (page 130)

if_indextoname (page 131)
if_nameindex (page 132)
if_nametoindex (page 133)
inet_addr (page 134)

inet_Inaof (page 135)
inet_makeaddr (page 135)

inet_netof (page 136)
ineft_network (page 136)
inet_ntoa (page 137)
inet_ntop (page 138)
inet_pton (page 139)

Iwres_freeaddrinfo (page 140)

Iwres_freehostent (page 141)

Iwres_gai_strerror (page 141)

Library Routines

Gets the name of the host that has a specified Internet address and
provides an error-number value to maintain a thread-safe
environment. (Supported by NonStop TCP/IP only.)

Provides lookups for IPv4/IPv6 hosts. (Supported by NonStop
TCP/IPvé only.)

Translates a protocol-independent host address to a hostname and
gives the service name. (Supported by NonStop TCP/IPvé only.)

Gets the name of the network with the specified network address.
Gets the Internet address of the network with the specified name
Gets the protocol with the specified name

Gets the protocol with the specified protocol number

Gets the service port number for a given service name

Gets the service name for a given port number

Frees dynamic memory allocated by the if nameindex function.

(Supported by NonStop TCP/IPv6 only.)

Maps an interface index to its corresponding name. (Supported by
NonStop TCP/IPv6 only.)

Gets all interface names and indexes. (Supported by NonStop
TCP/IPvé only.)

Maps an interface name to its corresponding index. (Supported by
NonStop TCP/IP only.)

Converts an Internet address from dotted-decimal format to binary
format

Breaks apart an Internet address and returns the local address portion

Combines a network address and a local address to create an
Internet address

Breaks apart an Internet address and returns the network address
portion

Converts an Internet address from dotted-decimal format to binary
format and returns the network address portion

Converts an Internet address from binary format to dotted-decimal
format

Converts a binary IPvé or IPv4 address to a character string.
(Supported by Parallel Library TCP/IP only.)

Converts a character string to a binary IPvé or IPv4 address.
(Supported by NonStop TCP/IPv6 only.)

Frees the memory of one or more addrinfo structures previously
created by the 1wres_getaddrinfo function. (Supported by
NonStop TCP/IP only.)

Frees the memory of one or more hostent structures returned by
the Iwres_getipnodebyaddr or Iwres_getipnodebyname functions.

(Supported for NonStop TCP/IPv6 only.)

Aids applications in printing error messages based on the EAI_ codes
returned by the Iwres_getaddrinfo function. (Supported for NonStop
TCP/IPvé only.)

Table 13 Support Routines (continued)

Routine Name Functions

Iwres_getaddrinfo (page 142) Converts hostnames and service names into socket address structures.
(Supported for NonStop TCP/IPv6 only.)

Iwres_gethostbyaddr (page 144) Gets the name of the host that has the specified Internet address and
address family. (Supported for Parallel Library TCP/IP only.)

lwres_gethostbyname (page 145) Gets the Internet address (IPv4) of the host whose name is specified.
(Supported for NonStop TCP/IPv6 only.)

Iwres_gethostbyname?2 (page 146) Gets the Infernet address (IPv4 or IPv6) of the host whose name is
specified. (Supported for NonStop TCP/IPvé only.)

Iwres_getipnodebyaddr (page 147) Searches host entries until a match with src is found. (Supported for
NonStop TCP/IPvé only.)

Iwres_getipnodebyname (page 149) Gets host information based on the hostname. (Supported for
NonStop TCP/IPv6 only.)

Iwres_getnameinfo (page 150) Translates a protocol-independent host address to a hostname.

(Supported for NonStop TCP/IPv6 only.)

lwres_hstrerror (page 152) Returns an appropriate string for the error code given by err_num.

(Supported for NonStop TCP/IPv6 only.)

Syntax and Semantics of Socket Library Routines

This subsection describes each routine in the socket library. The routines are listed alphabetically.
Each description includes the following information:

e What the routine does

e What headers you need to specify in an #include statement within your programs before
calling the routine

e What arguments the routine accepts and how it interprets them

e What value the routine returns and how you should interpret it

e What types you must declare for each argument and for the return value

e What errors can be returned

e What guidelines you need to consider when using the routine

Many of the descriptions include an example that shows how to use the routine.

See Chapter 3 (page 62) for a summary of the C header files provided with the socket library and
for descriptions of the data structures provided in the header files.

All return codes and values are of type integer unless otherwise noted.

Nowait Routines

Most of the socket routines have two versions: one for waited operations and another for nowait
operations. The names of the nowait routines end in the suffix _nw. Except for the socket nw
routine, the nowait routines include an additional tag parameter that is passed to the NonStop
operating system file-system procedures.

Error Conditions

Most routines that refer to a socket number (socket), plus a few support routines, indicate an
error condition by returning an otherwise impossible return value (usually -1) and placing the
appropriate error number in the external variable errno. Since errno is not cleared on successive
calls, you should test it only after an error has occurred. You can call the perror function to print

Syntax and Semantics of Socket Library Routines 85

the text message associated with the current error to the standard C error file (the file named
stderr).

The text message description of each routine lists most error numbers that can be returned in errno
on a call to the particular routine. A complete list of socket errors and their meanings is given in
Appendix B (page 243). You must interpret the meaning of each error according to the type of call
and the circumstances in which your program issues the call. For more information, see Asynchrony
and Nowaited Operations (page 34).

NOTE: The perror function is not supported for TAL sockets.

Nowait Call Errors

The nowait versions of the routines return an error in the file-system variable. Call FILE GETINFO
procedure affer calls to either AWAITIOX or FILE AWAITIO64 to get the error. You must set
this error in the errno variable in the application.

NOTE: When you initiate a nowait call, errno is set to reflect any error detected upon initiation.
It errno is nonzero after initiation, your program should not call the AWATTIOX procedure because
the operation is not successfully initiated.

Socket error numbers are in the range reserved by the NonStop operating system for
application-defined errors. These do not conflict with the range the operating system has reserved
for file-system errors. However, it is possible to get regular NonStop operating system file-system
errors that pertain to interprocess /O, because the socket routines are built on NonStop operating
system interprocess |/O. For descriptions of these interprocess |/O errors, refer to the Guardian
Procedure Calls Reference Manual.

The gethostbyname, gethostbyaddr, host file gethostbyname, and

host file gethostbyaddr support routines indicate an error value in another external variable,
h_ermo. If you bypass the Domain Name resolver code, the only possible nonzero (error) value
of h_errno is HOST NOT FOUND (1). If you use the resolver code, four error values are possible.
These errors are described with the functions gethostbyaddr and gethostbyname, in this
section.

Interfacing TAL Programs to the Socket Library

86

NOTE: For more information about socket library support for TAL and pTAL applications, see
TALDOCUM in $system.ztcpip.

A program is considered a TAL program if its MAIN section is written in TAL. A program that has
a C main section but calls TAL procedures is not bound by the requirements given in this subsection.
The topics covered include:

e Implications of the C socket library
e Startup considerations

e Bind considerations

o CRE considerations

Any experience writing C language socket code is applicable to writing TAL socket code. All the
functions, parameters, data structures, and return codes are the same in TAL as they are in C. The
differences are only a matter of TAL syntax.

NOTE: Use the Common Run-Time Environment (CRE) when developing TAL socket applications.
CRE is described in the CRE Programming Manual.

Library Routines

Procedure Prototypes

Each socket function described in this manual is available to be “sourced” into TAL programs.
Either the entire set of prototypes or individual functions may be sourced.

Because TAL procedures cannot be type cast for returning pointers, those procedures that actually
do return pointers are typed as INT (32). It is the programmer’s responsibility to redefine the
returned INT (32) as a pointer to the appropriate structure. It may be helpful for the TAL
programmer to think of these pointers to structures as pointers to arrays.

Implications of the C Socket Library

TAL programs bound with the socket library differ significantly from applications written completely
in C. TAL programs miss the normal C run-time library and the normal startup logic. The full C
run-time library is replaced by a subset of minimal functions that are used by the socket library.
This means that a programmer who wishes to combine C and TAL procedures to implement an
application is bound by this same minimal C run-time library functionality.

The TAL version of the socket library is based on the C large-memory model, so all pointers must
be 4-byte pointers.

The pTAL version of the socket library is based on the C wide-data model, so all pointers must be
4-byte pointers.

The functions provided include:

e Very minimal STDIO functionality:

o fopen

o fgets

o fclose
e 'str...' functionality
e 'mem...' functionality

e sprintf, but not fprintf or printf
o All functions implemented as macros

e errno global variable Routines available to access 'errno' and 'h_errno' variables:

° INT PROC get_errno;
o INT PROC get_h_errno;

These restrictions imply that the following features are not available in the C run-time library subset:
e MAIN, that is, startup processing, general initialization.

¢ Heap management ('malloc', 'calloc’, 'realloc’, 'free') is available only through the
Common Run-Time Environment (CRE) user heap management routines. Refer to the CRE
Programming Manual for details.

If mixed TAL and C code has a TAL MAIN section, the restricted set of functions just listed applies.
If mixed TAL and C code having a C _main is used, full C run-time library functionality is available.
Usage/Bind Considerations

The following steps summarize the TAL usage and bind considerations in a CRE environment:
1. All addresses must be 32 bits (. EXT).
2. Source SOCKPROC to reference socket library procedures.

Interfacing TAL Programs to the Socket Library 87

3. Source SOCKDEFT to reference socket library structures.

4. Specity the CRE compiler directive (ENV COMMON) either in the program source code or in
the compilation line.

pTAL does not have access to the CRE initialization routine. For information about running a pTAL

program in the CRE environment, see the TNS/R Native Application Migration Guide.

1. All addresses must be 32 bits (. EXT).

2. Source SOCKPROC to reference socket library procedures.

3. Source SOCKDEFT to reference socket library structures.

4. Specify the CRE compiler directive (EXPORT GLOBALS) prior to compilation.

TAL to pTAL Conversion Issues

NOTE: For more information about socket library support for TAL and pTAL applications, see
TALDOCUM in $system.ztcpip.

TAL users of the socket library converting to pTAL should use the SRL version of the socket library,
ZINETSRL. For applications unable to run as a CRE compliant executable, a CRE-independent
native mode socket library is provided, LNETINDN. LNETINDN is a linkable object.

The TAlL-callable functions, paramcapture () and allparamcapture (), have been removed
from the D40 socket library. These functions provided a mechanism to save run-time parameters
used by the socket library (=TCPIP*PROCESS*NAME, =TCPIP"HOSTS"FILE, and so forth).
Because the DEFINE mechanism is now utilized instead of PARAM, this functionality is no longer
required.

The prototypes specified in SOCKPROC and the structure templates in SOCKDEFT have changed
to conform to the native version of the socket library. Function parameter and return value data
types that were specified as INT have been changed to INT (32) . Applications converting from
TAL to pTAL must ensure that these data types are reflected accordingly in their code. Variables
of type INT in existing code need to be cast to INT (32), or declared as INT (32), for native
socket library function calls.

Defines in SOCKPROC and SOCKDEFT can be used as is with the following exception. AF INET
and AF _INETS6, defined in SOCKDEFT, are declared as INT (32) for a pTAL compiled application.
When using AF_INET or AF_INET6 within the sockaddr, sockaddr in, or sockaddr iné
structure, you must cast AF_INET or AF_INET6 to an INT when assigning it fo sa_family,
sin family, or sin6é_family.

CRE Considerations

88

C applications using the Socket Library are compiled by the D-series C compiler. The C compiler
generates code that runs in the CRE (Common Run-Time Environment). The CRE makes assumptions
about the use of primary global memory, memory management, and trap handling that is
incompatible with certain applications, such as the HP ODBC server. The CRE-Independent Socket
Library (LNETINDL for the large-memory model, LNETINDW for the wide-data model, and
LNETINDN for native mode) has no dependence on the CRE.

For TAL application programs that use the Socket Library, application programs must specify the
ENV compiler directive COMMON for the D-series TAL compiler to generate code that runs in the
CRE.

TAL application programs can specify the directive either in a compilation command or in the
program source code before any declarations. For example, the following compilation command
produces a TAL object file compiled for the CRE:

TAL / IN source, OUT listing /; ENV COMMON

Library Routines

NOTE: HP recommends that you use the Common Run-Time Environment (CRE) when developing
TAL socket applications. CRE is described in the CRE Programming Manual.

It your application is incompatible with CRE, use the CRE-Independent socket library described in
“Socket Libraries” at the beginning of this section.

Native Mode C/C++ Issues

Users of the native mode C/C++ compiler (nmc) need to specify the extensions compiler pragma
for correct compilation of the socket library header files. The extensions pragma also needs to
be specified when the c89 compiler is used for systype=guardian compiles.

accept

The accept function checks for connections on an existing waited socket. When a connection
request arrives, accept creates a new socket to use for data transfer and accepts the connection
on the new socket.

C Synopsis
#include <socket.h>
#include <in.h>

#include <iné6.h> /* if using IPv6 */
#include <netdb.h>

new_socket = accept (socket, from ptr, from len ptr);

int new socket, socket;
struct sockaddr *from ptr;
int *from len ptr;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

new_socket := accept (socket, from ptr, from len ptr);
INT (32) new_socket;
INT (32) socket;

INT .EXT from ptr (sockaddr_in),
.EXT from len ptr;

new_socket
return value; the socket number for the new, connected socket that is created for data transfer.

If the call is not successful, =1 is returned and the external variable errno is set as indicated
below in Errors (page 90).

socket

input value; specifies the socket number, created by a previous socket call, to be used to
check for connections.

from ptr

input and return value; points, on return, to the remote address and port number for the new
connection.

from len ptr

input and return value; points, initially, to a value indicating the size in bytes of the structure
pointed to by from ptr. On return, it points fo the actual length in bytes of the remote address
and port number, or sockaddr data structure, pointed to by from ptr.

Native Mode C/C++ Issues 89

Errors

It an error occurs, the external variable errno is set to one of the following values:

ECONNRESET The connection was reset by the peer process before the accept operation completed.

EINVAL An invalid argument was specified.

Usage Guidelines

o This is a waited call; your program is blocked until the operation completes. For nowait I/O,
use accept nw and accept nwa2.

o For TCP server applications, a call to bind and 1isten must precede a call to accept.
e The original socket remains in a listening state.

o Declare the from ptr variable as struct sockaddr_iné * for IPvé use or as struct
sockaddr storage * for protocol-independent use. In C, when you make the call, cast
the variable to sockaddr. (See the IPv6 example.)

Examples

The following programming example calls the accept function to accept a connection on a TCP
socket.

INET: in this example, assume that £4 is the socket number returned by a call to socket.

#include <socket.h>
#include <in.h>
#include <netdb.h>

struct sockaddr in sin, from;
int flen;
char buf [256] ;

/* Before accept, program must call socket, bind,
* and listen.

*/

flen = sizeof (from) ;
if ((s2 = accept(fd, (struct sockaddr *)&from, &flen)) < 0) {
perror ("Server: Accept failed.");
exit (0);
}
inet ntop (AF _INET, &from->sin addr, buf, INET ADDRSTRLEN) ;
printf ("Server connected from remote %s, %d\n", buf, from.sin port);

INETé: In this example, assume fd is the socket number returned by a call to socket.

#include <socket.h>
#include <in.h>
#include <iné6.h>
#include <netdb.h>

struct sockaddr iné6, from;
int flen;
char buf [INET6 ADDRSTRLEN] ;

/* Before accept, program must call socket, bind,
* and listen.
*/

flen = sizeof (from) ;

90 Library Routines

/* Notice from is cast to struct sockaddr in the following call
as suggested in the Usage Guidelines */
if ((s2 = accept(fd, (struct sockaddr *)&from, &flen)) < 0) {
perror ("Server: Accept failed.");
exit (0);

}

inet ntop (AF_INET6, &from.siné addr, buf, sizeof (buf));
printf ("Server Connected from remote %s.%d\n", buf, from.siné port);

accept_nw

The accept_nw function checks for connections on an existing nowait socket. It is designed to be
followed first by a call to socket nw to create a new socket, then a call to accept nw2 to accept
the connection on the new socket.

C Synopsis
#include <socket.h>
#include <in.h>

#include <in6.h> /* if using IPvé */
#include <netdb.h>

error = accept nw (socket, from ptr, from lenl, tag);

int error, socket;
struct sockaddr *from ptr;

int *from lenil;
long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := accept nw (socket, from ptr, from lenl, tag);
INT (32) error;
INT (32) socket;

INT .EXT from ptr (sockaddr in);
INT .EXT from lenl;
INT (32) tag;

error

return value. If the call is successful, a zero is returned. If the call is not successful, -1 is returned.
If the call failed, the external variable errno is set as indicated in Errors (page 201).

socket

input and return value; specifies the socket number, created by a previous socket nw call,
to be used to check for connections.

from ptr

input and return value; points, on return, to the remote address and port number for the new
connection from which the connection was initiated.

from lenl
input and return value; points to a value indico’ring the size in bytes of the structure pointed to
by from ptr. Setthe from leni used in the accept nw call fo point to the size of the
sockaddr struct before making the call. accept _nw then returns the remote client’s IP address

in the from_ptr parameter of the sockaddr or sockaddr iné struct. This is an input
parameter.

accept_nw 91

Errors

tag
input value; the tag parameter to be used for the nowait operation.

If an error occurs, the external variable errno is set to one of the following values:

EALREADY There is already an outstanding call on the socket.
ECONNRESET The connection was reset by the peer process before the accept nw operation completed.
EINVAL An invalid argument was specified.

Usage Guidelines

o The accept_nw function is designed to be followed first by a call to socket nw fo create
a new socket, then by a call to accept_nw2. The from ptr parameter from accept nw
is passed to accept nw2, which accepts the connection on the new socket.

e Use accept nw2 after this call.

o This is a nowait call; it must be completed with a call to the Guardian procedure AWATITIOX.
For a waited call, use accept.

o The accept nw call causes TCP/IP to do a 1isten and accept in one call.

o Declare the from ptr variable as type struct sockaddr inée * for IPvé use or as type
struct sockaddr_ storage * for protocol-independent use. In C, when you make the
call, cast the variable to sockaddr *. (See the IPvé example.)

e For the Conventional TCP/IP product only, it is not recommended to use CANCEL or CANCELREQ
calls with accept _nw. While this procedure works as expected with IPv6 and CIP products,
with Conventional TCP/IP, accept nw causes a pending incoming connection to be
immediately marked as allocated and the cancel does not undo this. Subsequent accept nw
requests require additional incoming connections for the requests to complete. Because the
connection has been marked allocated it cannot be accepted by a subsequent accept nw.

See Nowait Call Errors (page 86) for information on error checking.

See Chapter 3 (page 62) for information about struct sockaddr, struct sockaddr ine,
and struct sockaddr storage.

Example

INET: The following IPv4 TCP server programming example calls accept _nw, socket nw, and
accept_nw2. This call accepts a connection on the new socket £d2 created for nowait data
transfer.

#include <socket.h>
#include <in.h>
#include <netdb.h>

struct sockaddr in from;

if ((f£dl1 = socket nw(AF_INET, SOCK STREAM,,1,1)) < 0) {
perror ("Server Socket 1 create failed.");
exit (0);
/* Call AWAITIOX */

}

/* Before calling accept nw, program must call bind nw and
* listen. A call to AWAITIOX must follow the bind nw call.
*/

92 Library Routines

flen = sizeof (from) ;

if ((cc = accept nw(fdl, (struct sockaddr *)&from, flen,
t)) < 0) {
perror ("Server: Accept failed.");
exit (0);
}
else {

/* Call AWAITIOX using socket fdl and tag t. */

if ((f£d2 = socket nw(AF INET, SOCK STREAM,,1,1)) < 0) {
perror ("Server Socket 2 create failed.");
exit (0);
}
else {
/* Call AWAITIOX using socket fd2. */

b

if ((cc = accept _nw2(fd2, (struct sockaddr *)&from, t)) < 0) {
perror ("Server: Accept failed.");
exit (0);

}

else {

/* Call AWAITIOX using socket fd2 and tag t. */
}

INET6: the following Parallel Library TCP/IP IPv6 server programming example calls accept nw,
socket nw, and accept_nw2. This call accepts a connection on the new socket £d2 created
for nowait data transfer.

#include <socket.h>
#include <in.h>
#include <iné6.h>
#include <netdb.h>

struct sockaddr_iné6 from;

if ((£dl1 = socket nw(AF INET6, SOCK STREAM,,1,1)) < 0) {
perror ("Server Socket 1 create failed.");
exit (0);
/* Call AWAITIOX */

}

/* Before calling accept nw, program must call bind nw and
* listen. A call to AWAITIOX must follow the bind nw call.

*/

flen = sizeof (from) ;
/* Notice that from is cast as struct sockaddr * as suggested in
the Usage Guidelines */
if ((cc = accept nw(fdl, (struct sockaddr *)&from, flen,
t)) < 0) {

perror ("Server: Accept failed.");

exit (0);
}
else {

/* Call AWAITIOX using socket fdl and tag t. */

if ((fd2 = socket nw(AF INET6, SOCK STREAM,,1,1)) < 0) {

accept_nw 93

perror ("Server Socket 2 create failed.");
exit (0);

}

else {
/* Call AWAITIOX using socket fd2. */

b

if ((cc = accept nw2(fd2, (struct sockaddr *)&from, t)) < 0) {
perror ("Server: Accept failed.");
exit (0);

}

else {
/* Call AWAITIOX using socket fd2 and tag t. */

accept_nw

accept nwl can be used instead of accept nw; use accept nwi to set the maximum
connections in the queue awaiting acceptance on a socket.

C Synopsis

#include <socket.hs>

#include <in.h.>
#include <in6.h> /* if using IPv6 */
#include <netdb.h>

error = accept nwl (socket, from ptr, from lenl, tag, queue length) ;

int error, socket;

struct sockaddr *from ptr;
int *from lenl;

long tag;

int queue length;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := accept nwl (socket, from ptr, from lenl, tag, queue length);

INT (32) error;

INT (32) socket;

INT .EXT from ptr (sockaddr in);
INT.EXT from lenl;

INT(32) tag;

INT(32) queue length;

error
return value; if the call is successful, a zero is returned. If the call is not successful, =1 is returned.
If the call failed, the external variable errno is set as indicated in Errors (page 95).

socket
input value; specifies the socket number, created by a previous socket nw call, to be used
to check for connections.

from ptr
input and return value; points, on return, to the remote address and port number for the new
connection from which the connection was initiated.

94 library Routines

from lenl

input and return value; points to a value indicating the size in bytes of the structure pointed to
by from ptr.

tag
input value; the tag parameter to be used for the nowait operation.

queue_ length
input value; specifies the maximum queue length (number of pending connections). Values are

1 through 128.

Errors

It an error occurs, the external variable errno is set to one of the following values:

EALREADY There is already an outstanding call on the socket.
ECONNRESET The connection was reset by the peer process before the accept nw operation completed.
EINVAL An invalid argument was specified.

Usage Guidelines

o Use the accept nwil call instead of the accept nw call when you need to set the queue
length.

e This is a nowait call; it must be completed with a call to the Guardian procedure AWAITIOX.
For a waited call, use accept.

e The accept nwi call causes TCP/IP to do a 1isten and accept in one call.

o The accept nwi function must be followed first by a call to socket nw to create a new
socket and then by a call to accept _nw2. The from ptr parameter from accept nwil is
passed to accept nw2, which accepts the connection on the new socket.

e Use accept nw2 after this call.

o Declare the from ptr variable as struct sockaddr_iné * for IPv6 use or as struct
sockaddr storage * for protocol-independent use. In C, when you make the call, cast
the variable to sockaddr *.

e Forthe Conventional TCP/IP product only, it is not recommended to use CANCEL or CANCELREQ
calls with accept_nwi. While this procedure works as expected with IPvé and CIP products,
with Conventional TCP/IP, accept nw1 causes a pending incoming connection to be
immediately marked as allocated and the cancel does not undo this. Subsequent accept nwi
requests require additional incoming connections for the requests to complete. Because the
connection has been marked allocated it cannot be accepted by a subsequent accept nwi.

accept_nw?2

The accept_nw2 function accepts a connection on a new socket created for nowait data transfer.
Before calling this procedure, a program should call accept nw on an existing socket and then
call socket nw to create the new socket to be used by accept nw2.

C Synopsis

#include <socket.h>

#include <in.h>

#include <in6.h> /* For IPvé6 use */
#include <netdb.h>

error = accept nw2 (new socket, from ptr, tag);

int error, new socket;

accept_nw2 95

Errors

struct sockaddr *from ptr;

long tag;
TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := accept nw2 (new socket, from ptr, tag);

INT (32) error;

INT (32) new_socket;

INT .EXT from ptr(sockaddr in);
INT (32) tag;

error
return value; f the call is successful, a zero is returned. If the call is not successful, -1 is returned.
If the call failed, the external variable errno is set as indicated in Errors (page 96).

new_socket
input value; the socket number for the new socket on which the connection is to be accepted,
as returned by a call to socket nw.

from ptr
input value; points to the address and port number returned from the call to accept nw or
accept nwl.

tag
input value; the tag parameter to be used for the nowait operation.

If an error occurs, the external variable errno is set to one of the following values:

EADDRINUSE accept_nw?2() posted on an already-bound socket. (For Parallel Library TCP/IP and
NonStop TCP/IPv6 only.)

EALREADY Operation is already in progress. (For Parallel Library TCP/IP and NonStop TCP/IPv6
only.)

ECONNRESET The connection was reset by the peer process before the accept operation completed.

This error also can be received when a call was done on a socket when the socket
was in an incorrect state.

EINVAL An invalid argument was specified.

EISCONN Socket is already connected. (For Parallel Library TCP/IP and NonStop TCP/IPvé
only.)

ENOBUF No Buffer Space available. (For Parallel Library TCP/IP and NonStop TCP/IPvé only.)

ERSCH The socket specified in the new_socket parameter was invalid. Close the socket

using the FILE_CLOSE call. Repeat the accept nw, socket nwand accept nw2
sequence of calls.

Usage Guidelines

o This is a nowait call; it must be completed with a call to the AWATTIOX procedure. For a
waited call, use accept.

o The accept_nwand accept _nw2 functions work together. The accept nw function checks
for connections on an existing nowait socket. When a connection request arrives, it returns
the address and port number from which the connection request came. A new socket is then
created with socket nw. Finally, the new socket number returned by socket nw and the

96 Library Routines

address-port number combination returned by accept nw is passed to accept _nw2 to
establish the connection on the new socket.

e The call to accept nw made prior fo this call may be made in another process, such as the
LISTNER process.

o Declare the from ptr variable as struct sockaddr iné * for IPv6 use or as struct
sockaddr storage * for protocol-independent use. In C, when you make the call, cast
the variable to sockaddr *. (See the IPvé example.)

o Applications doing ACCEPT_NW?2 calls can only see listening applications in the same LNP.
(H-series and G06.22 and later G-series RVUs of NonStop TCP/IPv6 only.)

Example

See accept_nw (page 91), which also calls accept _nw2.

accept_nw3

The accept nw3 function accepts a connection on a new socket created for nowait data transfer.
Before calling this procedure, a program should call accept_nw on an existing socket and then
call socket nw to create the new socket to be used by accept nw3.

C Synopsis
#include <socket.h>
#include <in.h>

#include <in6.h> /* For IPvé6 use */
#include <netdb.h>

error = accept nw3 (new socket, from ptr, me ptr, tag);

int error, new socket;
struct sockaddr *from ptr, *me ptr;
long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := accept nw3 (new socket, from ptr, me ptr, tag);

INT (32) error;

INT (32) new_socket;

INT .EXT from ptr(sockaddr in) ;
INT .EXT me ptr(sockaddr_ in);
INT (32) tag;

error
return value; if the call is successtul, a zero is returned. If the call is not successful, =1 is returned.
If the call failed, the external variable errno is set as indicated in Errors (page 98).

new_socket
input value; the socket number for the new socket on which the connection is to be accepted,
as returned by a call to socket nw.

from ptr
input value; points to the address and port number returned from the call to accept nw or
accept nwl.

me_ptr
input value; points to the local address and port number used by bind nw.

accept_nw3 97

Errors

tag

input value; the tag parameter to be used for the nowait operation.

If an error occurs, the external variable errno is set to one of the following values:

EADDRINUSE Accept_nw3() posted on an already-bound socket. (For Parallel Library TCP/IP and
NonStop TCP/IPv6 only.)

EALREADY Operation is already in progress. (For Parallel Library TCP/IP and NonStop TCP/IPv6
only.)

ECONNRESET The connection was reset by the peer process before the accept operation completed.

This error also can be received when a call was done on a socket when the socket
was in an incorrect state.

EINVAL An invalid argument was specified.

EISCONN Socket is already connected. (For Parallel Library TCP/IP and NonStop TCP/IPvé
only.)

ENOBUF No Buffer Space available. (For Parallel Library TCP/IP and NonStop TCP/IPvé only.)

ERSCH The socket specified in the new_socket parameter was invalid. Close the socket

using the FILE_CLOSE call. Repeat the accept nw, socket nwand accept nw3
sequence of calls.

Usage Guidelines

This is a nowait call; it must be completed with a call to the AWATTIOX procedure. For a
waited call, use accept.

The accept nw and accept_nw3 functions work together. The accept nw function checks
for connections on an existing nowait socket. When a connection request arrives, the
accept nw function returns the address and port number from which the connection request
came. A new socket is then created with socket nw. Finally, the new socket number returned
by socket nw and the address-port number combination returned by accept nw is passed
to accept_nw3 to establish the connection on the new socket.

The call to accept nw made prior to this call can be made in another process, such as the
LISTNER process.

Declare the from ptr and me ptr variables as struct sockaddr ine * for IPvé use
or as struct sockaddr storage * for protocolindependent use. In C, when you make
the call, cast the variable to sockaddr *. (See the IPvé example.)

Applications doing ACCEPT_NWS3 calls can only see listening applications in the same LNP.
(H-series and G06.22 and later G-series RVUs of NonStop TCP/IPv6 only.)

bind, bind_nw

98

The bind and bind_nw functions associate a socket with a specific local Internet address and

port number.

C Synopsis

#include <socket.hs>

#include <in.h>

#include <in6.h> /* for IPv6 use */
#include <netdb.h>

error = bind (socket, address ptr, address len);

error = bind nw (socket, address ptr, address len, tag);

Library Routines

int error, socket;

struct sockaddr *address ptr;
int address len;
long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := bind (socket, address ptr, address len);

error := bind nw (socket, address ptr, address len, tag);

INT (32) error, socket;

INT .EXT address ptr(sockaddr in) ;
INT (32) address_len;
INT (32) tag;

error
return value; if the call is successful, a zero is returned. If the call is not successful, —1 is
returned. If the call failed, the external variable errno is set as indicated in Errors (page 99).

socket
input value; specifies the socket number for the socket, as returned by the call to socket or
socket nw.

address ptr
input value; points to the address-port number combination based in the structure sockaddr,
sockaddr iné, or sockaddr storage, to which the socket is to be bound.

If the address in the sin_addr field of the structure is INADDR ANY, connections are accepted
from hosts on any network. If the port number in the sin_port field of the structure is zero,

the next available port is assigned. Port numbers O to 1023 are reserved for use by predefined
services, such as TELNET. If the port number is in the range O through 1023 (known as reserved

ports), the process access ID of the requesting application must be in the SUPER group (user
ID 255,nnn).

For NonStop TCP/IPv6, if the address in the siné _addr field of the structure is in6addr any,
connections are accepted from hosts on any network. If the port number in the siné port
field of the structure is zero, the next available port is assigned. Port numbers O to 1023 are
reserved for use by predefined services, such as TELNET. If the port number is in the range O
through 1023 (known as reserved ports), the process access ID of the requesting application
must be in the SUPER group (user ID 255, nnn).

address_len

input value; address_1en is maintained only for compatibility and should be a value indicating
the size in bytes of the structure (the remote address and port number) pointed to by
address_ptr.

tag
input value; the tag parameter to be used for the nowait operation initiated by bind nw.

Errors

If an error occurs, the external variable errno is set to one of the following values:

EADDRNOTAVAIL The specified IP address and port number was not available on the local host.

EADDRINUSE The specified IP address and port number was already in use.

bind, bind_nw 99

EINVAL The specified socket was already bound to an address, or the address_len was incorrect.

EACCES The specified address cannot be assigned to a nonprivileged user.

Usage Guidelines

Use bind on a socket created for waited operations, or bind nw on a socket created for
nowait operations. The operation initiated by bind nw must be completed with a call to the
AWAITIOX procedure.

NOTE: The socket goes into a TCP LISTEN state after the application completes a bind on
an IP address and port. There is a possibility that TCP/IP can receive a connection on that
socket if a rogue client tries to connect to that IP address and port.

Multiple sockets created by different processes can be bound to the same UDP port. When a
broadcast message arrives on the UDP port, only one process is notified. TCP/IP determines
which process to notify based on the network address portion of the Internet address. If the
network address of a socket is the same as the network address of the broadcast message,
the process that created and bound the socket is notified. For example, assume these sockets
A, B, and C are created by different processes and are bound to port 67 using the following
Internet addresses:

Socket A 130.252.12.8

Socket B 130.252.10.8

Socket C 10.5.0.9

A UDP broadcast message addressed to 130.252.10.255 (port 67) arrives on the socket
bound to port 67 with Internet address 130.252.10.8. The process that created socket B is
notified because the network address of the socket matches the network address of the
broadcast message. (In the Berkeley sockets interface, the socket most recently bound to the
port is notified.)

Only one socket can be bound to a particular combination of Internet address and port number.

UDP Port Considerations for Parallel Library TCP/IP and NonStop TCP/IPvé. If a process
maintains a context for its messages, the process should not use round robin on shared UDP
ports.

The processes sharing the UDP port should not maintain a context for previous messages
because there is no guarantee that a sequence of messages is delivered to the same socket
if the port is shared. In fact, with round-robin enabled, a sequence of messages is distributed
to each of the port-sharing sockets, in turn.

For example, TFTP server assumes that all packets from a given source are directed to it (the
TFTP server process). This assumption about the source is what is meant by maintaining a
“context.” Because TFTP server makes that assumption about packets from a given source,
that is, maintains that “message context,” it must be the only TFTP server process on that UDP
port. If another TFTP server is sharing the UDP port, packets from the same source could go
to two different TFTP server processes resulting in one of the TFTP servers missing some of the
packets destined for it.

For applications that must maintain a context across multiple messages received (such as TFTP
server and WANBOQI), if you want multiple instances running in parallel, you can circumvent
the problem introduced by round robin by changing the application to bind to the SUBNET
IP address rather than to INADDR_ANY or IN6ADDR_ANY. Binding to the IP address allows
one instance of the application for each SUBNET to be supported by Parallel Library TCP/IP
and NonStop TCP/IPvé with sharing of the same port number. NonStop TCP/IPv6 and NonStop
TCP/IP then distributes incoming packets that came in from one SUBNET only to the application
that bound to that SUBNET. This circumvents the problem introduced by round-robin distribution
of incoming packets among sockets sharing the same port.

100 Library Routines

Alternatively, for NonStop TCP/IP, you can use LNP to create multiple TCP6SAM processes,
each with its own IP address, similar to the multiple- TCP/IP process technique of conventional
TCP/IP. (See Multiple NonStop TCP/IP Processes and Logical Network Partitioning (LNP)
(NonStop TCP/IPv6, H-Series and G06.22 and Later G-Series RVUs Only) (page 43).)

o TCP Port Considerations for NonStop TCP/IP and NonStop TCP/IP. If you have used the following
DEFINE to set up round-robin filtering for Parallel Library TCP/IP or NonStop TCP/IPv6, consider
the following for socket programming.

ADD DEFINE =PTCPIP*FILTER"KEY, class map, file file-name

Round-robin filtering allows multiple binds to the same IP and port if more than one application
per processor is binding to the port at one time. Furthermore, the multiple binds to the same
IP port can only come from processes that share the same NonStop TCP/IP or Parallel Library
TCP/IP filter key (the variable file name in the DEFINE).

You can limit the shared ports by adding one or both of the following defines:
ADD DEFINE =PTCPIP"FILTER"TCP*“PORTS, FILE P/Pendport

ADD DEFINE =PTCPIP*FILTER"UDP"“PORTS, FILE Pstartport.Pendport

The startport and endport variables are integers specifying the allowable port range.
The =PTCPIP"FILTER"TCP*PORTS key limits the shared TCP poris to the range defined in
startport and endport. The =PTCPIP*FILTER"UDP*PORTS key limits the shared UDP
ports to the range defined in startport and endport. Ports outside those ranges are not
shared.

See the TCP/IPvé Configuration and Management Manual for more information about DEFINE.

o See Nowait Call Errors (page 86) for information on error checking.

o Declare the address_ptr variable as struct sockaddr_iné * for IPvé use or as struct
sockaddr storage * for protocol-independent use. In C, when you make the call, cast
the variable to sockaddr. (See the IPv6 example.)

Examples

INET: the following IPv4 programming example calls the bind routine. The socket £d is bound to
the address and port number in the sin structure:

#include <socket.h>
#include <in.h>
#include <netdb.h>

struct sockaddr in sin;

/* The code here (not shown) should create a socket fd.
* Then the local address and port number
* in the sin structure are set up. The port number is passed
* as an argument when the program is run.
*
/
sin.sin family = AF_INET;
sin.sin addr.s addr = INADDR ANY;
sin.sin port = port;
if (bind (£d4, (struct sockaddr *)&sin, sizeof (sin)) < 0) {
perror ("SERVER: Bind failed.");
exit (1);

}

/* Bind call succeeded. /*

INET6: the following IPv6 programming example calls the bind routine. The socket £4 is bound
to the address and port number in the sin structure:

#include <socket.hs>
#include <in.h>
#include <iné6.h>

bind, bind_nw 101

#include <netdb.h>
struct sockaddr_iné sin;

/* The code here (not shown) should create a socket fd.
* Then the local address and port number
* in the sin structure are set up. The port number is passed
* as an argument when the program is run.
*
/
sin.siné family = AF INET6;
sin.siné_addr = iné6addr_any;
sin.sin6é port = port;

/* Notice that sin is cast as sockaddr as suggested in the Usage Guidelines */
if (bind (fd, (struct sockaddr *)&sin, sizeof (sin)) < 0) {

perror ("SERVER: Bind failed.");

exit (1);

}
/* Bind call succeeded. /*
connect, connect_nw
The connect and connect nw functions connect the specified socket to a remote socket.

For TCP, these functions request an active connection. For UDP or IP, they permanently specify the
destination address for the socket.

C Synopsis

#include <socket.h>

#include <in.h>

#include <in6.h> /* for IPvé6 use */
#include <netdb.h>

error = connect (socket, address ptr, address len);

error

connect nw (socket, address ptr, address len, tag);

int error, socket;
struct sockaddr *address ptr;

int address len;
long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := connect (socket, address ptr, address len) ;
error := connect nw (socket, address ptr, address len, tag);
INT (32) error;
INT (32) socket;
INT .EXT address ptr (sockaddr in);
INT (32) address_len;
INT (32) tag;
error

return value; if the call is successful, a zero is returned. If the call is not successful, —1 is
returned. If the call failed, the external variable errno is set as indicated in Errors (page 103).
Refer to Appendix B (page 243), for more details.

102 Library Routines

socket

input value; specifies the socket number for the socket, as returned by the call to socket or
socket nw.

address_ptr

input value; points o the address and port number (based on the structure sockaddr in,
sockaddr iné, sockaddr storage) of the remote socket to which a connection is to be
established.

address_len

input value; should be a value indicating the size in bytes of the remote address and port
number pointed to by address ptr.

tag

input value; the tag parameter to be used for the nowait operation initiated by connect nw.

Errors
It an error occurs, the external variable errno is set to one of the following values:
EALREADY There is already an outstanding call on the socket.
EISCONN The specified socket was already connected.
ETIMEDOUT The connection timed out without being established.
ECONNREFUSED The remote host rejected the connection.
ENETUNREACH The network (of the remote host) was unreachable.
EINVAL One of the arguments to this call was invalid.

Usage Guidelines

Use connect on a socket created for waited operations, or connect nw on a socket created
for nowait operations. The operation initiated by connect nw must be completed with a call
to the AWAITIOX procedure.

For more information on checking errors, see Nowait Call Errors (page 86).

For more information about struct sockaddr *, struct sockaddr iné and
sockaddr storage, see Chapter 3 (page 62). Also, see getaddrinfo (page 107) and addrinfo
(page 64).

Declare the address ptr variable as struct sockaddr ine * for IPvé use or as
struct sockaddr storage * for protocolindependent use. In C, when you make the
call, cast the variable to sockaddr *. (See the “Examples” (page 103).)

NOTE: Using CIP, when trying to connect to a remote IPv6 link-local address might fail with error
EINVAL. This error is displayed when:

The socket is not bound to the IPv6 link-local address on the local interface, or

The scope ID (sin6_scope_id member in struct sockaddr_ ineé) is not specified.

Examples

INET: The following programming example calls the connect routine that connects the socket £d

to a

remote socket. The remote structure contains the address and port of the remote socket:

#include <socket.hs>
#include <in.h>
#include <netdb.h>

struct sockaddr in remote;

connect, connect_nw 103

/* Program must contain code to create the socket fd
* and to f£ill in the remote address before calling connect.

*/

if (connect (fd, (struct sockaddr *)&remote,sizeof (remote)) <0) {
perror ("Client failed to connect to remote host.");
exit (0);

}

printf ("CLIENT:Connected ...\n");

INET6: The following programming example calls the connect routine that connects the socket
£d to a remote socket. The remote structure contains the address and port of the remote socket:

#include <socket.h>
#include <in.h>
#include <iné6.h>
#include <netdb.h>

struct sockaddr iné remote;

/* Program must contain code to create the socket fd
9
* and to fill in the remote address before calling connect.

*/

/*Notice that remote is cast as struct sockaddr as suggested in
the Usage Guidelines */
if (connect (£fd, (struct sockaddr *)&

remote, sizeof (remote)) <0) {
perror ("Client failed to connect to remote host.");
exit (0);

printf ("CLIENT:Connected ...\n");

freeaddrinfo

Errors

The freeaddrinfo function frees the memory of one or more addrinfo structures previously
created by the getaddrinfo function. Any dynamic storage pointed to by the structure is also

freed. (This function is supported for NonStop TCP/IPvé only.)
C Synopsis

#include <netdb.h>

void freeaddrinfo (struct addrinfo *ai) ;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

freeaddrinfo (ai);

INT .EXT ai (addrinfo) ;

ai
input value; specifies the addrinfo structure to be freed.

No errors are returned for this function.

104 Llibrary Routines

Usage Guidelines

Call this function once for each structure created by calls to getaddrinfo before closing a socket.
Upon successful completion, freeaddrinfo does not return a value. The address information
structure and associated storage are returned to the system.

Examples
INETé: the following IPvé programming example calls the freeaddrinfo routine after the
getaddrinfo function returns a value:
#include <netdb.h>
struct addrinfo *res;
struct addrinfo *aip;
for(aip = res; aip!= NULL; aip = aip-»ai next) {
/*create a socket, address type depends on getaddrinfo ()
returned value */
sock=socket (aip->ai family, aip->ai socktype,
aip->ai protocol) ;
if (sock == -1) {
perror ("socket") ;

freeaddrinfo (res) ;
return(-1) ;

}

freehostent

The freehostent function frees the memory of one or more hostent structures returned by the

getipnodebyaddr or getipnodebyname functions. (This function is supported for NonStop
TCP/IP only.)

C Synopsis
#include <netdb.h>

void freehostent (struct hostent *ptr);

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

freehostent (ptr) ;
INT .EXT ptr(hostent) ;

ptr
input value; a pointer to the structure hostent.

Usage Guidelines
Call this function once for each hostent structure returned by the get ipnodebyaddr or
getipnodebyname functions.

gai_strerror

The gai_strerror function aids applications in printing error messages based on the EAl_xxx
codes returned by the getaddrinfo function. The IPvé6 functions get ipnodebyaddr,
getipnodebyname, getaddrinfo, and getnameinfo return errors in a thread-safe structure.

freehostent 105

The gai_strerror function call returns a pointer to a character string describing the error code
passed info it. (This function is supported for Parallel Library TCP/IP only.)

C Synopsis
#include <netdb.h>

char *gai_strerror (int ecode) ;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

return value := gal_strerror (ecode) ;

INT (32) return value;
INT (32) ecode;

return value
is a pointer to a string described in ecode.
ecode

input value; specifies one of the following error codes returned by the getaddrinfo function;
the returned strings are as follows:

Error Codes and Returned Strings Reason

EAI ADDRFAMILY:See the EAT FAMILY returned Address family for hostname not supported.
string. EAT_ADDRFAMILY is defined but never

returned.

EAI AGAIN:"The name could not be Temporary failure in name resolution.
resolved this time. Future attempts may

succeed."

EAI BADFLAGS:"The flags parameter has Invalid value for ai flags.
an invalid value."

EAI FAIL:"A non-recoverable error Non-recoverable error in name resolution.
occurred.”

EAI FAMILY:"Address family was not ai_family not supported.
recognized or address length was

invalid."

EAI MEMORY: "Memory allocation failure." Memory allocation failure.

EAI NONAME:"Name does not resolve to Neither hostname nor servname supplied or the name
supplied parameters." does not resolve using the supplied parameters.

EAI_SERVICE:"The service passed was not servname not supported for ai socktype.
recognized for the specified socket
type."

EAI SOCKTYPE:"The intended socket type ai_socktype not supported.
was not recognized."

EAI SYSTEM:"A system error occurred; System error returned in errno.
error code found in errno."

Usage Guidelines

Call this function to aid in printing human-readable error messages based on the EAl_xxx error
codes returned by the getaddrinfo function.

106 Library Routines

Example

The following programming example calls the gai_strerror routine to print error messages:

error = getaddrinfo(hostname, servicename, &hints, &res);

if (error != 0) {
(void) fprintf (stderr, "myFunction: getaddrinfo returned error
%$i ", error);
(void) fprintf (stderr, "%s0", gai strerror(error)) ;

return -1;

}

Errors
errno is set only on the return of EAT _SYSTEM. See ecode for further information about error
codes.

getaddrinfo

The getaddrinfo function converts hostnames and service names into socket address structures.
(This function is supported for NonStop TCP/IPvé only.)

NOTE: The C synopsis is given in ANSI C format rather than the pre-ANSI C formats of the other
library routines because the only NonStop servers you can use these routines on all support ANSI
C. (ANSI C format defines the function and the arguments in the same line rather than using an
assign statement and defining the arguments underneath.)

C Synopsis

#include <netdb.h>
int getaddrinfo (const char *hostname, const char *service,
const struct addrinfo *hints, struct addrinfo **result);

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := getaddrinfo (hostname, service, hints, result);
INT (32) error;

STRING .EXT hostname;
STRING .EXT service;

INT .EXT hints(addrinfo) ;
INT .EXT result (addrinfo) ;
error

return value; it is O upon success or a nonzero error code upon failure. The error codes are
described in gai_strerror (page 105).

hostname
input value; specifies a pointer to a character representing one of the following:

e An Internet node hostname.
e An IPv4 address in dotted-decimal format.
e An IPv6 address in hexadecimal format.

e NULL if no hostname requires converting; when NULL is used, either service or hints
must be non-NULL.

getaddrinfo 107

service
input value; specifies a pointer to a character representing one of the following:
e A network service name.
e A decimal port number.
e NULL if no service name requires converting; when NULL is used, either hostname or hints
must be non-NULL.
hints
input value; specifies one of the following:

e A pointer to an addrinfo struct for a socket; the format of the addrinfo structure is
defined in the header file netdb.h.

e NULL if no struct is available; when NULL is used, either hostname or service must
be non-NULL.

result

return value; points to a list of addrinfo structs upon successful completion. (See Usage
Guidelines (page 108).)

Example

This fragment of an IPv6 TCP Client shows a client that requests a service called example.

struct addrinfo *res, *ainfo;

struct addrinfo hints;

/* clear out hints */

memset ((char *)&hints, 0, sizeof (hints));
hints.ai socktype = SOCK STREAM;

error = getaddrinfo(argv[l], "example", &hints, &res);

if (error != 0) {
fprintf (stderr, "%$s: %s not found in name service database\n",
argv[0], argv[l]);
exit (1) ;

}

for (ainfo = res; ainfo != NULL; ainfo = ainfo->ai next) {
/* Create the socket. */
s = socket (ainfo->ai family,ainfo->ai_ socktype,

ainfo->ai_ protocol) ;

if (s == -1) {

perror (argv[0]) ;
fprintf (stderr, "%s: unable to create socket\n", argv[0]);
freeaddrinfo (res) ;
exit (1) ;
}
if (connect (s, ainfo-»ai addr, ainfo->ai addrlen) == —l){
perror (argv[0]) ;

fprintf (stderr, "%s: unable to connect to remote\n", argv[0]);
FILE CLOSE(S);

continue;

}

else
break;

}
Usage Guidelines

o This function, along with getipnodebyname (page 116), are protocol-independent replacements
for gethostbyname, host_file_gethostbyname (page 110). getaddrinfo provides extra

108 Library Routines

functionality beyond what getipnodebyname provides because getaddrinfo handles both
the hostname and the service.

e Appropriate use of this function can eliminate calls to getservbyname and at the same time
provide protocol independence.

e getaddrinfo function converts hostnames and service names into socket address structures.
You allocate a hints structure, initialize it to O (zero), fill in the needed fields, and then calll
this function.

o This function returns through the result pointer a linked list of addrinfo structs that you
can use with other socket functions. For a description of the addrinfo struct, see addrinfo
(page 64). Each addrinfo struct contains the following members:

e ATCP or UDP client typically specifies non-NULL values for both the hostname and service
parameters. A TCP client loops through all the returned socket address structures, calling the
socket and connect functions for each address until a connection succeeds. A UDP client
calls connect or the sendto function.

e ATCP or UDP server typically specifies a non-NULL value for service but not hostname. It also
specifies the AT _PASSIVE flag in the hints struct. The returned socket address structs should
contain the IP address INADDR ANY or in6addr any. A TCP server then calls the socket,
bind, and listen functions. A UDP server calls the socket, bind, and the recvfrom
functions.

o If the client or server handles only one type of socket, set hints.ai socktype to
SOCK_STREAM or SOCK_DGRAM fo avoid having multiple addrinfo structs returned.

e Upon successful completion, this function returns O (zero), and result points fo a new address
information structure. Otherwise, getaddrinfo returns the error codes described in ecode

o The freeaddrinfo (page 104) function returns the storage allocated by the getaddrinfo
function.

o Ensure that the protocol file ($SYSTEM. ZTCPIP. PROTOCOL on the Guardian side or
/etc/protocols on the OSS side) exists. This helps to avoid the following error:

ENOENT(4002): No such file or directory.

gethostbyaddr, host_file_gethostbyaddr

The gethostbyaddr and host file gethostbyaddr functions get the name of the host with
the specified Internet address. These functions are for INET addresses only; for protocol-independent
applications, see getnameinfo (page 117) or getipnodebyaddr (page 114). Although these two
functions provide the same service, they accomplish the service in different ways. To determine
which function best suits your purpose, see the Usage Guidelines (page 110).

C Synopsis

#include <socket.hs>
#include <netdb.h>

host entry ptr = gethostbyaddr (host addr ptr, length,
addr _type) ;

host entry ptr = host file gethostbyaddr (host addr ptr,
length, addr type) ;

struct hostent *host entry ptr;
char *host addr ptr;
int length, addr type;

TAL Synopsis

gethostbyaddr, host_file_gethostbyaddr 109

Errors

?NOLIST, SOURCE SOCKDEFT

?NOLIST, SOURCE SOCKPROC

host entry ptr := gethostbyaddr (host addr ptr, length,
addr_type) ;

host _entry ptr :

host file gethostbyaddr (host addr ptr,
length, addr type);

INT (32) host _entry ptr;
STRING .EXT host_addr ptr;
INT (32) length,

addr_ type;

host entry ptr

return value; points o a structure (based on the hostent structure) in which information on the
specified host is returned. The information includes the official name, aliases, and addresses
for the host.

If the lookup fails, NULL is returned and the external variable h_ermo is set as indicated in
Errors (page 110).
host_addr ptr

input value; points to the Internet address of the host whose name is to be found. The address
pointed fo is in binary format and network order. (This address is in the same format and order
as the return value of the function inet_addr (page 134).)

length
input value; the length of the Internet address pointed to by host addr ptr.

addr type
input value; the type of address specified. Its value must be AF INET.

It an error occurs, the external variable h_errno is set to one of the following values:

HOST NOT_ FOUND The specified host was not found. This is the only possible value if the resolver code has
been disabled.

TRY AGAIN The local server did not receive a response from an authoritative server. Try again later.

NO RECOVERY An error has occurred from which there is no recovery.

Usage Guidelines

The address that is returned in host entry ptr can be used directly in a sockaddr in
structure. The address is in network order.

The gethostbyaddr and host _file gethostbyaddr library routines are for INET use only.
For IPvé, use the getnameinfo or library routines (see getnameinfo (page 117)).

gethostbyname, host_file_gethostbyname

The gethostbyname and host file gethostbyname functions get the Internet address of
the host whose name is specified. These functions are for INET applications only; for
protocol-independent applications, see getaddrinfo (page 107) or getipnodebyname (page 116).
Although these two functions provide the same service, they accomplish the service in different
ways. To determine which function best suits your purpose, see the Usage Guidelines (page 111).

C Synopsis

#include <socket.hs>
#include <netdb.h>

110 Library Routines

Errors

host entry ptr = gethostbyname (host name ptr) ;
host entry ptr = host file gethostbyname (host name ptr) ;

struct hostent *host entry ptr;
char *host name ptr;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

host entry ptr := gethostbyname (host name ptr) ;

host entry ptr := host file gethostbyname (host name ptr) ;

INT (32) host entry ptr;
STRING .EXT host name ptr;

host _entry ptr

return value; points to a structure (based on the hostent structure) in which information on the
specified host is returned. The information includes the official name, aliases, and addresses
for the host.

If the lookup fails, NULL is returned, and the external variable h_errno is set as indicated in
Errors (page 111).

host name ptr

input value; points to either the official name or an alias of the host whose Internet address is
to be found.

It an error occurs, the external variable h_errno is set to one of the following values:

HOST NOT FOUND The specified host was not found. This is the only possible value if the resolver code has
been disabled.

TRY AGAIN The local server did not receive a response from an authoritative server. Try again later.

NO_RECOVERY An error has occurred from which there is no recovery.

NO_ADDRESS The specified hostname is valid, but the host does not have an IP address.

Usage Guidelines

o The gethostbyname () function is used for resolving names with hosts file. You can choose
host file, external dns server, or a combination of host file and external dns server to resolve
the host name.

o The parameters passed to the gethostbyname and host file gethostbyname functions
are case-sensitive.

o The hostent structure is statically declared. Subsequent calls to gethostbyname or
host file gethostbyname replace the existing data in the hostent structure.

NOTE: The function host _file gethostbyname () supports only local hosts file.

Example

The address pointed to by host entry ptr, which is already in network order, can be used
directly in a sockaddr_in structure, as in the following example:

gethostbyname, host_file_gethostbyname 111

struct sockaddr in sin;

struct hostent *hp;

if ((hp = gethostbyname (nameptr)) != (struct hostent *)
NULL) {

memmove ((char *)&sin.sin addr.s_addr,
(char *)hp -> h_addr,
(size t) hp -> h length);

}

If the return value is not NULL, the pointer hp is used to move the address from the h_addr field
of the hp structure to the Internet address field of the sin structure.

gethostbyname?2

The gethostbyname?2 function gets the Internet address (IPv4 or IPvé) of the host whose name
is specified. gethostbyname2 works like gethostbyname but also allows specifying the address
family to which the returned Internet address must belong. (This function is supported for G06.27
and later G-series RVUs and H06.05 and later H-series RVUs of NonStop TCP/IPvé6.)

C Synopsis
#include <netdb.h>

host _entry ptr = gethostbyname2 (name, af);

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

host entry ptr := gethostbyname2 (name, af);
INT (32) host entry ptr;
STRING .EXT name;
INT af;

host entry ptr

return value; points to a structure (based on the hostent structure) in which information on
the specified host is returned. The information includes the official name, aliases, and addresses
for the host. If the lookup fails, NULL is returned.

name

input value; points to either the official name or an alias of the host whose Internet address is
to be found.

af

input value; an integer that sets the address type searched for by the function and returned by
the function. af is either AF_INET (IPv4) or AF_INET6 (IPvé).

Errors

gethostbyname?2 returns NULL to indicate an error. In this case, the global variable h_errno
contains one of these error codes (as defined in netdb.h):
HOST NOT_FOUND

The specified host was not found. This is the only possible value if the resolver code has been

disabled.
TRY AGAIN
The local server did not receive a response from an authoritative server. Try again later.

12 Library Routines

NO RECOVERY
An error has occurred from which there is no recovery.

Example

The example makes a call to gethostbyname2 by passing the host-name and address family as
arguments. If an answer is found, a pointer to the hostent structure is returned and stored in hp.
NULL is returned if no answer is found.

int af;

char *name;

struct hostent *hp;

hp = gethostbyname2 (name, af);

Usage Guidelines

o The parameter name passed to the gethostbyname2 function is case-sensitive.
o The hostent structure is statically declared. Subsequent calls to gethostbyname2 replace
the existing data in the hostent structure.
gethostid

The gethostid function gets the host ID of the local host. The host address returned corresponds
to the address returned in the SCF command INFO PROCESS (or its programmatic equivalent).

C Synopsis

#include <netdb.h>

id = gethostid ();
int 1d;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

id := gethostid ();
INT (32) id;

id
return value; an integer, assigned by the system administrator, which uniquely identifies the

host to the Internet. Often it is the local address part of the Internet address assigned to the
host. This is the return value.

Errors

No errors are returned for this function.

gethostname

The gethostname function gets the official name by which the local host is known to the Internet.
The hostname returned corresponds to the hostname returned in the SCF command INFO PROCESS
(or its programmatic equivalent).

C Synopsis
#include <netdb.h>
error = gethostname (buffer, buffer length);

int error;

gethostid 113

Errors

char buffer [];
socklen t buffer length;

TAL Synopsis

?NOLIST, SOURCE SOCKPROC
?NOLIST, SOURCE SOCKDEFT

error := gethostname (buffer, buffer length);
INT (32) error;
STRING .EXT buffer;
INT (32) buffer length;

error

return value; if the call is successful, a zero is returned. If the call is not successful, —1 is
returned. If the call failed, the external variable errno is set as indicated in Errors (page 114).

buffer

return value; a character array in which the official name of the local host is returned. The
name returned is a null-terminated character string (for example, “medlab\0”).

buffer length
input value; the size of buffer.

It an error occurs, the external variable errno is set fo the following value:

EINVAL An invalid argument was specified.

getipnodebyaddr

The getipnodebyaddr function searches host entries until a match with the src is found. (This
function is supported for NonStop TCP/IP only.)

The getipnodebyaddr function returns a pointer to a hostent struct whose members specify
data from a name server specified in the resconf or hosts files.

NOTE: The C synopsis is given in ANSI C format rather than the pre-ANSI C formats of the other
library routines because the only NonStop servers you can use these routines on all support ANSI
C. (ANSI C format defines the function and the arguments in the same line rather than using an
assign statement and defining the arguments underneath.)

C Synopsis
#include <sys/socket.h>

#include <netdb.h>
struct hostent *getipnodebyaddr (const void *src, socklen t len,
int af, int *error ptr);

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

return value := getipnodebyaddr (src, len, af, error ptr);
INT (32) return val;
STRING .EXT src;
INT (32) len;
INT (32) ar;

114 library Routines

INT .EXT error ptr;

return value

src

len

input value; the length of the IP address: 4 octets for AF_INET or 16 octets for AF INETS.
af

input value; member of address family AF INET or AF INETS.

is a pointer to a structure of type hostent.

input value; a pointer to an IP address for which the hostname should be returned; the address
specified should be in binary format and network order.

error ptr

input and return value; a pointer to the integer containing an error code, if any.

Usage Guidelines

Errors

getipnodebyaddr provides the same functionality as gethostbyaddr, host_file_gethostbyaddr
but is protocol-independent.

The get ipnodebyaddr function has the same arguments as the IPv4 gethostbyaddr
function but adds an error number value. The error num value is returned to the caller with
the appropriate error code to support thread safe error code returns.

A thread-safe environment must be used with the get ipnodebyaddr function.

The get ipnodebyaddr function processes IPv4-compatible IPvé6 addresses as follows:
1. When afis AF_INET6 and len equals 16, and when the IPv6 address is an IPv4-mapped
IPvé address or an IPv4-compatible IPv6 address, the function:
a. Skips the first 12 bytes of the IPv6 address.
b. Sefs af to AF_INET.
c. Sefs len fo four.

2. |If af is AF_INET, the function looks up the name for the given IPv4 address.
3. If afis AF_INETS, the function looks up the name for the given IPvé address.

A successful function call returns a pointer to the hostent structure that contains the hostname.
The structure returned also contains the values used for src and addr family., possibly
modified as described in the preceeding usage guideline.

Information returned by getipnodebyaddr is dynamically allocated. The information is the
hostent structure and the data areas pointed to by the members of the hostent structure
are all dynamically allocated. To return the memory to the system, call the freehostent
function.

An unsuccesstul function returns NULL pointer and one of the following nonzero values for the
error ptr:

HOST_NOT_FOUND The specified address is not valid.

NO_RECOVERY A server failure occurred. This is a nonrecoverable error.
TRY_AGAIN An error occurred that might have been caused by a transient condition. A later retry might
succeed.

getipnodebyaddr 115

getipnodebyname

The getipnodebyname function gets host information based on the hostname. This function is
protocol-independent. (This function is supported for Parallel Library TCP/IP only.)

NOTE: The C synopsis is given in ANSI C format rather than the pre-ANSI C formats of the other
library routines because the only NonStop servers you can use these routines on all support ANSI
C. (ANSI C format defines the function and the arguments in the same line rather than using an
assign statement and defining the arguments underneath.)

C Synopsis

#include <netdb.h>
struct hostent *getipnodebyname (const char *name, int af,
int flags, int *error ptr);

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

return val := getipnodebyname (name, af, flags, error ptr);
INT (320 return val;
STRING .EXT name;
INT (32) arft;
INT (32) flags;
INT .EXT error ptr;

return val
is a pointer to a structure of type hostent.
name

input value; a pointer to a node name or numeric address string, such as an IPv4 dotted-decimal
address or an IPvé hexadecimal address.

arf

input value; an integer that sets the address type searched for by the function and returned by
the function. af is either AF _INET (IPv4) or AF_INET6 (IPv6).
flags

input value; an integer that specifies the conditions for returning an address: IPv6-only,
IPv4-mapped if no IPv6 address found, or return an address only if the remote node name has
at least one IP address configured. See ai_flags underaddrinfo (page 64) for the ai_flags
values.

error ptr

input and return value; a pointer to the error code returned by the get ipnodebyname function.
error numis set fo one of the following values:

HOST NOT_FOUND The specified host was not found.

TRY AGAIN A temporary, and possibly transient, error occurred, such as a failure of a server to
respond.

NO_RECOVERY An unexpected server failure occurred which cannot be recovered.

NO_ADDRESS The specified hostname is valid, but the host does not have an IP address. Another type

of request to the name server for the domain might return an error.

Example

The address pointed to by hp, which is already in network order, can be used directly in a
sockaddr in or sockaddr iné structure, as in the following example:

16 Library Routines

struct sockaddr in sin;
struct hostent *hp;

if ((hp = getipnodebyname (nameptr, AF INET, AI PASSIVE,

&error num)) != (struct hostent ¥*)
NULL)
memmove ((char *)&sin.sin addr.s_addr,

(char *)hp -> h _addr,
(size_t) hp -> h length);

}
Usage Guidelines

o The getipnodebyname function searches host entries sequentially until a match with the
name argument occurs.

e The geipnodebyname function returns a pointer to a structure of type hostent whose
members specify data obtained from a name server specified in the RESCONF file or from
fields of a record line in the network hostname database file.

° getipnodebyname provides the same functionality as gethostbyname,
host_file_gethostbyname but is protocol-independent.

e A thread-safe environment must be used with the get ipnodebyname function.

Errors

An unsuccessful function returns a pointer (error ptr) to one of the following values:

HOST_NOT_FOUND The specified name is not a valid hosthame or alias.

NO_ADDRESS The server recognized the request and the name specified but no address is available.

NO_RECOVERY A server failure occurred. This is a nonrecoverable error.

TRY_AGAIN An error occurred that might have been caused by a transient condition. A later retry might
succeed.

getnameinfo

The getnameinfo function translates a protocol-independent host address to hostname. This
function uses a socket address to search for a hostname and service name. Given a binary IPv4
or IPv6 address and port number, this function returns the corresponding hostname and service
name from a name resolution service. (This function is supported for NonStop TCP/IPv6 only.)

NOTE: The C synopsis is given in ANSI C format rather than the pre-ANSI C formats of the other
library routines because the only NonStop servers you can use these routines on all support ANSI
C. (ANSI C format defines the function and the arguments in the same line rather than using an
assign statement and defining the arguments underneath.)

C Synopsis
#include <netdb.h>

int getnameinfo(const struct sockaddr *sa,socklen t salen,char
*host,socklen t hostlen,char *serv,socklen t servlen,int flags);

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := getnameinfo(sa, salen, host, hostlen, serv, servlen, flags);

INT (32) error;

getnameinfo 117

18

INT .EXT sa (sockaddr) ;

INT (32) salen;
STRING .EXT host;
INT (32) hostlen;
STRING .EXT Serv;
INT (32) servlen;
INT (32) flags;

error
return value; if the call is successful, a O (zero) is returned. If the call is not successful, —1 is
returned. If the call failed, the external variable error is set as indicated in Errors (page 119).
sa
input value; points to the sockaddr in or sockaddr iné struct containing the IP address
and port number.
salen
input value; specifies the length of the sa argument.
host
input and return value; contains the hostname associated with the IP address or the numeric
form of the host address (if the flags value NI _NUMERICHOST is used).
hostlen
input value; specifies the size of the host buffer to receive the returned value. If you specify
0 (zero), no value is returned for host. Otherwise, the value returned is truncated as necessary
to fit the specified buffer.
serv
input and return value; contains either the service name associated with the port number or
the numeric form of the port number (if the flags value of NI NUMERICSERV is used).
servlen

input value; specifies the size of the serv buffer to receive the returned value. If you specify
0 (zero), no value is returned for serv. Otherwise, the value returned is truncated as necessary
to fit the specified buffer.

flags
NI NOFQDN

input value; specifies to return only the hostname part of the fully qualified domain name
(FQDN) for local hosts. If you omit this flag, the function returns the host’s fully qualitied
(canonical) domain name.

NI NUMERICHOST

specifies to return the numeric form of the host address instead of the hostname.
NI NAMEREQD

specifies to return an error if the hostname is not found in the DNS.
NI NUMERICSERV

specifies to return the numeric port number instead of the service name.
NI_DGRAM

specifies to return only ports configured for a UDP service. This flag is required for ports
that use different services for UDP and TCP.

Library Routines

Usage Guidelines

o By default, this function returns the hostname's fully qualified domain name.

e This function, along with getipnodebyaddr, are protocol-independent replacements for
gethostbyaddr, host_file_gethostbyaddr. getnameinfo provides extra functionality beyond
what getipnodebyaddr provides because it handles both the host’s address and port number.

o Appropriate use of this function can eliminate calls to getservbyport and at the same time
provide protocol independence.

Example
The following programming example calls the getnameinfo routine to get a hostname’s fully
qualified domain name.

#include <socket.h>
#include <netdb.h>

error = getnameinfo((struct sockaddr *)sin,
addrlen, hname, sizeof (hname), sname,
Sizeof(sname),NI_NUMERICHOST|NI_NUMERICSERV);

if (error)
fprintf (stderr, "getnameinfo: %s\n", gal strerror (error)) ;

Errors

Upon successful completion, this function returns O (zero) and the requested values are stored in
the buffers specified for the call. Otherwise, the value returned is nonzero and errno is set to
indicate the error (only when the error is EAT_SYSTEM). See the error codes described in ecode

getnetbyaddr

The getnetbyaddr function gets the name of the network corresponding to the specified network
address.

C Synopsis

#include <socket.h>
#include <netdb.h>

net entry ptr = getnetbyaddr (net addr, type);

struct netent *net entry ptr;
unsigned long net addr;

int type;
TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

net entry ptr := getnetbyaddr (net addr, type);

INT (32) net entry ptr;
INT (32) type;

getnetbyaddr 119

INT (32) net addr;

net entry ptr

return value; points to a structure (based on the netent structure) that contains all the required
information on the specified network. This is the return value.

If the lookup fails (for instance, if the specified network address is invalid, if no NETWORKS file
exists, if the NETWORKS file could not be opened, or if no matching network entry is found in
the NETWORKS file), NULL is returned.

net addr

input value; the network address by which the network is to be found. Use the inet netof
function to obtain the network portion of an Internet address.

type
input value; the type of address specified. Its value must be AF_INET or AF_INETS.

Errors

No errors are returned for this function.

Usage Guideline

This call requires the presence of a NETWORKS file providing information on the networks accessible
from this host. The format of this file is described in the TCP/IPvé Configuration and Management
Manual.

getnetbyname
The getnetbyname function gets the network number of the network with the specified network
name.
C Synopsis

#include <socket.h>
#include <netdb.h>

net entry ptr = getnetbyname (net name) ;

struct netent *net entry ptr;
char *net name;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

net entry ptr := getnetbyname (net name) ;

INT (32) net entry ptr;
STRING .EXT net name;

net entry ptr
return value; points to a structure (based on the netent structure) that contains all the required
information on the specified network. This is the return value.

If the lookup fails (for instance, if the specified name is invalid, if no NETWORKS file exists, if
the NETWORKS file could not be opened, or if no matching network entry is found in the
NETWORKS file), NULL is returned.

net_name
input value; a null4erminated character string that contains the network name.

120 Library Routines

Errors

No errors are returned for this function.

Usage Guidelines

o This call requires the presence of a NETWORKS file providing information on the networks
accessible from this host. The format of this file is described in the TCP/IPvé Configuration
and Management Manual.

e The parameters passed to the getnetbyname function are case-sensitive.

o The netent structure is statically declared. Subsequent calls to getnetbyname replace the
existing data in the netent structure.

getpeername, getpeername_nw
The getpeername and getpeername nw functions get the address and port number of the
remote host to which the specified socket is connected.
C Synopsis
#include <socket.h>
#include <in.h>

#include <in6.h> /* for IPv6 use */
#include <netdb.h>

error = getpeername (socket, address ptr, address_len ptr);

error getpeername nw (socket, address ptr,

address_len ptr, tag);

int error, socket, *address len ptr;
struct sockaddr *address ptr;

long tag;
TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := getpeername (socket, address ptr, address len ptr);

error := detpeername nw (socket, address ptr,
address _len ptr, tag);

INT (32) socket,

.EXT address len ptr,

.EXT address ptr (sockaddr in) ;
INT (32) tag;

error

return value; if the call is successful, a zero is returned. If the call is not successful, —1 is
returned. If the call failed, the external variable errno is set as indicated in Errors (page 122).

socket

input value; specifies the socket number for the socket, as returned by the call to socket or
socket nw.

address _ptr

input and return value; points, on return, to the address and port number of the remote socket
to which this socket is connected.

getpeername, getpeername_nw 121

Errors

address_len ptr

input and return value; maintained only for compatibility and should point to a value indicating
the size in bytes of the structure (the remote address and port number) pointed to by
address_ptr.

tag
input value; the tag parameter to be used for the nowait operation initiated by
getpeername nw.

It an error occurs, the external variable errno is set to one of the following values:

ENOTCONN The specified socket was not connected.

EINVAL One of the specified arguments was invalid.

Usage Guidelines

o Use getpeername on a socket created for waited operations, or getpeername nw on a
socket created for nowait operations. The operation initiated by getpeername nw must be
completed with a call to the AWAITIOX procedure.

o Complete the operation initiated by getpeername nw must be with a call to the Guardian
AWAITIOX procedure.

o If an unconnected socket is specified in a call to either the getpeername or
getpeername_nw, the function fails. This is typical of socket implementations.

o Declare the address ptr variable as struct sockaddr iné * for IPv6 use or as
struct sockaddr_ storage * for protocolindependent use. In C, when you make the
call, cast the variable to sockaddr. (See the IPv6 example.)

See Nowait Call Errors (page 86) for information on error checking.

See Data Structures (page 63) for information about struct sockaddr *.

getprotobyname

The getprotobyname function gets the protocol number of the protocol with the specified name.
C Synopsis

#include <netdb.h>
proto entry ptr = getprotobyname (proto name ptr);

struct protoent *proto entry ptr;
char *proto name ptr;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

proto _entry ptr := getprotobyname (proto name ptr) ;

INT (32) proto entry ptr;
STRING .EXT proto name ptr;

proto_entry ptr
return value; points to a structure (based on the protoent structure) that contains all the
information available about the specified protocol. This is the return value.

If the lookup fails, NULL is returned.

122 Library Routines

proto_name ptr
input value; points to a nullterminated character string that contains the protocol name.

Errors

No errors are returned for this function.

Usage Guidelines

o This call requires the presence of a PROTOCOL file providing information on the available
protocols. The information in the default PROTOCOL file is given in Appendix A (page 241).
The format of this file is described in the TCP/IPvé Configuration and Management Manual.

o The parameters passed to the getprotobyname function are case-sensitive.
e The protoent structure is statically declared. Subsequent calls to get prot obyname replace
the existing data in the protoent structure.
Example

The following programming example makes a call fo get information on the ICMP protocol (identified
as icmp in the PROTOCOIL file):

#include <netdb.h>

struct protoent *proto;

if ((proto = getprotobyname ("icmp")) == NULL) {
fprintf (stderr, "icmp: unknown protocol\n");
exit (1);

}

/* Call succeeded. Information about icmp is in
* the proto structure.
*/
getprotobynumber

The getprotobynumber function gets the protocol name of the protocol with the specified number.
C Synopsis

#include <netdb.h>
proto _entry ptr = getprotobynumber (proto);

struct protoent *proto entry ptr;
int proto;
TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

proto_entry ptr := getprotobynumber (proto);

INT (32) proto entry ptr;
INT proto;

proto entry ptr

return value; points to a structure (based on the protoent structure) that contains all the
information available about the specified protocol. This is the return value.

If the lookup fails, NULL is returned.

getprotobynumber 123

Errors

proto
input value; the Infernet protocol number of the protocol.

No errors are returned for this function.

Usage Guidelines

o This call requires the presence of a PROTOCOL file providing information on the available
protocols. The information in the default PROTOCOL file is given in Appendix A (page 241).
The format of this file is described in the TCP/IPvé Configuration and Management Manual.

o The protoent structure is statically declared. Subsequent calls to getprotobynumber
replace the existing data in the protoent structure.

Example

The following programming example makes a call fo get information on the ICMP protocol (identified
as icmp in the PROTOCOL file) by specifying its number:

#include <netdb.h>

struct protoent *proto;

if ((proto = getprotobynumber (1)) == NULL) {
fprintf (stderr, "Proto 1: unknown protocol\n");
exit (1) ;

}

/* Call succeeded. Information about icmp is in
* the proto structure.

*/

getservbyname

The getservbyname function gets the port number associated with the specified service.
C Synopsis

#include <netdb.h>

serv_entry ptr = getservbyname (serv_name ptr, proto ptr);

struct servent *serv_entry ptr;
char *serv name ptr, *proto ptr;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

serv_entry ptr := getservbyname (serv _name ptr, proto ptr);

INT (32) serv_entry ptr;
STRING .EXT serv_name ptr,
.EXT proto ptr;

serv_entry ptr

return value; points fo a structure (based on the servent structure) that contains information
on the specified service. This is the return value.

If the lookup fails, NULL is returned.

serv_name ptr

input value; points to a nullterminated character string that contains the service name.

124 library Routines

Errors

proto ptr

input value; points to a nullterminated character string that contains the name of the protocol
associated with the service.

No errors are returned for this function.

Usage Guidelines

o This call requires the presence of a SERVICES file providing information on the available
services. The information in the default SERVICES file is given in Table 19 (page 242). The
format of this file is described in the TCP/IPv6 Configuration and Management Manual and
the Cluster |/O Protocols Configuration and Management Manual.

o The servent structure is statically declared. Subsequent calls to get servbyname replace
the existing data in the servent structure.

getservbyport

Errors

The getservbyport function gets the name of the service associated with the specified port.
C Synopsis

#include <netdb.h>
serv_entry ptr = getservbyport (port number, proto ptr);
struct servent *serv entry ptr;

char *proto ptr;
int port number;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

serv_entry ptr := getservbyport (port number, proto ptr);
INT (32) serv_entry ptr;
INT (32) port number;

STRING .EXT proto ptr;

serv_entry ptr

return value; points to a structure (based on the servent structure) that contains information
on the specified service. This is the return value.

If the lookup fails, NULL is returned.

port number
input value; the port number.

proto ptr

input value; points to a nullterminated character string that contains the name of the protocol
associated with the service.

No errors are returned for this function.

getservbyport 125

Usage Guidelines

o This call requires the presence of a SERVICES file providing information on the available
services. The format of this file is described in the TCP/IPvé Configuration and Management
Manual and in the Cluster I/O Protocols Configuration and Management Manual.

o The servent structure is statically declared. Subsequent calls to get servbyport replaces
the existing data in the servent structure.

getsockname, getsockname_nw
The get sockname and getsockname nw functions get the address and port number to which
a socket is bound.
C Synopsis
#include <socket.h>
#include <in.h>

#include <in6.h> /* for IPvé use */
#include <netdb.h>

error

getsockname (socket, address ptr, address len ptr);

error = getsockname nw (socket, address ptr,
address _len ptr, tag);

int error, socket;
struct sockaddr *address ptr;

int *address len ptr;

long tag;
TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := getsockname (socket, address ptr, address len ptr);

error := detsockname nw (socket, address ptr,
address _len ptr, tag);

INT (32) error;
INT (32) socket,
.EXT address ptr (sockaddr) ;
INT .EXT address len ptr;
INT (32) tag;

error

return value; if the call is successful, a zero is returned. If the call is not successful, — Tis returned.
If the call failed, the external variable errno is set as indicated in Errors (page 127).

socket

input value; specifies the socket number for the socket, as returned by the call to socket or
socket nw.

address ptr

input and return value; on completion, points to the address and port number to which the
socket is bound.

If the socket is not bound, the address returned contains a port number of O and the Internet
address INADDR_ANY.

126 Library Routines

address_len ptr

input and return value; maintained only for compatibility and should be a value indicating the
size in bytes of the structure (the remote address and port number) pointed to by address_ptr.

tag
input value; the tag parameter to be used for the nowait operation initiated by
getsockname nw.

Errors

If an error occurs, the external variable errno is set to the following value:
EINVAL An invalid argument was specified.

Usage Guidelines

e Use getsockname on a socket created for waited operations, or use get sockname nw on
a socket created for nowait operations. The operation initiated by get sockname nw must
be completed with a call to the AWAITIOX procedure.

o This function does not return an address when called on an unconnected UDP socket. In
addition, this function does not return a port number for an unconnected UDP socket until the
first /O operation on the socket is completed. This is typical of socket implementations.

o Declare the address ptr variable as struct sockaddr iné * for IPv6 use or as
struct sockaddr storage * for protocolindependent use. In C, when you make the
call, cast the variable to sockaddr. (See the IPv6 example.)

See Chapter 3 (page 62) for information about struct sockaddr *.

See Nowait Call Errors (page 86) for information on error checking.

Examples

INET: the following programming example gets the address and port number to which the socket
chan is bound:

#include <socket.h>
#include <in.h>
#include <netdb.h>

struct sockaddr in lcl;

optlen = sizeof (lcl);

if (getsockname (chan, (struct sockaddr *)&lcl, &optlen) < 0)
perror ("Get socket name failed.");

/* Code to use the address and port number. */

INET6: the following programming example gets the address and port number to which the socket
chan is bound:

#include <socket.h>
#include <in.h>
#include <iné6.h>
#include <netdb.h>

struct sockaddr_iné 1lcl;
optlen = sizeof (1lcl);

/* Notice that the lcl below is cast as sockaddr * as suggested

in the Usage Guidelines */

if (getsockname (chan, (struct sockaddr *)&lcl, &optlen) < 0)
perror ("Get socket name failed.");

/* Code to use the address and port number. */

getsockname, getsockname_nw 127

getsockopt, getsockopt_nw
The get sockopt and getsockopt nw functions return the socket options for a socket.

C Synopsis

#include <socket.h>

#include <in.h>

#include <in6.h> /* for IPv6 use */
#include <netdb.h>

error = getsockopt (socket, level, optname, optval ptr,
optlen ptr);

error

getsockopt nw (socket, level, optname, optval ptr,
optlen ptr, tag);

int error, socket, level, optname;
char *optval ptr;

int *optlen ptr;
long tag;
TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := getsockopt (socket, level, optname, optval ptr,
optlen ptr);
error := getsockopt nw (socket, level, optname, optval ptr,
optlen ptr, tag);
INT (32) error;
INT (32) socket,
level,
optname;
STRING .EXT optval ptr;
INT .EXT optlen ptr;
INT (32) tag;
error

return value; f the call is successful, a zero is returned. If the call is not successful, —1 is returned.
If the call failed, the external variable errno is set as indicated in Errors (page 130).

socket

input value; specifies the socket number for the socket, as returned by the call to socket or
socket nw.

level
input value; the socket level at which the socket option is being managed. The possible values

are:

SOL_SOCKET Socket-level option.

IPPROTO_TCP TCP-level option.

IPPROTO_IP IP-level option.

IPPROTO ICMP ICMP-level option.

IPPROTO_UDP UDP-level option.

IPPROTO_RAW Raw-socket level option.

user-protocol Option for a user-defined protocol above IP, such as PUP.

128 Library Routines

user-protocol can be any protocol number other than the numbers for TCP, UDP, IP, ICMP,
and raw. Appendix A (page 241), lists the protocol numbers.

optname

input value; the socket option name.
When level is SOL_SOCKET, the possible values are:

SO_BROADCAST

SO_ERROR

SO_TYPE

SO_DONTROUTE

SO_REUSEADDR

SO_LINGER

SO_KEEPALIVE

SO _OOBINLINE

SO_SNDBUF

SO _RCVBUF

Get the value of the SO_BROADCAST flag. See setsockopt, setsockopt_nw (page 184)
for details.

Get the error status and clear the socket error. This option applies only fo the
getsockopt function.

Get the socket type. This option applies only to the get sockopt and getsockopt _nw
functions.

SOCK_STREAM Stream socket
SOCK_DGRAM Datagram socket
SOCK_RAW Raw socket

Get the value of the SO_DONTROUTE flag. See setsockopt, setsockopt_nw (page 184)
for details.

Get the value of the S0 REUSEADD flag. See setsockopt, setsockopt_nw (page 184) for
details.

Get the value of the SO_LINGER flag. See sefsockopt, setsockopt_nw (page 184) for
details.

Get the value of the SO KEEPALIVE flag. See setsockopt, setsockopt_nw (page 184)
for details.

Get the value of the SO_0OBINLINE flag. See setsockopt, setsockopt_nw (page 184)
for details.

Get the value of the SO_SNDBUF flag. See sefsockopt, setsockopt_nw (page 184) for
details.

Get the value of the sO_RCVBUF flag. See sefsockopt, setsockopt_nw (page 184) for
defails.

When level is IPPROTO IP or IPPROTO IPV6, the value is:

IP_OPTIONS

IP_MULTICAST_IF or
IPV6_MULTICAST_IF

[P_MULTICAST_TTL or
IPV6_MULTICAST_HOPS

IP_MULTICAST_LOOP or
IPV6_MULTICAST_LOOP

IPV6_VO6ONLY

Get the value of the IP_oPTI0NS flag. See setsockopt, sefsockopt_nw (page 184) for
defails.

Get the multicast interface IP address. See setsockopt, setsockopt_nw (page 184) for
details.

Get the time-to-live for the multicast datagram. setsockopt, setsockopt_nw (page 184) for
defails.

Get the value of the IP_ MULTICAST LOOP flag. See setsockopt, setsockopt_nw
(page 184) for details.

AF_INETé sockets are restricted to IPvé—only communication.

When level is IPPROTO_TCP, you should include the tcp.h file. The value is:

TCP_NODELAY

TCP_SACKENA

TCP_MINRXMT

Get the value of the TCP_NODELAY flag. See setsockopt, setsockopt_nw (page 184) for
details.

Get the value of the TcP_SACKENA flag. See setsockopt, setsockopt_nw (page 184) for
defails.

Get the value of the TcP_MINRXMT flag. See setsockopt, setsockopt_nw (page 184) for
defails.

getsockopt, getsockopt_nw 129

TCP_MAXRXMT Get the value of the TcP_MAXRXMT flag. See setsockopt, setsockopt_nw (page 184) for

defails.

TCP_RXMTCNT Get the value of the TcP_ RXMTCNT flag. See setsockopt, setsockopt_nw (page 184) for
details.

TCP_TOTRXMTVAL Get the value of the TcP_TOTRXMTVA flag. See setsockopt, setsockopt_nw (page 184)
for details.

When 1evel is a user-defined protocol above IP, the possible values are defined by the
profocol.

optval ptr
input and return value; points to the value of the socket option specified by optname, which
is passed to the level specified in Ievel. Types and lengths of get sockopt socket option
values are described in setsockopt, setsockopt_nw (page 184).

optlen ptr

input and return value; points, on return from the getsockopt routine, to the length of the value
pointed to by optval ptr. The value is zero for the get sockopt nw routine because this
parameter has no meaning for this routine; the length is not known until the AWATTIOX call is
completed.

tag
input value; the tag parameter to be used for the nowait operation initiated by
getsockopt nw.

Errors

It an error occurs, the external variable errno is set fo the following value:
ENOPROTOOPT The specified option is unknown to the protocol.

Usage Guidelines

o Use getsockopt on a socket created for waited operations, or get sockopt_nw on a socket
created for nowait operations. The operation initiated by get sockopt nw must be completed
with a call to the AWATTIOX procedure.

o The operation initiated by get sockopt nw must be completed with a call to the Guardian
AWAITIOX procedure.

See Nowait Call Errors (page 86) for information on checking errors.

Examples

See Client and Server Programs Using UDP (page 219) for examples that call the get sockopt
function.

if freenameindex

The if freenameindex function frees dynamic memory allocated by the if nameindex
function. (This function is supported for NonStop TCP/IP only.)

NOTE: The C synopsis is given in ANSI C format rather than the pre-ANSI C formats of the other
library routines because the only NonStop servers you can use these routines on all support ANSI
C. (ANSI C format defines the function and the arguments in the same line rather than using an
assign statement and defining the arguments underneath.)

C Synopsis

#include <if.h>

130 Library Routines

#include <netdb.h>

void if freenameindex (struct if nameindex *ptr) ;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

if freenameindex (ptr) ;

INT .EXT ptr;

ptr

input value; specifies the address pointer returned by the 1£ nameindex function for which
storage should be returned to the system.

Errors

This function does not return a value. Upon successful completion, all dynamic storage associated
with the interface index has been returned to the system.

Usage Guidelines

When an interface (subnet) is created, that interface is assigned a unique number called an interface
index. The interface index identifies the interface used to send or receive multicast datagrams.
Interface index numbers start with 1.

The if freenameindex function is one of four functions used to manage interface indexes.

Examples

The end of the array of structures is indicated by a structure that has an i _index of O and an
if name of NULL The memory used for this array of structures along with the interface names
pointed to by the 1f name members is obtained dynamically using the if nameindex function
as follows:

ifnameindex = if nameindex() ;
if (ifnameindex == NULL)
perror ("if nameindex") ;
}
freep = ifnameindex;
while (ifnameindex->if index) {
printf ("if nameindex: index, name: %i, %s\n",
ifnameindex->if index, ifnameindex >if name) ;
ifnameindex++;

}

if freenameindex(freep) ;

if_indextoname

The if indextoname function maps an interface index to its corresponding name. (This function
is supported for Parallel Library TCP/IP only.)

NOTE: The C synopsis is given in ANSI C format rather than the pre-ANSI C formats of the other
library routines because the only NonStop servers you can use these routines on all support ANSI
C. (ANSI C format defines the function and the arguments in the same line rather than using an
assign statement and defining the arguments underneath.)

C Synopsis
#include <netdb.h>
char *if indextoname (unsigned int ifindex, char *ifname) ;

if_indextoname 131

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

name‘ptr = if indextoname (ifindex, char *ifname) ;

INT (32) name’ptr;
INT (32) ifindex;
STRING .EXT ifname;

name “ptr
return value; a pointer fo the interface name string. If there is no interface corresponding to
the specified index, NULL is returned, and error is as described in Errors (page 132).
ifindex
input value; specifies the index to be mapped to an interface name.
ifname
input value; specifies the buffer to receive the mapped name. The buffer must be at least

IF_NAMESIZE bytes long; IF_NAMESIZE is defined in the header file in.h.
Errors

Upon successful completion, this function returns a pointer to the character string buffer containing
the mapped name. Otherwise, this function returns NULL and errno is set fo indicate the following

errors.

EINVAL An invalid argument was specified.

ENOMEM Either no memory is available to complete the request or a system error occurred.
ENXIO No interface corresponds to the index specified by the i findex parameter.

Usage Guidelines

When an interface (subnet) is created, that interface is assigned a unique number called an interface
index. The interface index identifies the interface used to send or receive multicast datagrams.
Interface index numbers start with 1.

The if indextoname function is one of four functions used to manage interface indexes.

Examples
cp = if indextoname (if index, sn);
if (cp==NULL) {
perror ("No interface name matching interface index");
exit (1) ;

}

if nameindex

The if nameindex function gets all interface names and indexes. This function returns a pointer
to an array of 1f nameindex structures. See if_nameindex (page 132) for a definition of the
if nameindex structure. (This function is supported for NonStop TCP/IPv6 only.)

NOTE: The C synopsis is given in ANSI C format rather than the pre-ANSI C formats of the other
library routines because the only NonStop servers you can use these routines on all support ANSI
C. (ANSI C format defines the function and the arguments in the same line rather than using an
assign statement and defining the arguments underneath.)

C Synopsis

132 Library Routines

#include <if.h>
#include <in.h>
#include <iné6.h>
#include <netdb.h>

struct if nameindex *if nameindex (void) ;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

return value = if nameindex() ;

INT (32) return value;

Errors

Upon successful completion, this function returns a pointer to an array of i f nameindex structures.
The end of the array is a structure that has an £ index value of O (zero) and an if name valve

that is NULL pointer.
Otherwise, this function returns NULL.

Usage Guidelines

When an interface (subnet) is created, that interface is assigned a unique number called an interface
index. The interface index identifies the interface used to send or receive multicast datagrams.
Interface index numbers start with 1.

The if nameindex function is one of four functions used to manage interface indexes.

NOTE: Memory is dynamically allocated for the array of structures returned by this function and
for the interface names pointed to by the if_name members of the structures. Use the
if freenameindex function to return this memory to the system when it is no longer needed.

Examples
ifnameindex = if nameindex() ;
if (ifnameindex == NULL) {

perror ("if nameindex failed");

}

freep = ifnameindex;

while (ifnameindex->if index) {

printf ("if nameindex: index, name: %i, %s\n",
ifnameindex->if index, ifnameindex -> if name) ;
ifnameindex++;

}

if freenameindex (freep) ;

if nametoindex

The if nametoindex function maps an interface name to its corresponding index. (This function

is supported for NonStop TCP/IP only.)
C Synopsis

#include <netdb.h>

unsigned int if nametoindex(const char *ifname) ;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

if_nametoindex 133

index = if nametoindex (ifname) ;

INT (32) index;
STRING .EXT ifname;

index

return value; upon successful completion, if nametoindex returns the interface index
corresponding to the interface name specified in i fname. Otherwise, this function returns O
(zero).

1fname

input value; points to a buffer that holds the name of the interface (subnet) to be mapped to
an index number. The name specified cannot be larger than TFNAMSIZ, as defined in the if.h
header file.

Usage Guidelines

When an interface (subnet) is created, that interface is assigned a unique number called an interface
index. The interface index identifies the interface used to send or receive multicast datagrams.
Interface index numbers start with 1.

The if nametoindex function is one of four functions used to manage interface indexes.

Example

if index = if nametoindex(&subnetname) ;
if (if index <= 0) {

perror ("Interface name not found");
exit (1) ;

}
inet_addr

The inet addr function converts an address format from dotted-decimal format to binary format.
This call is for INET operations. For protocol-independent applications, see inet_pton (page 139).

C Synopsis
#include <netdb.h>
1 addr = inet _addr (addr ptr);

unsigned long 1 addr;
char *addr ptr;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

1 addr := inet addr (addr ptr);

INT (32) 1 addr ;
STRING .EXT addr ptr;

1 addr

return value; the Internet address in binary format. This value is the return value. This address
can be copied directly into the structure sockaddr in.

addr ptr
input value; points to an Internet address in dotted-decimal format.

134 library Routines

Errors

OxfEfE£E£ED is returned if the character string that is passed is not an Internet address.

Example
See UDP Client Program (page 219) for an example that calls inet_addr.

inet_|Inaof

The inet_1lnaof function breaks apart an INET Internet address and returns the local address
portion.

C Synopsis

#include <in.h>
#include <in6.h> /* for IPvé6 use */
#include <netdb.h>

1 addr = inet 1lnaof (addr);

unsigned long 1 addr;
struct in addr addr;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

1 addr := inet lnaof (addr);

INT(32) 1 addr ;
INT.EXT addr(in_addr) ;

1 addr

return value; the local address portion of the Internet address. This is the return value.
addr

input value; a 4-byte Internet address.

Errors

No errors are returned for this function.

inet_makeaddr

The inet _makeaddr function combines an INET family network address and a local address to
create an INET family Internet address.

C Synopsis
#include <in.h>
#include <in6.h>
#include <netdb.h>

inaddr = inet makeaddr (net, 1Ilna);

unsigned long net, lna;
struct in addr inaddr;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

inaddr := inet makeaddr (net, Ina);

inet_lnaof 135

INT (32) inaddr, net, lna;

inaddr

return value; the corresponding 4-byte Internet address. This is the return value.
net

input value; the network address portion of the Internet address.
Ina

input value; the local address portion of the Internet address.

Errors

No errors are returned for this function.

inet_netof

The inet netof function breaks apart an INET family Internet address and returns the network
address portion.

C Synopsis

#include <in.h>
#include <in6.h> /* for IPvé6 use */
#include <netdb.h>

net = inet netof (addr);

unsigned long net;
struct in addr addr;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

net := inet netof (addr);

INT (32) net;
INT .EXT addr(in_addr) ;

net

return value; the network address portion of the Internet address. This is the return value.
addr

input value; a 4-byte Internet address.

Errors

No errors are returned for this function.

inet_network

The inet network function converts an INET family address from dotted-decimal format to binary
format and returns the network address portion.

C Synopsis#include <in.h>

#include <in6.h> /* for IPv6 use */
#include <netdb.h>

1 addr = inet network (addr ptr);

136 Library Routines

unsigned long 1 addr;
char *addr ptr;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

1 addr := inet network (addr ptr);

INT(32) 1 addr ;
STRING .EXT addr ptr;

1 addr
return value; the network address portion of the Internet address. This is the return value.

addr ptr
input value; points to an Internet address in dotted-decimal format.

Errors

No errors are returned for this function.

inet_ntoa

The inet_ntoa function converts an address from binary format to dotted-decimal format. This

library routine is for INET applications. For protocol-independent applications, see inet_ntop
(page 138).

C Synopsis

#include <socket.h>
#include <in.h>
#include <iné6.h>
#include <netdb.h>

asc_ptr = inet ntoa (in);

struct in addr in;
char *asc ptr;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

asc_ptr := inet_ntoa (in);

INT (32) asc_ptr;
INT .EXT in(in_addr) ;

asc_ptr

return value; points to a nullterminated character string containing the Internet address in
dotted-decimal format. All numbers are expressed in decimal base. This is the return value.

in
input value; a 4-byte Internet address.
Errors

No errors are returned for this function.

inet_ntoa 137

inef_nfop

The inet_ntop function converts an IPvé or IPv4 binary address to a character string. (This
function is supported for Parallel Library TCP/IP only.)

NOTE: The C synopsis is given in the ANSI C format rather than the pre-ANSI C formats of the
other library routines because the only NonStop servers you can use these routines on all support
ANSI C. (The ANSI C format defines the function and the arguments in the same line rather than
using an assign statement and defining the arguments underneath.)

C Synopsis

#include <netdb.h>
const char *inet ntop(int af,const void *src,char *dst, socklen t size);
TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

return value = inet ntop(af, src, dst, size);
INT (32) return value;
INT (32) af;

STRING .EXT src;
STRING .EXT dst;
INT (32) size;

return value

is a pointer to the buffer containing the text string if the conversion succeeds, and NULL
otherwise.

ar
input value; specifies the address family for the address to be converted. Valid values are:
AF_INET
indicates an IPv4 address
AF INET6
indicates an IPv6 address
src

input value; points to a buffer containing the network byte-ordered INET or INET6 binary
address to be converted.

dst
input and return value; specifies the non-NULL address of the location to receive the converted
character string.

size
input value; specifies the length of the buffer pointed to by dst. Valid values for INET are
greater than or equal to 16 bytes and for INET6 are greater than or equal to 46 bytes.

NOTE: The maximum length of an INET address as a text string is defined as
INET ADDRSTRLEN in the in.h header file. The maximum length of an INETé address as a
text string is defined as INET6 ADDRSTRLEN in the in6.h header file.

138 Library Routines

Errors

Upon successful completion, this function returns a pointer to the dst buffer. Otherwise, this function
returns NULL and errno is set fo indicate the error. If any of these conditions occurs, the function
sets errno to the corresponding value:

EAFNOSUPPORT The value specified for the af parameter is not valid.

ENOSPC The value specified for the size parameter is not valid for the address family.

Usage Guidelines

The inet_ntop function is one of two functions that allow you to manage network addresses
regardless of the address family.

inet_pton

The inet_pton function converts a character string to an IPv6 or IPv4 binary address. (This
function is supported for NonStop TCP/IPvé only.)

NOTE: The C synopsis is given in ANSI C format rather than the pre-ANSI C formats of the other
library routines because the only NonStop servers you can use these routines on all support ANSI
C. (ANSI C format defines the function and the arguments in the same line rather than using an
assign statement and defining the arguments underneath.)

C Synopsis

#include <netdb.h>

int inet pton(int af, const char *src, void *dst) ;
TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error = inet ptomn(af, src, dst);

INT error;

INT af;

STRING .EXT src;
STRING .EXT dst;

art
input value; specifies the address family for the address to be converted. Valid values are:
AF_INET
indicates an IPv4 address
AF INET6
indicates an IPv6 address
src

input value; points to the text string version of the address to be converted. This parameter
cannot be a null pointer. src has one of the following forms:

e IPv4 dotted decimal format as ddd.ddd.ddd.ddd, for example:

172.17.201.43

e IPv6 hexadecimal string format as x:x:x:x:x:x:x:x, for example:
1080:0:0:0:8:800:200C:417A

e Compressed hexadecimal string format that omits zero values, for example:

inet_pton 139

1080::8:800:200C:417A

e In mixed form as x:x:x:x:x:x:d.d.d.d, for example:
::FFFF:13.1.68.3 as a mapped value, or ::13.1;68.3 as a compatible value.

dst
input and return value; receives the converted address in network byte order.

NOTE: The maximum length of an IPv4 address as a text string is defined as
INET ADDRSTRLEN in the in.h header file. The maximum length of an IPv6 address as a
text string is defined as INET6 ADDRSTRLEN in the in6.h header file.

Errors

Upon successful completion, this function returns a 1. Otherwise, this function returns:

0 The dst parameter specifies an invalid address string.
-1 The af parameter specifies an invalid address string.

When -1 is returned, errno is also set.

It any of these conditions occurs, the function sets errno to the corresponding value:
EAFNOSUPPORT The value specified for the af parameter is not valid.

Usage Guidelines

The inet_pton function is one of two functions that allow you to manage network addresses
regardless of address family.

lwres_freeaddrinfo

The 1wres freeaddrinfo function frees the memory of one or more addrinfo structures
previously created by the 1wres getaddrinfo function. Any dynamic storage pointed to by
the structure is also freed. (This function is supported for G06.27 and later G-series RVUs and
HO06.05 and later H-series RVUs of NonStop TCP/IPv6.)

C Synopsis
#include <netdb.h>

void lwres freeaddrinfo (struct addrinfo *ai);

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

lwres freeaddrinfo (ai);
INT .EXT ai (addrinfo);

ai
input value; specifies the addrinfo structure to be freed.

Usage Guidelines

Call this function once for each structure created by calls to 1wres getaddrinfo before closing
a socket. Upon successful completion, 1wres freeaddrinfo does not return a value. The address
information structure and associated storage have been returned to the system.

140 Llibrary Routines

lwres_freehostent

The 1wres freehostent function frees the memory of one or more hostent structures returned
by the lwres_getipnodebyaddr or lwres_getipnodebyname functions. (This function is

supported for G06.27 and later G-series RVUs and H06.05 and later H-series RVUs of NonStop
TCP/IPv6.)

C Synopsis
#include <netdb.h>

void lwres_freehostent (struct hostent *ptr);

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

lwres_ freehostent (ptr);
INT .EXT ptr(hostent) ;

ptr
input value; a pointer fo the structure hostent that has to be freed.

Usage Guidelines
Call this function once for each hostent structure returned by the 1wres getipnodebyaddr

or lwres_getipnodebyname functions.

lwres_gai_strerror

The lwres_gai_strerror function aids applications in printing error messages based on the
EAI codes returned by the lwres getaddrinfo function. The lwres gai strerror function
call returns a pointer fo a character string descnbmg the error code passed into the function. (This
function is supported for G06.27 and later G-series RVUs and H06.05 and later H-series RVUs of
NonStop TCP/IPvé.)

C Synopsis
#include <netdb.h>

char * lwres gail strerror(int ecode) ;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

return value := lwres gai strerror (ecode);
INT (32) return value;
INT ecode;

return value
is a pointer to a string described in ecode.
ecode

input value; specifies one of the following error codes returned by the 1wres getaddrinfo
function. The returned strings are as follows:

EAT ADDRFAMILY
address family for hostname not supported.

Iwres_freehostent 141

EATI AGAIN
temporary failure in name resolution.
EAT BADFLAGS
invalid value for ai flags.
EAT FAIL
non-recoverable failure in name resolution.
EAT FAMILY
ai_family not supported.
EATI MEMORY
memory allocation failure.
EATI NODATA
no address associated with hostname.
EAT NONAME
hostname or servname not provided, or not known.
EAT SERVICE
servname not supported for ai_socktype.
EAT SOCKTYPE
ai_socktype not supported.
EAT SYSTEM
system error returned in errno.

Errors
The message invalid error code is returned if ecode is out of range. ai_flags,
ai_family, and ai_socktype are elements of the struct addrinfo used by
lwres getaddrinfo.
Example
The following programming example calls the gai_strerror routine to print error messages:
ret = lwres getaddrinfo(hostname, servname, &hints, &result);
if (ret 1= 0) {
fprintf (stderr, "$s", lwres gail strerror (error)) ;

return -1;

}

Usage Guidelines

Call this function to aid in printing human-readable error messages based on the EAT _ error codes
returned by the 1wres getaddrinfo function.

lwres_getaddrinfo

The 1wres getaddrinfo function converts hostnames and service names into socket address
structures. This function is defined for protocol-independent hostname-to-address translation. It
performs the functionality of 1wres gethostbyname but in a more sophisticated manner. (This
function is supported for G06.27 and later G-series RVUs and H06.05 and later H-series RVUs of
NonStop TCP/IPvé.)

C Synopsis

#include netdb.h>

142 library Routines

Errors

int lwres getaddrinfo (const char *hostname, const char
*gservname, const struct addrinfo *hints, struct addrinfo **result) ;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := lwres _getaddrinfo (hostname, servname, hints, result);

INT error;

STRING .EXT hostname;
STRING .EXT servname;

INT .EXT hints (addrinfo) ;
INT .EXT result (addrinfo) ;

hostname
input value; specifies a pointer to a character representing one of the following:
e An Internet node hostname.
e An IPv4 address in dotted-decimal format.
e An IPv6 address in hexadecimal format.

e NULL if no hostname requires converting; when NULL is used, either service or hints
must be non-NULL.

servname
input value; specifies a pointer to a character representing one of the following:
e A network service name.

e A decimal port number.

e NULL if no service name requires converting; when NULL is used, either hostname or hints
must be non-NULL.

hints
input value; specifies one of the following:

e A pointer to an addrinfo struct for a socket; the format of the addrinfo structure is

defined in the header file netdb.h.

e NULL if no struct is available; when NULL is used, either hostname or service must be
non-NULL.
result

input and return value; points to a list of addrinfo structs upon successful completion (See
Usage Guidelines (page 144).)

lwres_getaddrinfo returns zero (0) on success or one of the error codes listed in
lwres gai_strerror if an error occurs. If both hostname and service are NULL
lwres _getaddrinfo returns EAT_NONAME.

Example

struct addrinfo *res, *ainfo;
struct addrinfo hints;

int ret;

char *hostname, *servname;

/* clear out hints */
memset ((char *)&hints, 0, sizeof (hints));

Iwres_getaddrinfo 143

hints.ai socktype = SOCK STREAM;

ret = getaddrinfo (hostname, servname, &hints, &res);

if (ret != 0) {

fprintf (stderr, "%s not found in name service database\n",
hostname) ;

exit (1) ;

}

for (ainfo = res; ainfo != NULL; ainfo = ainfo->ai next) {
/* Create the socket. */

s = socket (ainfo->ai family, ainfo->ai socktype,

ainfo->ai protocol) ;

if (connect(s, ainfo-»ai addr, ainfo-»ai addrlen) == -1) ({
perror (argv[0]) ;

fprintf (stderr, "unable to connect\n") ;

FILE CLOSE(S) ;

continue;

}

else
break;

}
Usage Guidelines

o This function is a protocol-independent replacement for 1wres gethostbyname and
lwres_getipnodebyname. lwres getaddrinfo provides extra functionality because
lwres getaddrinfo handles both the hostname and the service.

o The lwres getaddrinfo function converts hostnames and service names into socket address
structures. You allocate a hints structure, initialize it to zero (0), fill in the needed fields, and
call this function.

o This function returns, through the result pointer, a linked list of addrinfo structures (defined
in netdb.h) that you can use with other socket functions.

o The lwres_ freeaddrinfo function returns the storage allocated by the
lwres getaddrinfo function.

lwres_gethostbyaddr

The 1wres_gethostbyaddr function gets the name of the host that has the specified Internet
address and address family. (This function is supported for G06.27 and later G-series RVUs and
HO06.05 and later H-series RVUs of NonStop TCP/IPv6.)

C Synopsis
#include <netdb.h>

host _entry ptr = lwres gethostbyaddr (addr, len, type);

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

host entry ptr := lwres gethostbyaddr (addr, len, type);
INT (32) host entry ptr;
STRING .EXT addr;
INT len, type;

144 library Routines

host entry ptr

return value; points to a structure (based on the hostent structure) in which information about
the specified host is returned. The information includes the official name, aliases, and addresses
for the host. If the lookup fails, NULL is returned, and the external variable 1wres h errno
is set as indicated below under Errors.

addr

input value; points to the Internet address of the host whose name is to be found. The address
pointed to is in binary format and network order. (This address is in the same format and order
as the return value of the inet addr function.)

len

input value; the length of the Internet address pointed to by host addr ptr.
type

input value; the type of address specified: either AF_INET (IPv4) or AF_INETé (IPvé).

Errors

lwres_gethostbyaddr returns NULL to indicate an error. In this case, the global variable

lwres_h_errno contains one of the following error codes as defined in netdb.h:

HOST NOT_FOUND The host or address was not found.

TRY AGAIN A recoverable error occurred, for example, a timeout. Retrying the lookup may succeed.

NO_RECOVERY A non-recoverable error occurred.

NO_DATA The name exists, but has no address information associated with it (or for a reverse lookup,
the address information exists but has no name associated with it). The code NO ADDRESS
is accepted as a synonym for NO_DATA for backwards compatibility.

lwres_hstrerror (page 152) translates these error codes into readable error messages.

Example

The example makes a call to 1wres gethostbyaddr by passing the Internet address as an
argument. If an answer is found, a pointer to the hostent structure is returned and stored in hp.
NULL is returned if no answer is found.

char *addr;

int len, type;

struct hostent *hp;

hp = lwres gethostbyaddr (addr, len, type);

Usage Guidelines

The address that is returned in host entry ptr can be used directly in a sockaddr in
structure. The address is in network order.

lwres_gethostbyname

The lwres_gethostbyname function gets the Internet address (IPv4) of the host whose name is
specified. (This function is supported for G06.27 and later G-series RVUs and H06.05 and later
H-series RVUs of NonStop TCP/IPvé.)

C Synopsis
#include <netdb.h>

host entry ptr = lwres gethostbyname (name) ;

TAL Synopsis

Iwres_gethostbyname 145

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

host entry ptr := lwres_gethostbyname (name) ;
INT (32) host_ entry ptr;
STRING .EXT name;

host entry ptr
return value; points to a structure (based on the hostent structure) in which information about
the specified host is returned. The information includes the official name, aliases, and addresses
for the host. If the lookup fails, NULL is returned, and the external variable 1wres h errno
is set as indicated below under Errors.

name

input value; points to either the official name or an alias of the host whose Internet address is
to be found.

Errors

lwres_gethostbyname returns NULL to indicate an error. In this case, the global variable

lwres_h errno contfains one of the following error codes as defined in netdb.h:

HOST NOT_FOUND The host or address was not found.

TRY AGAIN A recoverable error occurred, for example, a timeout. Retrying the lookup may succeed.

NO_RECOVERY A non-recoverable error occurred.

NO_DATA The name exists, but has no address information associated with it (or for a reverse lookup,
the address information exists but has no name associated with it). The code NO_ADDRESS
is accepted as a synonym for NO_DATA for backwards compatibility.

Iwres_hstrerror (page 152) translates these error codes into readable error messages.

Example

char *name;
struct hostent *hp;
hp = lwres_gethostbyname (name) ;

The above example makes a call to 1wres gethostbyname by passing the hostname as an
argument. If an answer is found, a pointer to the hostent structure is returned and stored in hp.
NULL is returned if no answer is found.

Usage Guidelines

o The parameter name passed to the 1wres gethostbyname function is case-sensitive.

o The hostent structure is statically declared. Subsequent calls to 1wres gethostbyname
replace the existing data in the hostent structure.

lwres_gethostbyname?2

The 1wres_gethostbyname2 function gets the Internet address (IPv4 or IPv6) of the host whose
name is specified. (This function is supported for G06.27 and later G-series RVUs and H06.05
and later H-series RVUs of NonStop TCP/IPv6.)

C Synopsis
#include <netdb.h>

host entry ptr = lwres gethostbyname2 (name, af);

146 library Routines

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

host entry ptr := lwres gethostbyname2 (name, af);
INT (32) host entry ptr;
STRING .EXT name;
INT af;

host entry ptr

return value; points to a structure (based on the hostent structure) in which information about
the specified host is returned. The information includes the official name, aliases, and addresses
for the host. If the lookup fails, NULL is returned, and the external variable 1wres h errno
is set as indicated below under Errors.

name

input value; points to either the official name or an alias of the host whose Internet address is
to be found.

af

input value; an integer that sets the address type searched for by the function and returned by
the function. af is either AF_INET (IPv4) or AF_INET6 (IPv6).

Errors

lwres_gethostbyname?2 returns NULL to indicate an error. In this case, the global variable

lwres_h_errno contains one of the following error codes as defined in netdb.h:

HOST NOT_FOUND The host or address was not found.

TRY AGAIN A recoverable error occurred, for example, a timeout. Retrying the lookup may succeed.

NO_RECOVERY A non-recoverable error occurred.

NO_DATA The name exists, but has no address information associated with it (or for a reverse lookup,
the address information exists but has no name associated with it). The code NO_ADDRESS
is accepted as a synonym for NO_DATA for backwards compatibility.

Iwres_hstrerror (page 152) translates these error codes into readable error messages.

Example

The example makes a call to 1wres gethostbyaddr2 by passing the hostname and address
family as arguments. If an answer is found, a pointer to the hostent structure is returned and
stored in hp. NULL is returned if no answer is found.

int af;

char *name;

struct hostent *hp;

hp = lwres gethostbyname2 (name, af);

Usage Guidelines

e The parameter name passed to the 1wres gethostbyname2 function is case-sensitive.
e The hostent structure is statically declared. Subsequent calls to 1wres gethostbyname?2
replace the existing data in the hostent structure.

lwres_getipnodebyaddr

The 1wres getipnodebyaddr function searches host entries until a match with src is found.
The 1wres getipnodebyaddr function returns a pointer to a hostent struct whose members

Iwres_getipnodebyaddr 147

Errors

specify data from a Name Server. (This function is supported for G06.27 and later G-series RVUs
and H06.05 and later H-series RVUs of NonStop TCP/IPvé.)

C Synopsis
#include <sys/socket.h>
#include <netdb.h>

return val = lwres_getipnodebyaddr (const
void *src, socklen t len, int af, int *error ptr);

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

return val := lwres getipnodebyaddr(src, len, af, error ptr);

INT (32) return val;
STRING .EXT src;
INT (32) len;

INT af;

INT .EXT error ptr;

return val
is a pointer to a structure of type hostent.
src

input value; a pointer to an IP address for which the hostname should be returned; the address
specified should be in binary format and network order.

len

input value; the length of the IP address: 4 octets for AF_INET or 16 octets for AF_INETé.
af

input value; specifies the member of the address family: AF_INET or AF_INET6.
error ptr

input and return value; a pointer fo the integer containing an error code, if any.

If an error occurs, lwres getipnodebyaddr sets *error ptr to an appropriate error code,
and the function returns a NULL pointer. The error codes and their meanings are defined in netdb.h:

HOST NOT FOUND
The specified host was not found.
TRY AGAIN
A temporary, and possibly transient, error occurred, such as a server not responding.
NO RECOVERY
An unexpected server failure occurred which cannot be recovered.
NO_ADDRESS

The specified hostname is valid, but the host does not have an IP address. Another type of
request to the Name Server for the domain might return an error.

lwres_hstrerror (page 152) translates these error codes to suitable error messages.

Usage Guidelines

lwres_getipnodebyaddr provides the same functionality as 1wres gethostbyaddr, but is
protocol-independent.

148 Llibrary Routines

A successful function call returns a pointer to the hostent structure that contains the hostname.
The structure returned also contains the values used for src and address-family.

lwres_getipnodebyname

The lwres_getipnodebyname function gets host information based on the hostname. This
function is protocol-independent. (This function is supported for G06.27 and later G-series RVUs
and H06.05 and later H-series RVUs of NonStop TCP/IPvé.)

C Synopsis
#include <netdb.h>

return val = lwres getipnodebyname (const
char * name, int af, int flags, int * error ptr);

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

return val := lwres getipnodebyname(name, af, flags, error ptr);
INT (320 return val;
STRING .EXT name;
INT af;
INT flags;
INT .EXT error ptr;

return val
is a pointer to a structure of type hostent.

name
input value; a pointer fo a node name or numeric address string, such as an IPv4 dotted-decimal
address or an IPv6 hexadecimal address.
af
input value; an integer that sets the address type searched for by the function and returned by
the function. af is either AF_INET (IPv4) or AF_INET6 (IPvé).
flags
input value; contains flag bits to specify the types of addresses that are searched for and the
types of addresses that are returned. The flag bits are:
AT V4MAPPED
Used with an af of AF_INET6, causes IPv4 addresses to be returned as IPv4-mapped IPv6
addresses.
AI ALL
Used with an af of AF_INET6, causes all known addresses (IPv6 and IPv4) to be returned.
If AT V4MAPPED is also set, the IPv4 addresses are returned as mapped IPv6 addresses.
AT ADDRCONFIG

Causes a return of an IPvé or IPv4 address only if an active network interface of that type
exists. This flag bit is not currently implemented in the BIND 9 Lightweight resolver, and
the flag is ignored.

AI DEFAULT
Sets the AT V4MAPPED and AI_ADDRCONFIG flag bits.

error_ptr

input and return value; a pointer to the error code returned by the 1wres getipnodebyname
function.

lwres_hstrerror (page 152) translates these error codes to readable error messages.

Iwres_getipnodebyname 149

Errors

If an error occurs, lwres getipnodebyname and lwres getipnodebyaddr set *error ptr
to an appropriate error code, and the function returns a NULL pointer. The error codes and their
meanings are defined in netdb.h:

HOST NOT FOUND The host or address was not found.

TRY AGAIN A recoverable error occurred, for example, a timeout. Retrying the lookup may succeed.
NO_RECOVERY A non-recoverable error occurred.

NO_DATA The name exists, but has no address information associated with it (or for a reverse lookup,

the address information exists but has no name associated with it). The code NO ADDRESS
is accepted as a synonym for NO_DATA for backwards compatibility.

lwres_hstrerror (page 152) translates these error codes into readable error messages.

Example

The address pointed to by hp, which is already in network order, can be used directly in a
sockaddr in or sockaddr ins structure, as in the following example:

struct sockaddr in sin;
struct hostent *hp;

if ((hp = lwres getipnodebyname (nameptr, AF_ INET, AI PASSIVE,
&error num)) != (struct hostent *) NULL) ({

memmove ((char *)&sin.sin addr.s_addr, (char *)hp -> h addr,
(size t) hp -> h length);

Usage Guidelines

e The lwres_getipnodebyname function searches host entries sequentially until a match with
the name argument occurs.

e The lwres getipnodebyname function returns a pointer to a structure of type hostent
whose members specify data obtained from a Name Server.

o The hostent structure is statically declared. Subsequent calls to 1wres _gethostbyname
replace the existing data in the hostent structure.

e 1lwres getipnodebyname provides the same functionality as 1wres gethostbyname,
but is protocol-independent.

lwres_getnameinfo

The 1wres_getnameinfo function translates a protocol-independent host address to a hostname.
This function uses a socket address to search for a hostname and service name. Given a binary
IPv4 or IPv6 address and a port number, this function returns the corresponding hostname and

service name from a nameOresolution service. (This function is supported for G06.27 and later
G-series RVUs and H06.05 and later H-series RVUs of NonStop TCP/IPvé.)

C Synopsis

#include <netdb.h>

int lwres getnameinfo (const struct sockaddr *sa, socklen t

salen, char

* host, socklen t hostlen,char *serv, socklen t servlen, int flags);

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := lwres getnameinfo(sa, salen, host, hostlen, serv, servlen,
flags) ;

150 Library Routines

INT error;

INT .EXT sa(sockaddr) ;
INT (32) salen;

STRING .EXT host;
INT(32) hostlen;
STRING .EXT serv;

INT (32) servlen;

INT flags;

error
return value; if the call is successful, a O (zero) is returned. If the call is not successful, —1 is
returned.

sa
input value; points to the sockaddr_in or sockaddr iné struct containing the IP address
and port number.

salen
input value; specifies the length of the sa argument.

host
input and return value; contains the returned hostname associated with the IP address or the
numeric form of the host address (if the flags value NI NUMERICHOST is used).

hostlen
input value; specifies the size of the host buffer to receive the returned value. If you specify O
(zero), no value is returned for host. Otherwise, the value returned is truncated as necessary
to fit the specified buffer.

serv
input value; contains either the service name associated with the port number or the numeric
form of the port number (if the flags value of NI NUMERICSERV is used).

servlen

input value; specifies the size of the serv buffer to receive the returned value. If you specify O
(zero), no value is returned for serv. Otherwise, the value returned is truncated as necessary
to fit the specified buffer.

flags
input value; one of the following:
NI_NOFQDN
specifies to return only the hostname part of the fully qualified domain name (FQDN) for

local hosts. If you omit this flag, the function returns the host's fully qualified (canonical)
domain name.

NI NUMERICHOST
specifies to return the numeric form of the host address instead of the hostname.
NI NAMEREQD
specifies to return an error if the hostname is not found in the DNS.
NI NUMERICSERV
specifies to return the numeric port number instead of the service name.
NI _DGRAM

specifies to return only ports configured for a UDP service. This flag is required for ports
that use different services for UDP and TCP.

Iwres_getnameinfo 151

Errors

Upon successful completion, this function returns O (zero) and the requested values are stored in
the buffers specified for the call. Otherwise, the value returned is nonzero and errno is set to
indicate the error (only when the error is EAT_SYSTEM). See the return values described for
Iwres_gai_strerror (page 141).

Example

The example calls the 1wres _getnameinfo routine to get a hostname's fully qualified domain
name.

error = lwres getnameinfo((struct sockaddr *)sin,

addrlen, hname, sizeof (hname), sname,
sizeof (sname), NI _NUMERICHOST |NI NUMERICSERV) ;
if (error)

ifprintf (stderr, "Error: %s\n", lwres gaili strerror (error)) ;

Usage Guidelines

lwres

Errors

By default, this function returns the hostname's fully qualified domain name.

This function, along with 1wres _getipnodebyaddr, is a protocol-independent replacement for
lwres_gethostbyaddr. lwres_getnameinfo provides extra functionality because it handles
both the host's address and port number.

hstrerror

The lwres_hstrerror function returns an appropriate string for the error code given by err num.
(This function is supported for G06.27 and later G-series RVUs and H06.05 and later H-series
RVUs of NonStop TCP/IPvé.)

C Synopsis

#include <netdb.h>

const char * lwres_hstrerror (int err_num) ;
TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

ret val := lwres hstrerror(err num)
INT (32) ret wval;
INT err num;

ret val

return value; a pointer to a string described in err num.
err num

input value; specifies the integer error code.

The values of the error codes and messages are:
NETDB_SUCCESS

Resolver error O (no error).
HOST NOT FOUND

Unknown host.
TRY AGAIN

hostname lookup failure.

152 Library Routines

listen

Errors

NO_RECOVERY
Unknown server error.
NO_DATA
No address associated with hostname.

The 1isten function is provided for compatibility only. In other socket implementations, 1isten
sets the maximum connections that are in the queue awaiting acceptance on a socket. In the
NonStop TCP/IP, Parallel Library TCP/IP, and NonStop TCP/IPv6 implementations, the maximum
pending connections is always 5. A call to 1isten must precede a call to accept or accept _nw.

C Synopsis
#include <socket.h>
#include <in.h>

#include <in6.h> /* for IPv6 use */
#include <netdb.h>

error = listen (socket, queue length) ;

int error, socket, queue length;
TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := listen (socket, queue length) ;

INT error,
socket,
queue_ length;

error
return value; always zero because no error can occur.
socket

input value; specifies the socket number for the socket being used to listen for connections (as
returned by a call to socket or socket nw).

queue length

input value; specifies the maximum queue length (number of pending connections). This argument
is ignored.

No errors are returned for this function.

Example

See C TCP Server Program (page 217) for examples that call the 1isten function.

recv, recv_nw

The recv and recv_nw functions receive data on a connected socket.
C Synopsis

#include <socket.hs>
#include <netdb.h>

nrcvd = recv (socket, buffer ptr, length, flags);

listen 153

error = recv_nw (socket, buffer ptr, length, flags, tag);

int nrcvd, socket;

char *buffer ptr;

int length, flags, error;
long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

nrcvd := recv (socket, buffer ptr, length, flags);
error := recv_nw (socket, buffer ptr, length, flags, tag);
INT (32) nrcvd,
socket;
STRING .EXT buffer ptr;
INT (32) length,
flags,
error;
INT(32) tag;
nrcvd

return value; the number of bytes received by the recv function. This is the return value for
recv. A zero length message indicates end of file (EOF).

If the call is not successful, —1 is returned and the external variable errno is set as indicated
below in “Errors.”

error

return value; if the call is successful, a zero is returned. If the call is not successful, —1 is
returned. If the call failed, the external variable errno is set as indicated below in “Errors.”

socket

input value; specifies the socket number for the socket, as returned by the call to socket or
socket nw.

buffer ptr
input and return value; on completion, points to the received data.
length
input value; the size of the buffer pointed to by buffer ptr.
flags
input value; specifies the kind of data to be read and is one or more of the following:

MSG_OOB Read out-of-band data. This corresponds to the TCP URG flag. You should not select this
flag for UDP sockets, or the call fail. This constraint is imposed by UDP, which does not
support out-of-band data.

MSG_PEEK Read the incoming message without removing it from the input queve.

0 No flag; read data normally.

tag

input value; the tag parameter to be used for the nowait operation initiated by recv_nw. For
more information, see Asynchrony and Nowaited Operations (page 34).

154 library Routines

Errors

If an error occurs, the return value is set to -1 and the external variable errno is set to one of the
following values:

EHAVEOOB There is out-of-band data pending. This must be cleared with a call to recv with the
MSG_OORB flag set. (This error does not apply to UDP sockets.)

ENOTCONN The specified socket was not connected

ESHUTDOWN The specified socket was shut down.

ETIMEDOUT The connection timed out.

ECONNRESET The connection was reset by the remote host.

Usage Guidelines

Use the following guidelines for the recv and recv_nw functions:

Use recv on a socket created for waited operations. Use recv_nw on a socket created with
the socket_nw call for nowait operations. The operation initiated by recv nw must be
completed with a call to the AWATITIOX procedure.

To determine the number of characters read from recv nw, check the third parameter (the
count transferred) returned by the AWAITIOX procedure. Refer to the Guardian Procedure
Calls Reference Manual for details about the AWATTIOX procedure and its parameters.

recv and recvErom could wait indefinitely if the network terminates the connection
ungracefully, without returning an error code. This is standard TCP/IP behavior. Avoid the
wait by calling recv_nw or recvfrom_nw nowait operations, followed by calling AWATTIOX
with a timer value of 10 seconds. If the timer expires, call send or sendto from the local
host. If the send or sendto call fails, the connection is down.

The sending side of a connection indicates end-of-file by closing or shutting down its socket.
The receiving side recognizes end-ofile when the recv or recvfrom calls have O bytes in
their length-of-buffer field. This is standard practice, not specific to the Guardian socket
library implementation. You are responsible for handling this condition.

If the MSG_00B flag is set by itself, only the last byte of urgent data sent from the remote site
is received. To receive multiple bytes of urgent data in the normal data stream, you must set
the socket option SO_OOBINLINE, and call recv with the MSG_00B flag set. recv returns
data through the last byte of urgent data. The S0_OOBINLINE socket option is set with either
the setsockopt or setsockopt_nw functions. To determine where the last byte of urgent
data occurs, use the socket ioctl () operation STOCATMARK.

See Nowait Call Errors (page 86) for information on checking errors.

Example

The following programming example calls the recv function. (In the example, rsock is a socket
created by a previous call to socket):

#include <socket.h>
#include <netdb.h>

int status, tosend;
char buffer [8*1024];

tosend
status

sizeof (buffer) ;
recv (rsock, (char *)&buffer[0], tosend, O0);

recv64_, recv_nwb4 _

The recve4 and recv_nwé4_ functions receive data on a connected socket.

recv64_, recv_nwb4_ 155

C Synopsis

#include <socket.hs>
#include <netdb.h>

nrcvd = recvée4 (socket, buffer ptré64, length, flags);
error = recv_nwé64 (socket, buffer ptré4, length, flags, tag);

int nrcvd, socket;

char _ptr64 *buffer ptré4;
int length, flags, error;
long long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

nrcvd := recvé64 (socket, buffer ptré4, length, flags);
error := recv_nwé4 (socket, buffer ptré4, length, flags, tag);
INT (32) nrcvd,
socket;
STRING .EXT64 buffer ptré4;
INT (32) length,
flags,
error;
INT (64) tag;
nrcvd

return value; the number of bytes received by the recve4a function. A zero length message
indicates end of file (EOF).

If the call is not successful, —1 is returned and the external variable errno is set as indicated
in Errors (page 157).

error

return value; if the call is successful, a zero is returned. If the call is not successful, —1 is
returned. If the call fails, the external variable errno is set as indicated in Errors (page 157).

socket

input value; specifies the socket number for the socket, as returned by the call to socket or
socket nw.

buffer ptré64
input and return value; on completion, points to the received data.
length
input value; the size of the buffer pointed to by buffer ptréa.
flags
input value; specifies the kind of data to be read and is one or more of the following:

MSG_OOB Read out-of-band data. This corresponds to the TCP URG flag. The call fails if you select
this flag for UDP sockets. This is a constraint imposed by UDP, which does not support
out-of-band data.

MSG_PEEK Read the incoming message without removing it from the input queve.

0 No flag; read data normally.

156 Library Routines

tag
input value; the tag parameter to be used for the nowait operation initiated by recv_nwe4_.

For more information, see Asynchrony and Nowaited Operations (page 34).
Errors

If an error occurs, the return value is set to -1, and the external variable errno is set to one of the
following values:

EHAVEOOB There is pending out-of-band data. This must be cleared with a call to recve4 with the
MSG_OORB flag set. (This error does not apply to UDP sockets.)

ENOTCONN The specified socket was not connected

ESHUTDOWN The specified socket was shut down.

ETIMEDOUT The connection timed out.

ECONNRESET The connection was reset by the remote host.

Usage Guidelines
Use the following guidelines for the recve64 and recv_nwé4_ functions:

o Use recve4 on a socket created for waited operations. Use recv_nwé4 _ on a socket
created with the socket nw call for nowait operations. The operation initiated by
recv_nwé4_ must be completed with a call to the FILE AWAITIO64 procedure.

o To determine the number of characters read from recv_nwe4_, check the third parameter
(the count transferred) returned by the FILE _AWAITIO64 procedure. For information about
the FILE AWAITIO64 procedure and its parameters, see Guardian Procedure Calls Reference
Manual.

e recv64_ and recviromé4 might wait indefinitely if the network terminates the connection
ungracefully, without returning an error code. This is standard TCP/IP behavior. Avoid the
wait by calling recv_nwé4 _or recvfrom nwé4 _ nowait operations, followed by
FILE AWAITIO64 call with a timer value of 10 seconds. If the timer expires, call sende4
or sendto64_ from the local host. If the send64 _ or sendtoé4_ call fails, the connection
is down.

o The sending side of a connection indicates end-of-file by closing or shutting down its socket.
The receiving side recognizes end-of-file when the recvé64 or recviromés4 calls have O
bytes in their Iength-of-buffer field. This is standard practice, not specific to the Guardian
socket library implementation.

o Ifthe MSG_00B flag is set by itself, only the last byte of urgent data sent from the remote site
is received. To receive multiple bytes of urgent data in the normal data stream, you must set
the socket option SO_OOBINLINE, and call recvé4_ with the MSG_00B flag set. recves
call returns data through the last byte of urgent data. The SO_OOBINLINE socket option is
set with either the setsockopt or setsockopt_nw functions. To determine where the last
byte of urgent data occurs, use the socket ioctl () operation STOCATMARK.

For information on checking errors, see Nowait Call Errors (page 86).

Example

The following programming example calls the recve4_ function. (In the example, rsock is a
socket created by a previous call to socket):

#include <socket.h>

#include <netdb.h>

int status, tosend;
char buffer [8*1024];

recv64_, recv_nwb4_ 157

tosend = sizeof (buffer);
status = recv64_ (rsock, (char ptré4*)sbuffer[0], tosend, O0);

recvfrom

158

The recvErom function receives data on an unconnected UDP socket or raw socket created for
waited operations.

C Synopsis

#include <socket.h>

#include <in.h>

#include <in6.h> /* for IPvé use */
#include <netdb.h>

nrcvd = recvirom (socket, buffer ptr, buffer length, flags,
from ptr, from length) ;

int nrcvd, socket;

char *buffer ptr;

int buffer length, flags;
struct sockaddr * from ptr;
int *from length;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

nrcvd := recvfrom (socket, buffer ptr, buffer length, flags,
from ptr, from length);
INT (32) nrcvd,
socket;
STRING .EXT buffer ptr;
INT (32) buffer length,
flags;
INT .EXT from ptr(sockaddr in);
INT .EXT from length;

nrcvd

return value; the number of bytes received. This is the return value.

If the call is not successful, —1 is returned, and the external variable exrrno is set as indicated
in Errors (page 159).

socket

input value; specifies the socket number for the socket, as returned by the call to the socket
function.

buffer ptr
input value; on return, points to the received data.
buffer length
input value; the size of the buffer pointed to by buffer ptr.
flags
input value; specifies how the message is read, and is one of the following messages:

MSG_PEEK Read the incoming message without removing it from the queue.

0 No flag; read incoming message normally.

Library Routines

Errors

from ptr
input and return value;points, on return, to the remote address and port number (based on the
structure sockaddr in or sockaddr in6) from which the data is received.

from length

input and return value; maintained only for compatibility and should point to a value indicating
the size in bytes of the structure (the remote address and port number) pointed to by from ptr.

If an error occurs, the return value is set to -1 and the external variable errno is set to one of the
following values:

EISCONN The specified socket was connected
ESHUTDOWN The specified socket was shut down.
EINVAL An invalid argument was specified.

Usage Guidelines

o This is a waited call; your program pause until the operation completes. Refer to Usage
Guidelines (page 155) in the recv, recv_nw function description for more information.

e You can perform a nowait call to receive data on an unconnected UDP socket or raw socket
using recvErom_nw, described later in this section.

o Declare the from ptr variable as struct sockaddr iné * for IPv6 use or as struct
sockaddr storage * for protocol-independent use. In C, when you make the call, cast
the variable to sockaddr. (See the IPv6 example.)

Example

INET: the following programming example calls the recvErom function. In this example, rsock
is a socket created by a previous call to socket and fhost is a structure that receives the address
of the host from which the data is received. The data is received in buffer:

#include <socket.h>
#include <in.h>
#include <netdb.h>

struct sockaddr in fhost;
int status, tosend, len;
char buffer [8*1024];

tosend = sizeof (buffer) ;
status = recvfrom(rsock, buffer, tosend,
0, (struct sockaddr *)&fhost, &len);

INET6: the following programming example calls the recvfrom function. In this example, rsock
is a socket created by a previous call to socket and fhost is a structure that receives the address
of the host from which the data is received. The data is received in buffer:

#include <socket.h>

#include <in.h>

#include <iné6.h>
#include <netdb.h>

struct sockaddr iné fhost;
int status, tosend, len;

char buffer [8*1024];

tosend = sizeof (buffer);

recvfrom 159

/* Notice that fhost below is cast to struct sockaddr *
as suggested in the Usage Guidelines */
status = recvfrom(rsock, buffer, tosend,

0, (struct sockaddr *)&fhost, &len);

recviromé4

The recvfromé4_ function receives data on an unconnected UDP socket or raw socket created
for waited operations.

C Synopsis

#include <socket.h>

#include <in.h>

#include <in6.h> /* for IPv6 use */
#include <netdb.h>

nrcvd = recvifromé64 (socket, buffer ptré64, buffer length, flags,
from ptré4, from lengthé4) ;

int nrcvd, socket;

char ptré64 *buffer ptré4;

int buffer length, flags;

struct sockaddr _ptré4 * from ptré4;
int ptr64 *from lengthé64;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

nrcvd := recvfromé64 (socket, buffer ptré4, buffer length, flags,
from ptré64, from lengthé64) ;

INT (32) nrcvd,
socket;
STRING .EXT64 buffer ptré4;
INT (32) buffer length,
flags;
INT .EXT64 from ptré4(sockaddr_in) ;
INT .EXT64 from lengthé64;

nrcvd

return value; the number of bytes received.

If the call is not successful, =1 is returned, and the external variable errno is set as shown in
Errors (page 161).

socket

input value; specifies the socket number for the socket, as returned by the call to the socket
function.

buffer ptré4
input value; on return, points to the received data.
buffer length
input value; the size of the buffer pointed to by buffer ptre4.

160 Library Routines

flags
input value; specifies how the message is read, and is one of the following messages:

MSG_PEEK Read the incoming message without removing it from the queue.
0 No flag; read incoming message normally.
from ptré4

input and return value; on return, points to the remote address and port number (based on the
structure sockaddr in or sockaddr in6) from which the data is received.

from lengthé64

input and return value; maintained only for compatibility and must point to a value indicating
the size in bytes of the structure (the remote address and port number) that from ptre4 points
to.

Errors

If an error occurs, the return value is set to -1, and the external variable errno is set to one of
the following values:

EISCONN The specified socket was connected
ESHUTDOWN The specified socket was shut down.
EINVAL An invalid argument was specified.

Usage Guidelines

e This is a waited call; your program pauses until the operation completes. For more information,
see Usage Guidelines (page 155) in recv, recv_nw.

e You can perform a nowait call to receive data on an unconnected UDP socket or raw socket
using recvfrom nwé4 _, described in recvfrom_nwé4_ (page 164) call.

o Declare the from ptre4 variable as struct sockaddr iné * forIPvé use or as struct
sockaddr storage * for protocol-independent use. In C, when you make the call, cast
the variable to sockaddr. (See the IPv6 example.)

Example

INET: the following programming example calls the recvEromée4 function. In this example,
rsock is a socket created by a previous call to socket and fhost is a structure that receives
the address of the host from which the data is received. The data is received in buffer:

#include <socket.h>
#include <in.h>
#include <netdb.h>

struct sockaddr in fhost;
int status, tosend, len, rsock;
char buffer [8*1024];

tosend sizeof (buffer) ;
status = recvfromé64 (rsock, (char ptré4*)s&buffer, tosend,
0, (struct sockaddr ptré64*)&fhost, &(int ptré4*)s&len);

recvirom_nw

The recvfrom nw function receives data on an unconnected UDP socket or raw socket created
for nowait operations.

C Synopsis

recvirom_nw 161

162

#include <socket.h>

#include <in.h>

#include <in6.hs> /* for IPvé use */
#include <netdb.h>

error = recvirom nw (socket, buffer ptr, buffer length,
flags, r buffer ptr, r buffer length,
tag);

int error, socket;

char * buffer ptr;

int buffer length, flags;
struct sockaddr * r buffer ptr;
int * r buffer length;

long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := recvirom nw (socket, buffer ptr, buffer length,
flags, r buffer ptr, r buffer length,
tag);
INT (32) error, socket;
STRING .EXT buffer ptr;
INT (32) buffer length, flags;
INT .EXT r buffer ptr(sockaddr in);
INT (32) r buffer length;
INT (32) tag;
error
return value; if the call is successful, a zero is returned. If the call is not successful, —1 is

returned. If the call failed, the external variable errno is set as indicated in Errors (page 163).
socket
input value; specifies the socket number for the socket, as returned by the call to socket nw.
buffer ptr
input and return value; a character pointer to the data returned by the call to recvfrom nw.
buffer length
input value; the integer length of the data buffer pointed to by buffer ptr.
r buffer ptr
input and return value; not used by the recvfrom nw call. Call socket_get_info (page 194) to
get the socket address (parameter sockaddr buffer). A dummy parameter must still be
passed to satisfy the recvfrom nw call.
r buffer_length
input and return value; no longer used by the recvfrom nw call to determine the
r buffer ptr sizesince r buffer ptr is no longer used; however, recvfrom nw still
requires a valid value for this parameter. Call socket_get_info (page 194) to get the socket
address structure length (parameter buflen).
flags
input value; maintained for compatibility; set to O.
tag
input value; the tag parameter to be used for the nowait operation initiated by recvfrom nw.

Library Routines

Errors

If an error occurs, the return value is set to -1 and the external variable errno is set to one of the
following values:

EISCONN The specified socket was connected
ESHUTDOWN The specified socket was shut down.
EINVAL An invalid argument was specified.

Usage Guidelines

o This is a nowait call; it must be completed with a call to the AWAITIOX procedure. For a
waited call, use recvErom.

o The parameters of the recvfrom nw function are not compatible with those of the recvfrom
function in the 4.3 BSD UNIX operating system.

o The length of the received data is given in the third parameter (count transferred) returned
from the AWAITIOX procedure. This length includes the address information given by
sizeof (sockaddr in), sizeof (sockaddr iné6), or sizeof (sockaddr nv) at

the beginning of the buffer.

o For IPv6 use, define the variable r buffer ptr as a pointer to a structure of type
sockaddr_ ine.

See Nowait Call Errors (page 86) for information on checking errors.

Examples

INET: the following programming example calls the recvErom nw function. In this example,
rsock is a socket created by a previous call to socket and fhost is a structure that receives
the address of the host from which the data is received. The data is received in buffer:

#include <socket.h>

#include <in.h>

#include <netdb.h>

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <cextdecs (AWAITIOX, FILE GETINFO) >

struct sockaddr in fhost;
int len, rsock;

char buffer [8*1024];

short error, rsock2, rcount;

long tag;
error = recvirom nw(rsock, buffer, sizeof (buffer), 0,
(struct sockaddr *) &fhost, &len, tag);
if error (!= 0) /* some error checking */
{
printf ("recvfrom nw failed, error %d\n," errno);

exit (1) ;
rsock2=(short)rsock; /* AWAITIOX/FILE GETINFO_ expects a short
for socket descriptor */
(void) AWAITIOX (&rsock2,,&rcount,&tag,l1l);
(void) FILE GETINFO_ (rsock2, &error);

if (error != 0)
printf ("error from AWAITIOX, error %d\n", errno);
exit (1) ;

}

recvifrom_nw 163

error = socket get info (rsock, (char*) &fhost, len);

if (error != 0)
{
printf ("socket get info failed, error %d\n", errno);
exit (1)

}

INETé: the following programming example calls the recvErom nw function. In this example,
rsock is a socket created by a previous call o socket and fhost is a structure that receives
the address of the host from which the data is received. The data is received in buffer:

#include <socket.h>

#include <in.h>

#include <iné6.h>

#include <netdb.h>

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <cextdecs (AWAITIOX, FILE GETINFO) >

struct sockaddr iné fhost;
int len, rsock;

char buffer [8*1024];

short error, rsock2, rcount;

long tag;
error = recvfrom nw(rsock, buffer, sizeof (buffer), 0,
(struct sockaddr *) &fhost, &len, tag);
if error (!= 0) /* some error checking */
{
printf ("recvifrom nw failed, error %d\n," errno);
exit (1) ;

rsock2=(short)rsock; /* AWAITIOX/FILE GETINFO expects a short
for socket descriptor */

(void) AWAITIOX (&rsock2,,&rcount,&tag,ll);

(void) FILE GETINFO_ (rsock2, &error) ;

if (error != 0)
printf ("error from AWAITIOX, error %d\n", errno);
exit (1) ;

}

error = socket get info (rsock, (char*) &fhost, len);

if (error != 0)
{
printf ("socket get info failed, error %d\n", errno);
exit (1)

}

recvirom_nwéb4
The recvfrom nwée4 _function receives data on an unconnected UDP socket or raw socket created
for nowait operations.
C Synopsis
#include <socket.h>
#include <in.h>

#include <in6.h> /* for IPv6 use */
#include <netdb.h>

error = recvfrom nwé64 (socket, buffer ptré4, buffer length,
flags, addr, r buffer length,
tag);

int error, socket;

164 library Routines

Errors

char ptr64 * buffer ptré4;

int buffer length, r buffer length, flags;
struct sockaddr * addr;

long long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := recvfrom nwé64 (socket, buffer ptré64, buffer length,
flags, r buffer ptr, r buffer length,
tag);
INT (32) error, socket;
STRING .EXT64 buffer ptré4;
INT (32) buffer length, flags;
INT .EXT r buffer ptr(sockaddr in);
INT (32) r buffer length;
INT (64) tag;
error

return value; if the call is successful, a zero is returned. If the call is not successful, —1 is returned.
If the call fails, the external variable errno is set as shown in Errors (page 165).

socket
input value; specifies the socket number for the socket, as returned by the call to socket nw.
buffer ptré64
input and return value; a character pointer fo the data returned by the call to recvErom nwe4
buffer length
input value; the integer length of the data buffer pointed to by buffer ptrea.
r buffer ptr
input and return value; not used by the recvfrom nwé4 call. Call socket get infoto
get the socket address (parameter sockaddr buffer). A dummy parameter must still be
passed to satisfy the recvErom nwe4 call.
r buffer_length
input and return value; no longer used by the recvErom nwé4 call to determine the
r buffer ptré64 size because r_buffer ptré4 isnotused; however, recvirom nwé4
still requires a valid value for this parameter. Call socket_get_info (page 194) to get the socket
address structure length (parameter buflen).
flags
input value; maintained for compatibility; set to O.
tag
input value; the tag parameter to be used for the nowait operation initiated by
recvirom nwé64

If an error occurs, the return value is set to —1 and the external variable errno is set to one of the
following values:

EISCONN The specified socket was connected
ESHUTDOWN The specified socket was shut down.
EINVAL An invalid argument was specified.

recvfrom_nwé4_ 165

Usage Guidelines

o This is a nowait call; it must be completed with a call to the FILE AWAITIO64 procedure.
For a waited call, use recvEromea

o The parameters of the recvfrom nwe4_function are not compatible with those of the
recvEromé4_ function in the 4.3 BSD UNIX operating system.

o The length of the received data is specified in the third parameter (count transferred) returned
from the FILE AWAITIO64 procedure. This length includes the address information given
by sizeof (sockaddr in), sizeof (sockaddr in6), or sizeof (sockaddr nv)

at the beginning of the buffer.

o For IPv6 use, define the variable r buffer ptré4 as a pointer to a structure of type
sockaddr_insé.

For information on checking errors, see Nowait Call Errors (page 86).

Examples

send

INET: the followmg programming example calls the recvfrom nwée4 function. rsock is a socket
created by a previous call o socket and fhost is a structure that receives the address of the
host from which the data is received. The data is received in buf fer:

#include <socket.h>
#include <in.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <cextdecs.h>

struct sockaddr in fhost;
int len, rsock, rcount;
char buffer [8*1024];
short error, rsock2;

long long tag;

error = recvfrom nwé64 (rsock, (char ptré64*)s&buffer, sizeof (buffer), O,
(struct sockaddr *) &fhost, &len, tag);
if error (!= 0) /* some error checking */
{
printf ("recvfrom nwée4 failed, error %d\n," errno);
exit (1) ;

rsock2=(short)rsock; /* AWAITIOX/FILE GETINFO expects a short
for socket descriptor */

(void) FILE AWAITIO64 (&rsock2,, &rcount, &tag,1l);

(void) FILE GETINFO_ (rsock2, &error) ;

if (error != 0)
printf ("error from FILE GETINFO , error %d\n", errno);
exit (1) ;

}

error = socket get info (rsock, (char*) &fhost, len);

if (error != 0)
{
printf ("socket get info failed, error %d\n", errno);
exit (1)

}

The send function sends data on a connected socket.

166 Library Routines

Errors

C Synopsis

#include <socket.hs>
#include <netdb.h>

nsent = send (socket, buffer ptr, buffer length, flags);

int nsent, socket;
char *buffer ptr;
int buffer length, flags;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

nsent := send (socket, buffer ptr, buffer length, flags) ;
INT (32) nsent,
socket;
STRING .EXT buffer ptr;
INT (32) buffer length,
flags;
nsent

return value; specifies the number of bytes sent. This is the return value.

If the call is not successful, —1 is returned and the external variable errno is set as indicated
in Errors (page 167).

socket
input value; specifies the socket number for the socket, as returned by the call to socket.
buffer ptr
input value; points to the data to be sent.
buffer length
input value; the size of the buffer pointed to by buffer ptr.
flags

input value; specifies the kind of data to be sent, or specifies a routing restriction. f1ags has
one of the following values:

MSG_DONTROUTE Send this message only if the destination is located on the local network; do not send
the message through a gateway.

MSG_OOB Send the data as out-of-band data. This corresponds to the TCP URG flag.

0 Send normal data.

It an error occurs, the external variable errno is set to one of the following values:

EALREADY The send buffer is already full.

EMSGSIZE The message was too large fo be sent atomically, as required by the socket options.
ENOTCONN The specified socket was not connected

ESHUTDOWN The specified socket was shut down.

ETIMEDOUT The connection timed out.

ECONNRESET The connection was reset by the remote host.

EINVAL An invalid £1ags value was specified.

send 167

EHAVEOOB There is out-of-band data pending. This must be cleared with a call to recv_nw with the
MSG_OORB flag set.

EHAVEOOB There is out-of-band data pending. This must be cleared with a call fo recv_nw with the
MSG_OORB flag set.

Usage Guidelines

See Nowait Call Errors (page 86) for information on checking errors.

Example
See UDP Client Program (page 219) for an example that calls send.

send64

The sende4_ function sends data on a connected socket for waited operations.
C Synopsis

#include <socket.hs>
#include <netdb.h>

nsent = sendé64_ (socket, buffer ptr, buffer length, flags) ;

int nsent, socket;
char _ptré64 *buffer ptré4;
int buffer length, flags;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

nsent := send64_ (socket, buffer ptré4, buffer length, flags) ;
INT (32) nsent,
socket;
STRING .EXT64 buffer;ptr64;
INT (32) buffer length,
flags;
nsent

return value; specifies the number of bytes sent.

If the call is not successful, —1 is returned and the external variable errno is set as shown in
Errors (page 169).

socket

input value; specifies the socket number for the socket, as returned by the call to socket.
buffer ptré64

input value; points to the data to be sent.

buffer length
input value; the size of the buffer pointed to by buffer ptreé4.

168 Library Routines

flags

input value; specifies the type of data to be sent, or specifies a routing restriction. £1ags has
one of the following values:

MSG_DONTROUTE Send the message only if the destination is located on the local network; do not send
the message through a gateway.

MSG_OOB Send the data as out-of-band data. This corresponds to the TCP URG flag.

0 Send the message to the destination. If needed, route the message.

Errors

It an error occurs, the external variable errno is set to one of the following values:

EALREADY The send buffer is already full.

EMSGSIZE The message was too large fo be sent atomically, as required by the socket options.

ENOTCONN The specified socket was not connected.

ESHUTDOWN The specified socket was shut down.

ETIMEDOUT The connection timed out.

ECONNRESET The connection was reset by the remote host.

EINVAL An invalid £1ags value was specified.

EHAVEOOB There is out-of-band data pending. This must be cleared with a call to recv_nwe4_ with
the MSG_OORB flag set.

EHAVEOOB There is out-of-band data pending. This must be cleared with a call to recv_nwe4_ with

the MSG_OORB flag set.

Usage Guidelines

For information on checking errors, see Nowait Call Errors (page 86).

Example
The following programming example calls the sendé64_ function. (In the example, rsock is a
socket created by a previous call to socket) .
#include <socket.h>

#include <netdb.h>

int status, tosend;
char buffer [8*1024];

tosend sizeof (buffer) ;
status = send64 (rsock, (char ptré4*)sbuffer[0], tosend, 0);

send_nw
The send_nw function sends data on a connected socket. send_nw is a nowait operation.
C Synopsis

#include <socket.hs>
#include <netdb.h>

error = send nw (socket, nbuffer ptr, nbuffer length, flags,
tag) ;

int error, socket;

char *nbuffer ptr;

int nbuffer length, flags;
long tag;

send_nw 169

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := send nw (socket, nbuffer ptr, nbuffer length,
flags, tag);
INT (32) error,
socket;
STRING .EXT nbuffer ptr;
INT (32) nbuffer length,
flags;
INT (32) tag;
error

return value; if the call is successful, a zero is returned. If the call is not successful, —1 is

returned. If the call failed, the external variable errno is set as indicated in Errors (page 171).
socket

input value; specifies the socket number for the socket, as returned by the call to socket nw.
nbuffer ptr

input value; points to the element nb_data [0] in the following structure:

struct send nw str {
int nb sent;
char nb datalll];

¥
The TAL structure is:

struct send nw str (*);
begin
INT nb_sent;
STRING nb_datal[0:1];
end;
This structure is used by many function calls. Copy the data returned by nbuffer ptr before
issuing another function call that uses nbuf fer ptr. This structure is provided in the netdb . h
header file.

nbuffer length
input value; the size of the buffer pointed to by nbuffer ptr.
flags

input value; specifies the kind of data to be sent, or specifies a routing restriction. f1ags has
one of the following values:

MSG_DONTROUTE Send this message only if the destination is located on the local network; do not send
the message through a gateway.
MSG_OOB Send the data as out-of-band data. This corresponds to the TCP URG flag.
0 Send normal data.
tag

input value; the tag parameter to be used for the nowait operation initiated by send nw. (For
more information, see Asynchrony and Nowaited Operations (page 34).)

170 Library Routines

It an error occurs, the external variable errno is set to one of the following values:

EALREADY The send buffer is already full.

EMSGSIZE The message was too large to be sent atomically, as required by the socket options.
ENOTCONN The specified socket was not connected

ESHUTDOWN The specified socket was shut down.

ETIMEDOUT The connection timed out.

ECONNRESET The connection was reset by the remote host.

EINVAL An invalid f1ags value was specified.

EHAVEOOB There is out-of-band data pending. This must be cleared with a call to recv_nw with the

MSG_00B flag set.

Usage Guidelines

e The operation initiated by send nw must be completed with a call to the AWAITIOX or
AWAITIO procedure (although AWAITIOX is recommended).

o To determine the number of bytes that have been transferred as a result of the send_nw
function, check nb_sent (the first field of the send nw_str structure). When the send_nw
function completes processing, AWAITIOX returns a pointer to nb_sent as its second
parameter and a count of 2 (the length of nb_sent) as its third parameter. This use of the
AWAITIOX parameters is nonstandard.

See Nowait Call Errors (page 86) for information on checking errors.

Example

The following programming example calls the send_nw routine and checks for the number of
bytes sent:

#include <socket.hs>
#include <netdb.h>

struct send nw str *snw;
int cc, count = bp - &buf [0]; errno = 0;

for (bp = &buf [0]; count > 0; count -= cc) {
send nw (socket, bp, count, 0, OL);
AWAITIOX (&ret fd, (char *)&snw, &cc, &ret tag, -1L);

cc = snw->nb_sent;
if (cc < 0) break;
bp += cc;

}i

Before the call to send_nw, the program creates a socket. The socket number is saved in the
variable socket. The pointer bp points fo the data to be sent. The length of the buffer is count.
After the return from AWAITIOX, the program sefs cc to the number of bytes in the nb_sent field
of the snw structure (based on the send_nw_str structure).

send _nw64

The send _nwé64_function sends data on a connected socket. send _nwé4 __is a nowait operation.
C Synopsis

#include <socket.h>
#include <netdb.h>

error = send nw64 (socket, nbuffer ptré4, nbuffer length, flags,

send_nwé4_ 171

taqg) ;

int error, socket;

char _ptr64 *nbuffer ptré4;
int nbuffer length, flags;
long long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := send nwé4 (socket, nbuffer ptré64, nbuffer length,
flags, tag);
INT (32) error,
socket;
STRING .EXT64 nbuffer ptré64;
INT (32) nbuffer length,
flags;
INT (64) tag;
error

return value; if the call is successful, a zero is returned. If the call is not successful, —1 is

returned. If the call fails, the external variable errno is set as shown in Errors (page 173).
socket

input value; specifies the socket number for the socket, as returned by the call to socket nw.

nbuffer ptré4
input value; points to the element nb_data [0] in the following structure:
struct send nw_str {

int nb_sent;
char nb datalll;

}i
The TAL structure is:
struct send nw _str (*);
begin
INT nb_ sent;
STRING nb datal0:1];
end;
This structure is used by many function calls. Copy the data returned by nbuffer ptre4
before issuing another function call that uses nbuffer ptreé4. This structure is provided in
the netdb. h header file.

nbuffer length
input value; the size of the buffer that nbuffer ptreé4 points to.
flags

input value; specifies the type of data fo be sent, or specifies a routing restriction. f1ags has
one of the following values:

MSG_DONTROUTE Send this message only if the destination is located on the local network; do not send
the message through a gateway.
MSG_OOB Send the data as out-of-band data. This corresponds to the TCP URG flag.
0 Send normal data.
tag

input value; the tag parameter to be used for the nowait operation initiated by send nwe4_.
For more information, see Asynchrony and Nowaited Operations (page 34).

172 Library Routines

It an error occurs, the external variable errno is set to one of the following values:

EALREADY The send buffer is already full.

EMSGSIZE The message was too large to be sent atomically, as required by the socket options.
ENOTCONN The specified socket was not connected

ESHUTDOWN The specified socket was shut down.

ETIMEDOUT The connection timed out.

ECONNRESET The connection was reset by the remote host.

EINVAL An invalid f1ags value was specified.

EHAVEOOB There is out-of-band data pending. This must be cleared with a call to recv_nwe4_ with

the Msc_00B flag set.

Usage Guidelines

o The operation initiated by send_nwé4 _ must be completed with a call to the
FILE_AWAITIO64 procedure.

e To determine the number of bytes that are transferred as a result of the send_nwe4_ function,
check nb_sent (the first field of the send nw_str structure). When the send nwe4_ function
completes processing, FILE AWAITIO64 returns a pointer fo nb sent as its second
parameter and a count of 2 (the length of nb_sent) as its third parameter. This use of the
FILE AWAITIO64 parameters is nonstandard.

For information on checking errors, see Nowait Call Errors (page 86).

Example

The following programming example calls the send_nwé64 _ routine and checks for the number of
bytes sent:

#include <socket.h>
#include <netdb.h>

struct send nw_str *snw;
int cc, count = bp - &buf [0]; errno = 0;

for (bp = &buf [0]; count > 0; count -= cc) {
send nwé64 (socket, (char ptrée4*)bp, count, 0, OL);
FILE AWAITIO64_ (&ret fd, (char ptré64 *)s&snw, &cc, &ret tag, 0D, -1);

cc = snw->nb_sent;
if (cc < 0) break;
bp += cc;

}i

send_nw?2

The send_nw2 function sends data on a connected socket. Unlike the send and send_nw calls,
the send_nw2 call does not store the number of bytes sent in the data buffer. Therefore, the
send_nw2 call does not require the application to allocate 2 bytes in front of its data buffer to
receive the number of bytes sent. Instead, the application should call socket get len to obtain
the number of bytes sent.

C Synopsis

#include <socket.hs>
#include <netdb.h>

error := send nw2 (socket, nbuffer ptr, nbuffer length,
flags, tag);

send_nw2 173

int error, socket;

char *nbuffer ptr;

int nbuffer length, flags;
long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := send nw2 (socket, nbuffer ptr, nbuffer length,
flags, tag);
INT (32) error,
socket;
STRING .EXT nbuffer ptr;
INT (32) nbuffer length,
flags;
INT(32) tag;
error

return value; if the call is successful, a zero is returned. If the call is not successful, —1 is
returned. If the call failed, the external variable errno is set as indicated in Errors (page 174).

socket

input value; specifies the socket number for the socket, as returned by the call to socket nw.
nbuffer ptr

input value; specifies the data to be sent. Call AWATITIOX to complete the send_nw2 call.
nbuffer length

input value; the size of the buffer pointed to by nbuffer ptr.
flags

input value; specifies the kind of data to be sent, or specifies a routing restriction. f1ags has
one of the following values:

MSG_DONTROUTE Send this message only if the destination is located on the local network; do not send
the message through a gateway.
MSG_OOB Send the data as out-of-band data. This corresponds to the TCP URG flag.
0 Send normal data.
tag

is the tag parameter to be used for the nowait operation initiated by send_nw2.

Errors

If an error occurs, the external variable errno is set to one of the following values:

EALREADY The send buffer is already full.

EMSGSIZE The message was too large fo be sent atomically, as required by the socket options.
ENOTCONN The specified socket was not connected.

ESHUTDOWN The specified socket was shut down.

ETIMEDOUT The connection timed out.

ECONNRESET The connection was reset by the remote host.

EINVAL An invalid f1lags value was specified.

EHAVEOOB There is out-of-band data pending. This must be cleared with a call fo recv_nw with the

MSG_OORB flag set.

174 library Routines

Usage Guidelines

o Use send nw2 on a socket created for nowait operations. The operation initiated by
send_nw2 must be completed with a call to the AWAITIOX or AWAITIO procedure (although
AWAITIOX is recommended).

o To determine the number of bytes that have been transferred as a result of the send_nw2
function, call the socket get len call.

o For the send_nw2 call, complete the request with a call to AWIATIOX before issuing another
function call that uses nbuffer ptr.

See Nowait Call Errors (page 86) for information on error checking.

Example

The following programming example calls the send_nw2 routine and checks for the number of
bytes sent:
#include <socket.h>

#include <netdb.h>
int s;

char *snw;
int cc, count = bp - &buf [0]; errno = 0;
for (bp = &buf [0]; count > 0; count -= cc) {

send nw2 (socket, bp, count, 0, OL);
AWAITIOX (&ret fd, (char *)&snw, &cc, &ret tag, -1L);

cc = socket get len(s);
if (cc < 0) break;
bp += cc;

}i

Before the call to send_nw2, the program creates a socket. The socket number is saved in the
variable socket. The pointer bp points to the data to be sent. The length of the buffer is count.
After the return from AWAITIOX, the program sefs cc to the number of bytes sent by a call to the
socket get len function.

send_nw2 64

The send nw2 64 function sends data on a connected socket. Unlike the send, send64
send nw, and send nwé4_ calls, the send nw2 64 call does not store the number of bytes
sent, in the data buffer. Therefore, the send nw2 64 call does not require the application to
allocate 2 bytes in front of its data buffer to receive the number of bytes sent. Instead, the application
must call socket get len to obtain the number of bytes sent.

C Synopsis

#include <socket.hs>
#include <netdb.h>

error := send nw2 64 (socket, nbuffer ptré64, nbuffer length,
flags, tag);

int error, socket;

char ptr64 *nbuffer ptré4;
int nbuffer length, flags;
long long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

send_nw2_64_ 175

error := send nw2 64 (socket, nbuffer ptré64, nbuffer length,

flags, tag);
INT (32) error,
socket;
STRING .EXT64 nbuffer ptré64;
INT (32) nbuffer length,
flags;
INT (64) tag;

error
return value; if the call is successful, a zero is returned. If the call is not successful, —1 is returned.
If the call fails, the external variable errno is set as shown in Errors (page 176).
socket
input value; specifies the socket number for the socket, as returned by the call to socket nw.
nbuffer ptré4
input value; specifies the data to be sent. Call FILE AWAITIO64 to complete the
send nw2_ 64 _call.
nbuffer length
input value; the size of the buffer pointed to by nbuffer ptrea.
flags

input value; specifies the kind of data to be sent, or specifies a routing restriction. f1ags has
one of the following values:

MSG_DONTROUTE Send this message only if the destination is located on the local network; do not send
the message through a gateway.

MSG_OOB Send the data as out-of-band data. This corresponds to the TCP URG flag.

0 Send normal data.

tag
is the tag parameter to be used for the nowait operation initiated by send nw2 64 .

Errors

If an error occurs, the external variable errno is set to one of the following values:

EALREADY The send buffer is already full.

EMSGSIZE The message was too large fo be sent atomically, as required by the socket options.
ENOTCONN The specified socket was not connected.

ESHUTDOWN The specified socket was shut down.

ETIMEDOUT The connection timed out.

ECONNRESET The connection was reset by the remote host.

EINVAL An invalid f1lags value was specified.

EHAVEOOB There is out-of-band data pending. This must be cleared with a call fo recv_nwe4_ with

the MSG_OORB flag set.

176 Library Routines

Usage Guidelines

o Use send nw2 64 on a socket created for nowait operations. The operation initiated by
send_nw2_ 64 must be completed with a call to the FILE AWAITIO64 procedure.

e To determine the number of bytes that are transferred as a result of the send nw2 64
function, call the socket get len call.

o Forthe send nw2 64 call, complete the request with a call to AWIATIOX64 before issuing
another function call that uses nbuffer ptreé4.

For information on error checking, see Nowait Call Errors (page 86).

Example

The following programming example calls the send nw2_ 64 routine and checks for the number
of bytes sent:
#include <socket.h>

#include <netdb.h>
int s;

char *snw;
int cc, count = bp - &buf [0]; errno = 0;
for (bp = &buf [0]; count > 0; count -= cc)

send nw2 64 (socket, (char ptr*)bp, count, 0, OL);
FILE AWAITIO64 (&ret fd, (char ptré64*)&snw, &cc, &ret tag, 0D, -1);

cc = socket_get_len(s);
if (cc < 0) break;
bp += cc;

bi

sendto

The sendto function sends data on an unconnected UDP socket or raw socket for waited operations.
C Synopsis

#include <socket.h>

#include <in.h>

#include <in6.h> /* for IPv6 use */
#include <netdb.h>

nsent = sendto (socket, buffer ptr, buffer length, flags,
sockaddr ptr, sockaddr length) ;

int nsent, socket;

char *buffer ptr;

int buffer length, flags;
struct sockaddr *sockaddr ptr;
int sockaddr length;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

nsent := sendto (socket, buffer ptr, buffer length, flags,
sockaddr ptr, sockaddr length) ;

INT (32) socket,
buffer length,
flags,
sockaddr length;
STRING .EXT buffer ptr;
INT .EXT sockaddr ptr(sockaddr) ;

sendto 177

Errors

nsent

return value; the number of bytes sent. This is the return value. If this number is less than 1ength,
the operation should be retried with the remaining data.

If the call is not successful, —1 is returned and the external variable errno is set as indicated
in Errors (page 178).

socket

input value; specifies the socket number for the socket, as returned by the call to the socket
function.

buffer ptr

input value; points to the data to be sent.
buffer length

input value; the size of the buffer pointed to by buffer ptr.
flags

input value; specifies whether the outgoing data should be sent to the destination if routing is
required. This parameter can be one of the following messages:

MSG_DONTROUTE Send this message only if the destination is located on the local network; do not send
the message through a gateway.

0 No flag; send the message to the destination, even if the message must be routed.

sockaddr ptr
input value; points to the remote address and port number (based on the structure sockaddr in
or sockaddr iné) to which the data is sent.

sockaddr length

input value; maintained only for compatibility and should be a value indicating the size, in
bytes, of the structure (the remote address and port number pointed to by sockaddr ptr.

If an error occurs, the return value is set to -1 and the external variable errno is set to one of the
following values:

EACCES Permission denied for broadcast because SO BROADCAST is not set.

EMSGSIZE The message was too large fo be sent atomically, as required by the socket options.
EISCONN The specified socket was connected.

ESHUTDOWN The specified socket was shut down.

ENETUNREACH The destination network was unreachable.

EINVAL An invalid argument was specified.

Usage Guidelines

e This is a waited call; your program pauses until the operation is complete.

o Declare the sockaddr ptr variable as struct sockaddr iné * for IPvé use or as
struct sockaddr storage * for protocolindependent use. In C, when you make the
call, cast the variable to sockaddr.

Examples

See Client and Server Programs Using UDP (page 219) for examples that call sendto.

178 Library Routines

sendtob4

The sendtoe4_ function sends data on an unconnected UDP socket or raw socket for waited
operations.
C Synopsis

#include <socket.h>
#include <netdb.h>

nsent = sendto64 (socket, buffer ptré4, buffer length, flags, sockaddr ptré4, sockaddr len);

int nsent, socket;

char ptré4 *buffer ptré4;

int buffer length, flags, sockaddr len ;
struck sockaddr _ptré64 *sockaddr ptré64;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

nsent := sendto64_ (socket, buffer ptré4, buffer length, flags,
sockaddr ptré4, sockaddr length) ;
INT (32) socket,
buffer length,
flags,

sockaddr length;
STRING .EXT64 buffer;ptr64;
INT .EXT64 sockaddr ptré64(sockaddr) ;

nsent

return value; the number of bytes sent. If this number is less than 1ength, the operation must
be retried with the remaining data.

If the call is not successful, =1 is returned and the external variable exrrno is set as shown in
Errors (page 180).

socket
input value; specifies the socket number for the socket, as returned by the call to socket.
buffer ptré4
input value; points to the data to be sent.
buffer length
input value; the size of the buffer that buffer ptreé4 points to.
flags

input value; specifies whether the outgoing data should be sent to the destination if routing is
required. This parameter can be one of the following messages:

MSG_DONTROUTE Send this message only if the destination is located on the local network; do not send
the message through a gateway.

0 No flag; send the message fo the destination, even if the message must be routed.

sockaddr ptré64

input value; contains the remote address and port number to which the data is sent.
sockaddr len

input value; the size in bytes of sockaddr ptre4.

sendtob64_ 179

Errors

If an error occurs, the return value is set to -1, and the external variable errno is set to one of
the following values:

EACCES Permission denied for broadcast because SO BROADCAST is not set.

EMSGSIZE The message was too large fo be sent atomically, as required by the socket options.
EISCONN The specified socket was connected

ESHUTDOWN The specified socket was shut down.

ENETUNREACH The destination network was unreachable.

EINVAL An invalid argument was specified.

Usage Guidelines

For information on checking errors, see Nowait Call Errors (page 86).

Example

The following programming example calls the sendto64_ function.

#include <socket.hs>
#include <netdb.h>

int status, tosend, len;
char buffer [8*1024];

tosend = sizeof (buffer);
status = sendto64_(channel, (char _ptré4*)s&buffer[0], tosend, 0, (struct sockaddr _ptré4*)&remote, len);

sendto_nw

The sendto_nw function sends data on an unconnected UDP socket or raw socket created for
nowait operations.

C Synopsis

#include <socket.hs>

#include <in.h>

#include <in6.h> /* for IPv6 use */
#include <netdb.h>

error = sendto nw (socket, buffer ptr, buffer length, flags,
sockaddr ptr, sockaddr length, tag);

int error, socket;

char *buffer ptr;

int buffer length, flags;
struct sockaddr *sockaddr ptr;
intsockaddr length;

long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := sendto nw (socket, buffer ptr, buffer length, flags,
sockaddr ptr, sockaddr length, tag);

INT (32) error,
socket;
STRING .EXT buffer ptr;
INT (32) buffer length,
flags;
INT .EXT sockaddr ptr(sockaddr) ;

180 Library Routines

Errors

INT (32) sockaddr length;
INT (32) tag;

error
return value; if the call is successful, a zero is returned. If the call is not successful, —1 is
returned. If the call failed, the external variable errno is set as indicated in Errors (page 181).
socket
input value; specifies the socket number for the socket, as returned by the call to socket nw.

buffer ptr

input value; points to the data to be sent.
buffer length

input value; the size of the buffer pointed to by buffer ptr.
flags

input value; specifies whether the outgoing data should be sent to the destination if routing is
required. This parameter can be one of the following messages:

MSG_DONTROUTE Send this message only if the destination is located on the local network; do not send
the message through a gateway.

0 No flag; send the message to the destination, even if the message must be routed.

sockaddr ptr
input value; points to the remote address and port number to which the data is to be sent. (See
the sockaddr_in (page 78), sockaddr_in6 (page 78), and sockaddr_storage (page 79)
descriptions.)

sockaddr length
input value; specifies the length of the sockaddr or sockaddr_iné structure.

tag
input value; the tag parameter to be used for the nowait operation initiated by sendto nw.

If an error occurs, the return value is set to -1 and the external variable errno is set to one of the
following values:

EACCES Permission denied for broadcast because SO BROADCAST is not set.

EMSGSIZE The message was too large to be sent atomically, as required by the socket options.
EISCONN The specified socket was connected.

ESHUTDOWN The specified socket was shut down.

ENETUNREACH The destination network was unreachable.

EINVAL An invalid argument was specified.

Usage Guidelines

o This is a nowait call; it must be completed with a call to the AWAITIOX procedure. For a
waited call, use sendto.

o The parameters of the sendto_nw function are not compatible with those of the sendto
function in the 4.3 BSD UNIX operating system.

sendto_nw 181

e To determine the number of bytes transferred as a result of the sendto_nw function, use the
socket get len function.

o Declare the sockaddr ptr variable as struct sockaddr_iné * for IPvé use or as
struct sockaddr storage * for protocolindependent use. In C, when you make the
call, cast the variable to sockaddr *.

See Nowait Call Errors (page 86) for information on error checking.

sendto_nwb4 _

182

The sendto nwé64 function sends data on an unconnected UDP socket or raw socket created
for nowait operations.

C Synopsis

#include <socket.h>

#include <in.h>

#include <in6.h> /* for IPv6 use */
#include <netdb.h>

error = sendto nwé64 (socket, buffer ptré64, buffer length, flags,
sockaddr ptré4, sockaddr length, tag);

int error, socket;

char ptré4 *buffer ptré4;

int buffer length, flags;
struct sockaddr *sockaddr ptr;
intsockaddr length;

long long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := sendto _nwé64 (socket, buffer ptré4, buffer length, flags,
sockaddr ptr, sockaddr length, tag);

INT (32) error,
socket;

STRING .EXTé64 buffer ptré4;

INT (32) buffer length,
flags;

INT .EXT sockaddr ptr(sockaddr) ;

INT (32) sockaddr length;

INT (64) tag;

error
return value; if the call is successful, a zero is returned. If the call is not successful, —1 is

returned. If the call fails the external variable errno is set as shown in Errors (page 183).
socket

input value; specifies the socket number for the socket, as returned by the call to socket nw.
buffer ptré4

input value; points to the data to be sent.
buffer length

input value; the size of the buffer that buffer ptre4 points to.

Library Routines

flags

input value; specifies whether the outgoing data should be sent to the destination if routing is
required. This parameter can be one of the following messages:

MSG_DONTROUTE Send this message only if the destination is located on the local network; do not send
the message through a gateway.

0 No flag; send the message fo the destination, even if the message must be routed.

sockaddr ptr
input value; points to the remote address and port number to which the data must be sent. For
more information, see sockaddr_in (page 78), sockaddr_iné (page 78), and sockaddr_storage
(page 79).

sockaddr length
input value; specifies the length of the sockaddr or sockaddr_iné structure.

tag
input value; the tag parameter to be used for the nowait operation initiated by sendto _nwe4 .

Errors

If an error occurs, the return value is set to -1, and the external variable errno is set to one of
the following values:

EACCES Permission denied for broadcast because SO BROADCAST is not set.

EMSGSIZE The message was too large to be sent atomically, as required by the socket options.
EISCONN The specified socket was connected.

ESHUTDOWN The specified socket was shut down.

ENETUNREACH The destination network was unreachable.

EINVAL An invalid argument was specified.

Usage Guidelines
o This is a nowait call; it must be completed with a call to the FILE AWAITIO64 procedure.
For a waited call, use sendto64 .

o The parameters of the sendto _nwé4_ function are not compatible with those of the
sendto64_ function in the 4.3 BSD UNIX operating system.

e To determine the number of bytes transferred as a result of the sendto nwe4_ function, use
the socket get 1len function.

o Declare the sockaddr ptr 64 variable as struct sockaddr inée * for IPvé use or as
struct sockaddr storage * for protocol-independent use. In C, when you make the
call, cast the variable to sockaddr *.

For information on checking errors, see Nowait Call Errors (page 86).

Example

The following programming example calls the sendto _nwe4_ function.

#include <socket.h>
#include <netdb.h>

int socket;
struct sockaddr in fhost;
char *snw;

int cc,len, count = bp - &buf [0]; errno = 0;

for (bp = &buf [0]; count > 0; count -= cc) {

sendto_nw64_ 183

sendto_nwé64_(socket, (char _ptré4*) bp, sizeof (bp), 0, (struct sockaddr *)&fhost,len,OL);
FILE AWAITIO64 (&ret fd, (char ptré64*)&snw, &cc, &ret tag, 0D, -1);

cc = socket_get len(socket) ;
if (cc < 0) break;
bp += cc;

}i

setsockopt, setsockopt_nw

The setsockopt and setsockopt nw functions set the socket options for a socket.

NOTE: In CIP, certain setsockopt and setsockopt_nw operations are not supported or may have
different defaults or different behavior. See the Cluster I/O Protocols (CIP) Configuration and
Management Manual for details.

C Synopsis

#include <socket.h>

#include <in.h>

#include <in6.hs> /* for IPv6 use */
#include <netdb.h>

error = setsockopt (socket, level, optname, optval ptr,
optlen) ;

error

setsockopt nw (socket, level, optname, optval ptr,
optlen, tag);

int error, socket, level, optname;
char *optval ptr;

int optlen;

long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := setsockopt (socket, level, optname, optval ptr,
optlen) ;
error := setsockopt nw (socket, level, optname, optval ptr,
optlen, tag);
INT (32) error,
socket,
level,
optname;
STRING .EXT optval ptr;
INT (32) optlen;
INT (32) tag;
error

return value; f the call is successful, a zero is returned. If the call is not successful, —1 is returned.
If the call failed, the external variable errno is set as indicated in Errors (page 188).

socket

input value; specifies the socket number for the socket, as returned by the call to socket or
socket nw.

184 Llibrary Routines

level

input value; the socket level at which the socket option is being managed. The possible values

are:

SOL_SOCKET
IPPROTO_TCP
IPPROTO_IP
IPPROTO IPV6
IPPROTO ICMP
IPPROTO_RAW

user-protocol

Socket-level option.

TCP-level option.

IP-level option for INET sockets.
[P-level option for INETé sockets.
ICMP-level option.

Raw-socket level option.

Option for a user-defined protocol above IP, such as PUP.

user-protocol can be any protocol number other than the numbers for TCP, UDP, IP, ICMP,
and RAW. Appendix A (page 24 1), lists the protocol numbers.

optname

input value; the socket option name.
When level is SOL_SOCKET, the possible values are:

SO _BROADCAST

SO_ERROR

SO_TYPE

SO _DONTROUTE
SO_REUSEADDR

SO_LINGER

SO_KEEPALIVE

SO_OOBINLINE

SO_SNDBUF

SO_RCVBUF

SO_REUSEPORT

Broadcast messages when data is sent. For UDP sockets, see Usage Guidelines (page 188)

Get the error status and clear the socket error. This option applies only to the
getsockopt function.

Get the socket type. This option applies only to the get sockopt and getsockopt _nw
functions. The possible values are:

SOCK_STREAMStream socket.
SOCK_DGRAM Datagram socket.
SOCK_RAW Raw socket.

Do not route messages.
Allow reuse of local port addresses in a bind operation.

Cause connections to close gracefully, and wait for data transfer to complete. This option
is provided for compatibility only. All TCP/IP connections close gracefully.

Keep connections alive during inactivity by sending “keep-alive” messages. A keep-alive
message is a probe segment that causes the receiver to return an acknowledgment
segment, confirming that the connection is still alive. For a detailed description of this

mechanism, see RFC 1122.

Keep out-of-band data in with normal data. If out-of-band data is kept with the normal
data, the application must discard normal data until the out-of-band data is read.

Set the size of the send window. The SO_RCVBUF and SO_SNDBUF options are used
as hints for defermining how much space to allocate in the underlying network 1/0
buffers. The buffer size may be increased for high-volume connections, or may be

decreased tfo limit the possible backlog of incoming data. See Usage Guidelines
(page 188).

Set the size of the receive window. The SO_RCVBUF and SO_SNDBUF options are used
as hints for defermining how much space to allocate in the underlying network 1/0
buffers. The buffer size may be increased for high-volume connections, or may be
decreased fo limit the possible backlog of incoming data. See Usage Guidelines
(page 188) and Considerations for a Server Posting Receives (page 35).

Allow local address and port reuse for UDP sockets receiving multicast datagrams. See
“Receiving IPv4 Multicast Datagrams” (page 45)

setsockopt, setsockopt_nw 185

When level is IPPROTO IP, the value is:

IP_OPTIONS Set IP options for each outgoing packet. optval ptris a pointer to a list of IP options
and values whose format is as defined in RFC 791.

IP_MULTICAST IF Set the multicast interface IP address (that is, subnet IP address) to which the multicast
output is destined. A default interface is chosen if this option is not set or is set to
INADDR_ ANY.

IP MULTICAST TTL Set Time-To-live for multicast datagram. Default TTL is 1.

IP_MULTICAST LOOP Enable(l) or disable(0) loopback of messages sent to multicast groups. Default is
loopback-enabled.

IP_ADD MEMBERSHIP Add a multicast group to the socket. If the associated interface IP address is set fo
INADDR_ANY or in6addr_any, a default interface is chosen.

IP DROP MEMBERSHIP Delete a multicast group from the socket.
When level is IPPROTO IPV6, the value is:

IPV6 MULTICAST IF Setthe multicast interface IP address (that is, subnet IP address) to which the multicast
output is destined. A default interface is chosen if this option is not set or is set to
in6addr_any for IPvé.

IPV6 MULTICAST HOPS Set Time-To-live for multicast datagram. Default TTL is 1.

IPV6_MULTICAST LOOP Enable(l) or disable(0) loopback of messages sent to multicast groups. Default is
loopback-enabled.

IPV6_JOIN GROUP Add a multicast group fo the socket. If the associated interface IP address is set to
INADDR_ANY or inbaddr_any, a default interface is chosen.

IPV6_LEAVE GROUP Delete a multicast group from the socket.
IPV6_VO60ONLY AF_INET6 sockets are restricted to IPv6—only communication.

When level is IPPROTO_TCP, you should include the tcp.h file. The value is:

TCP_NODELAY Do not buffer data packets before sending them. TCP_NODELAY is recommended where
per-character buffering and acknowledgment is inefficient; for example, in a
non-character-based application such as a terminal emulator client sending mouse and
window movement information to a terminal server.

TCP_SACKENA Enables TCP selective acknowledgements.

TCP_MINRXMT Sets the minimum time for TCP retransmission timeout. The default is 1 second. The range
is 500 milliseconds to 30 seconds.

TCP_MAXRXMT Sets the maximum time for a TCP retransmission timeout. The default is 64 seconds. The
range is 500 milliseconds to 20 minutes.

TCP_RXMTCNT Sets the maximum number of continuous retransmissions prior to dropping a TCP
connection. The default is 12. The range is 1 to 12.

TCP_TOTRXMTVAL Sets the maximum continuous time spent retransmitting without receiving an
acknowledgement from the other endpoint. The default is 12 minutes. The range is 500
milliseconds to 4 hours.

When level is a user-defined protocol above IP, the possible values are defined by the
protocol.

optval ptr
input value; points to the value of the socket option, specified by optname, which is passed
to the level specified in Ievel. Table 14 and Table 15 list the type and length of the value of

each socket option. Boolean-type values are integers, where O indicates false and 1 indicates
true.

186 Library Routines

optlen
input value; the length, in bytes, of the list pointed to by optval ptr. If too small, the error
EINVAL is returned. (See Errors (page 188).)

tag
input value; the tag parameter to be used for the nowait operation initiated by
setsockopt nw.

Table 14 Types and Lengths of Socket Option Values

Socket Option Type
SO_BROADCAST Integer (Boolean)
SO_ERROR Integer

SO_TYPE Integer

SO_DONTROUTE
SO_REUSEADDR
SO_LINGER

SO_KEEPALIVE
SO_OOBINLINE
SO_SNDBUF
SO_RCVBUF
IP_OPTIONS
TCP_NODELAY
TCP_SACKENA
TCP_MINRXMT
TCP_MAXRXMT
TCP_RXMTCNT
TCP_TOTRXMTVAL
IP_MULTICAST_IF
IPV6_MULTICAST_IF
IP_MULTICAST_TTL
IPV6_MULTICAST_HOPS
IP_MULTICAST_LOOP
IPV6_MULTICAST_LOOP
IP_ADD_MEMBERSHIP
IPV6_JOIN_GROUP
IP_DROP_MEMBERSHIP
IPV6_LEAVE_GROUP

Note: For Boolean options, the option value should be set to TRUE or a nonzero value to enable the option; the option

Integer (Boolean)
Integer (Boolean)

Struct linger {

short |_onoff; /*boolean*/
short |_linger; /*time*/
L

Integer (Boolean)
Integer (Boolean)
Integer

Integer

Integer

Integer (Boolean)
Integer (Boolean)
Integer

Integer

Integer

Integer

struct in_addr
integer

char

integer

char

integer

struct ip_mreq
struct ipv6_mreq
struct ip_mreq

struct ipv6_mreq

value should be set to O (zero) or FALSE to disable the option.

setsockopt, setsockopt_nw

Errors

It an error occurs, the external variable errno is set to one the following values:

ENOPROTOOPT The specified option is unknown to the protocol.

EINVAL An invalid argument was specified.

Usage Guidelines

Use setsockopt on a socket created for waited operations, or setsockopt nw on a socket
created for nowait operations. The operation initiated by P/setsockopt nw must be
completed with a call to the AWAITIOX procedure.

When a packet is sent from an application to a broadcast address, the packet is received by
the local host unless a duplicate packet is also sent to the loopback address.

When you call the setsockopt or setsockopt nw function for UDP sockets, the
SO_BROADCAST option must be specified if you want to send a broadcast packet.

It packets larger than the default values need to be sent or received, specify the appropriate
size in the SO_SNDBUF and SO_RCVBUF socket options, respectively. The following table
summarizes the default values for each subsystem:

NonStop TCP/IP Parallel Library TCP/IP NonStop TCP/IPvé
SO_SNDBUF TCP Default 8,192 bytes 8,192 bytes 61,440 bytes
SO_SNDBUF UDP Default 9,216 bytes 9,216 bytes 9,216 bytes
SO_RCVBUF UDP Default 20,800 bytes 41,600 bytes 42,080 bytes

The maximum values for these two options for NonStop TCP/IP and Parallel Library TCP/IP
is 262,144 bytes. The maximum value for these two options for NonStop TCP/IPvé is

1,048,576 bytes. (Anything over 32,767 must be passed using the wide model.) An
interprocess transfer is restricted to 32,000 bytes for NonStop TCP/IP and to 57,344 bytes
for Parallel Library TCP/IP and NonStop TCP/IPvé. Refer to the discussion of WRITEREAD [X]
in the Guardian Procedure Calls Reference Manual for more information.

Applications can use the SETSOCKOPT call options to alter, on an individual TCP socket basis,
the TCP retransmission timer variables.

All time values used for the socket library calls are in 500 millisecond ticks.

If the TCP maximum retransmission count (TCP_RXMTCNT) mulhplled by the TCP maximum
retransmission timeout (TCP_MAXRXMT) is lower than the total maximum TCP retransmission
duration, the TCP connection is dropped sooner than the duration value.

The TCP_MAXRXMT value should be set to be greater (or at least equal too) the TCP_ MINRXMT
value.

Socket options for incoming connections that are accepted with a call to accept nw2 should
not be set until the accept nw2 call completes. Any socket options that are set prior to the
call to accept_nw2 are lost.

See Nowait Call Errors (page 86) for information on error checking. See also Dropping Membership
in a Multicast Group (page 61).

Examples

See UDP Client Program (page 219) for examples that call the setsockopt routine.

188 Library Routines

shutdown, shutdown_nw
The shutdown and shutdown nw functions shut down data transfer, partially or completely, on
an actively connected TCP socket.
C Synopsis

#include <socket.h>
#include <netdb.h>

error = shutdown (socket, how) ;

error = shutdown nw (socket, how, tag);
int error, socket, how;
long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := shutdown (socket, how) ;
error := shutdown nw (socket, how, tag);

INT (32) error,
socket,
how;

INT (32) tag;

error

return value; if the call is successtul, a zero is returned. If the call is not successful, =1 is returned.
If the call failed, the external variable errno is set as indicated in Errors (page 189).

socket

input value; specifies the socket number for the socket, as returned by the call to socket or
socket nw.

how

input value; specifies what kind of operations on the socket are to be shut down. It must be
one of the following values:

0 Disallow further reads (calls to recv and recv_nw).
1 Disallow further writes (calls to send, send nw, and send_nw2)
2 Disallow both reads and writes.

tag

is the tag parameter to be used for the nowait operation initiated by shutdown nw.

Errors

It an error occurs, the external variable errno is set to one of the following values:

EINVAL An invalid value was passed for the how parameter.

ENOTCONN The specified socket was not connected or already shut down.

shutdown, shutdown_nw 189

Usage Guidelines

e Use shutdown on a socket created for waited operations, or shutdown nw on a socket
created for nowait operations. The operation initiated by shutdown nw must be completed
with a call to the AWATTIOX procedure.

e Because the shutdown function shuts down an active connection, it has no meaning for the
UDP or IP protocols.

o After a socket is shut down, there is a delay before the port can be reused. This delay occurs
so that any stray packets can be flushed from the network. The length of the delay varies,
based on the average round-rip time for packets in the network.

o The shutdown and shutdown nw functions do not destroy the socket. To destroy a socket,
call the FILE_CLOSE procedure fo destroy it.

See Nowait Call Errors (page 86) for information on error checking.

Example

The following example calls the shutdown function. (Data transfer on socket s1 is shutdown; no
further reads or writes are allowed.):

#include <socket.hs>
#include <netdb.h>

* Code to create socket sl, connect socket to server,
* and transfer data appears here.

*\

* When finished transferring data, execute the following
* code.
*\
if (shutdown (s1, 2) < 0)
perror ("Shutdown failed.");

sock close reuse nw

The sock_close_reuse_ nw function is for use by servers that accept using the functions
accept_nwand accept nw2. It replaces the close () function for an existing socket, marks
the socket for reuse and eliminates the need for a new sockef to be created for the accept nw2 ()
function call. The infention of this function is to improve performance by eliminating socket close
and open processing.

The sock_close_reuse_ nw function is intended only for non fault-tolerant sockets
(SOCK_STREAM NONFT). If the sock close reuse nw function is used on a fault-tolerant socket
(sock_STREAM), the socket is closed and error EINVAL is returned to the application.

C Synopsis

#include <netdb.h>
error = sock close reuse nw(socket, tag);

int error, socket;
long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := sock close reuse nw(socket, tag);
INT (32) error,socket;

INT (32) tag;

190 Library Routines

error

socket

tag
input value; the tag parameter to be used for the nowait operation.

Errors

EINVAL: An invalid argument was specified.

return value; if the call is successful, a zero is returned. If the call is not successful, -1 is returned.
If the call failed, the external variable errno is set as indicated in Errors (page 191).

input value; specifies the socket number for the socket, as returned by the call to socket or
socket nw.

ENOTCONN: The specified socket is not connected.

Usage Guidelines

This is a nowait call; it must be completed with a call to the AWAITIOX procedure.

See Nowait Call Errors (page 86) for information on error checking.

The application needs to keep a list of sockets which have been marked for reuse by this call.
When a socket would normally be closed, the close () call is replaced with the
sock_close_reuse nw () call and the socket added to the list. If any sockets exist on this
list when an accept nw () call completes, the socket () call can be omitted and the
accept nw2 () is passed the socket found on the list. The socket is then removed from the

list.

You must set the socket type as sock_stream nonft instead of instead of the standard

sock_stream fo use this call.

Table 15 Comparison of Socket Calls With and Without sock close reuse nw

With sock_close_reuse_nw()

Without sock_close_reuse_nw()

accept_nw
socket = socket_nw

accept_nw?2(socket)
sock_close_reuse_nw(socket)
accept_nw

accept_nw2(socket)

sock_close_reuse_nw(socket)

accept_nw
socket = socket_nw

accept_nw?2(socket)

close(socket)
accept_nw
socket = socket_nw

accept_nw2(socket)

close(socket)

When an application tries to mark a fault-tolerant socket (SOCk _STREAM) for reuse, error
EINVAL is returned. If the application ignores this error and continues to use the socket on it's
subsequent accept _nw2 () function, error EWRONGID is returned.

socket, socket nw

The socket function creates a socket for waited operations; the socket nw function creates a

socket for nowait operations.

socket, socket nw 191

C Synopsis

#include <socket.hs>
#include <netdb.h>

socket file number = socket (address family, socket type,
protocol) ;

socket file number = socket nw (address family,socket type,
protocol, flags, sync);

int socket file number, address family, socket type,
protocol, flags, sync;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

socket file number := socket (address family, socket type,
protocol) ;
socket file number := socket nw (address family, socket type,

protocol, flags, sync);

INT socket file number,
address family,
socket type,
protocol,
flags,
sync;

socket file number

return value; the socket number for the newly created socket. If the call is not successful -1 is
returned, and the external variable errno is set as indicated in Errors (page 193).

address family

input value; specifies the address format. The value given for this parameter must be AF_INET
for NonStop TCP/IP and Parallel Library TCP/IP but can be either AF_INET or AF_INET6 for
NonStop TCP/IP.

socket type
input value; specifies the semantics of communication. It must be one of the following values:

SOCK_STREAM Create a TCP socket.

SOCK_STREAM NONFT Create a nonaulttolerant socket.

SOCK_DGRAM Create a UDP socket.

SOCK_RAW Create a raw socket for access to the raw IP protocol level. To create a raw socket, the
process access ID of the requesting application must be in the SUPER group (user ID
255,nnn).

protocol

input value; the specific IP number. This parameter must be specified if socket type is
SOCK_RAW; it is ignored if socket type is SOCK_STREAM or SOCK_DGRAM.

If socket type is SOCK_RAW, the value of protocol cannot be the number assigned to
ICMP (1), TCP (6), or UDP (17). The application must provide support for the specified protocol.

flags

input value; specified in the format of the £1ags parameter for the deprecated OPEN_()
procedure, as described in the Guardian Procedure Errors and Messages Manual.

192 Library Routines

The following considerations apply to this parameter:

e The function socket nw () infernally maps the old FLAGS parameter to the corresponding
parameters for the FILE OPEN ().

e The flags parameter is not used for the socket function (waited operations). For the
socket_nw function, flags.< bit 8> = 1 indicates a nowaited file open and flags.< bits
12:15> indicates the maximum number of outstanding nowaited |/Os allowed (nowait

depth).
sync
input value; not supported for Guardian sockets. It must always be set to zero.
Errors

If an error occurs, the return value is set to -1 and the external variable errno is set to one of the
following values:

EAFNOSUPPORT The address family specified in address family is not supported.

ESOCKTNOSUPPORT The socket type specified in socket type is not supported.

EPROTONOSUPPORT The protocol specified was not in the range 0 to 255, or was the value reserved for TCP,
UDP, or ICMP.

Usage Guidelines

o The socket or socket nw function opens the NonStop TCP/IP or TCP6SAM process by
name; therefore, the function must know the name of this process. If your program calls the
socket set_ inet name function before calling the socket or socket nw function, the
socket library opens the process you specify.

If your program does not call socket _set inet name, the socket library opens the process
with the name defined for =TCPIP*PROCESS”NAME. If a defined name does not exist, the
socket library uses the process name $zTCo0. For more information on
=TCPIP*PROCESS”NAME, see Using the DEFINE Command (page 29).

e When a nowaited socket open (flags.< bit8> = 1) is specified:
o The socket_nw() must be completed by calling AWAITIOX().
o Tag returned is -30D.

o SETMODE 30 must be called to allow I/O operations to complete in any order.

o To allow nowaited I/O operations, a socket must have nowait depth > O (flags.< bit 12:15>).
The nowait versions (_nw) of the socket routines must be used for subsequent operations on
the socket.

e For nowait operations on a socket, set a nowait depth >= 2 to allow pending simultaneous
reads and writes.

See Nowait Call Errors (page 86) for information on error checking.

Example

See accept_nw (page 91) for an example that uses a call to socket nw.

socket_backup

The socket backup function returns data to the backup process of a NonStop process pair,
after the primary process has checkpointed the data using the socket get open info function.

This function is designed to allow applications to establish a backup open to a NonStop TCP/IP,
TCPSAM, or TCP6SAM process.

socket_backup 193

C Synopsis

#include <socket.h>

#include <in.h>

#include <in6.h> /* for IPvé use */
#include <if.h>

#include <netdb.h>

error = socket backup (*message, *brother phandle) ;

int error;
struct open info message *message;
char *brother phandle;

error
return value; if the call is successful, a zero is returned. If the call is not successful, =1 is returned.
If the call failed, the external variable errno is set as indicated in Errors (page 194).
message
input value; refer to the FILE_OPEN_ procedure call in the Guardian Procedure Errors and
Messages Manual for a description of this field. The open_info_message structure is shown
in Chapter 4 (page 81).
brother phandle

input value; refer to the FILE_ OPEN procedure call in the Guardian Procedure Calls Reference
Manual for a description of this field.

Errors

File-system errors as defined in <errno.hs> are returned by this call. For a description of the
file-system error returned, type (from the TACL prompt):

> ERROR error-num

where error-num is the error number returned in errno.

Usage Guideline

The user need only checkpoint the open information for the listening socket, as all open sockets
are closed as a result of the backup application takeover and an ECONNRESET returned to alll
operations on these sockets. The application is then responsible for end-to-end re-synchronization
of the data stream. Upon takeover, the backup process is therefore only required to post a new
listen on the existing (checkpointed) socket by issuing a call to accept_nw ().

The message is the information that was checkpointed as a result of the primary process calling
socket get open info().The brother phandle isthe phandle of the primary application
process and can be obtained from a call to PROCESS_GETPAIRINFO. Refer to the FILE_OPEN_()
procedure call in the Guardian Procedure Calls Reference Manual for more information on handling
backup opens.

socket_get_info

The socket get info function returns the sockaddr data structure and the sockaddr length
received after a recvfrom nw call.

C Synopsis

#include <socket.h>

#include <in.h>

#include <in6.h> /* for IPv6 use */
#include <if.h>

#include <netdb.h>

194 Llibrary Routines

error = socket get info(socket, sockaddr buffer, buflen);

int error, socket;
char *sockaddr buffer;
int buflen;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := socket get info(socket, sockaddr buffer, buflen);
INT (32) error, socket;
STRING .EXT sockaddr buffer;
INT (32) buflen;

error

return value; if the call is successful, the size of the sockaddr data structure is returned. If the
call is not successful, =1 is returned. If the call failed, the external variable errno is set as
indicated in Errors (page 195).

socket
input value; the socket specified in the prior recvfrom nw call.

sockaddr buffer
input and return value; a character pointer to the sockaddr in or sockaddr nv data
structure returned by the call.

buflen

input value; the size of sockaddr in bufferor sockaddr nv_buffer in bytes. Maximum
value is 80 bytes.

Examples

See Examples (page 163) for recvfrom_nw.

Errors

It an error occurs, the variable error is set to one of the following values:

EMSGSIZE The message was too large fo be sent atomically, as required by the socket options.
ENOTCONN The specified socket was not connected

ESHUTDOWN The specified socket was shut down.

EINVAL An invalid argument was specified.

Usage Guideline

Use socket get info to retrieve the sockaddr_ in or sockaddr nv data structure and the
bng%(ﬁfhesockaddr in bufferor sockaddr nv buffer, GHercco”k)recvfrom nw
and AWAITIOX and before a subsequent AWAITIOX call.

socket_get_len

The socket get len function returns the number of bytes sent following a sendto_nw or
send nw2 call.

C Synopsis
#include <socket.h>
#include <in.h>

#include <in6.h> /* for IPv6 use */

socket_get_len 195

Errors

bytes sent = socket get len(socket) ;

int bytes sent, socket;

TAL Synopsis

?NOLIST, SOURCE SOCKPROC

bytes sent := socket get len(socket);
INT (32) bytes sent,
socket;

bytes sent

return value; the number of bytes sent from a sendto_nw call or a send_nw2 call.
socket

input value; the socket specified in the prior sendto nw or send nw2 call.

There are no errors returned by this call.

Usage Guideline

Use socket get len after a call to AWATITIOX and before a subsequent call to AWATTIOX.

socket_get_open_info

Errors

The socket get open_info function is used by the primary process in a NonStop TCP/IP
process pair to get parameters following a socket or socket nw call.

C Synopsis

#include <socket.h>

#include <in.h>

#include <iné6.h>

#include <if.h>
#include <netdb.h>

error = socket get open info(*message) ;

int error;
struct open info message *message;

error
return value; if the call is successful, a zero is returned. If the call is not successful, =1 is returned.
If the call failed, the external variable errno is set as indicated in Errors (page 196).
message

input and return value; refer to the FILE OPEN procedure call in the Guardian Procedure
Calls Reference Manual for a description of this field. The open_info message structure is
shown open_info_message (page 72).

File-system errors as defined in <errno.hs> are returned by this call. For a description of the
file-system error returned, type (from the TACL prompt):

> ERROR error-num

where error-num is the error number returned in errno.

196 Library Routines

Usage Guidelines

o Use socket get open info affer creating a socket using the socket or socket nw
functions. Then, immediately checkpoint the data.

e Use socket get open_info to checkpoint state information to a backup process after a
call to AWATITIOX and before subsequent AWATTIOX calls.

o The user application must fill in the £ilenum, flags and sync variables in the
open_info_message structure before calling this function. F1ags and sync must have the
same values that were used in the call to socket () /socket nw () that resulted in the
opening of the socket identified by £i1enum. Inmediately after the call to
socket _get open_info (), the user application must checkpoint the information by
whatever means is being employed (passive or active) to its backup process.

socket _ioctl, socket ioctl_nw

The socket _ioctl and socket ioctl nw functions perform a control operation on a socket.

NOTE:

In CIP, certain socket_ioctl and socket_ioctl_nw operations are not supported, may have

different defaults, or have different behavior. See the Cluster /O Protocols (CIP) Configuration
and Management Manual for details.

C Synopsis

<socket.h>
<in.h>
<in6.h> /*
<if.h>
<route.h>
<mbuf .h>
<ioctl.h>
<netdb.h>

#include
#include
#include
#include
#include
#include
#include
#include

error =

error

int error,
long tag;

socket ioctl
socket ioctl nw (socket,

socket,

for IPv6 use */

(socket, command, arg ptr) ;

command, arg ptr, tag) ;

command;

char *arg ptr;

TAL Synopsis

?NOLIST,
?NOLIST,

error :=

error :

INT (32)

STRING .EXT
INT (32)

error

socket ioctl

socket ioctl nw (socket,

SOURCE SOCKDEFT
SOURCE SOCKPROC

(socket, command, arg ptr);

command, arg ptr, tag);
error,

socket,

command;

arg ptr;

tag;

return value; f the call is successful, a zero is returned. If the call is not successful, -1 is returned.
If the call failed, the external variable errno is set as indicated in Errors (page 198).

socket_ioctl, socket_ioctl_nw 197

Errors

socket
input value; specifies the socket number for the socket, as returned by the call to socket or
socket nw.

command
input value; specifies the operation to be performed on the socket. Supported operations are
listed in Table 16 (page 199).

arg ptr
input value; points to the argument for the operation. The pointer type is dependent on the
value of command. See Table 16 (page 199) for a list of the pointer types.

tag
input value; the tag parameter to be used for the nowait operation initiated by
socket ioctl nw.

It an error occurs, the external variable errno is set to one of the errors listed in Appendix B
(page 243); the possible errors depend on the value of command. Most of the commands return the
following errors:

EINVAL An invalid argument was specified.

EPERM The specified operation cannot be performed by a nonprivileged user.

Usage Guidelines

o Use socket ioctl on a socket created for waited operations, and socket _ioctl nw
on a socket created for nowait operations. The operation initiated by socket ioctl nw
must be completed with a call to the AWAITIOX procedure.

e Ingeneral, socket ioctl and socket ioctl nw control operations are provided for
compatibility only. To alter network parameters or to determine their values, it is recommended
that you use the Distributed Systems Management (DSM) ADD, ALTER, DELETE, and INFO
commands. The interactive versions of these commands are described in the TCP/IPvé
Configuration and Management Manual.

o The following commands (listed in Table 16 (page 199)) can be performed only by applications
whose process access ID is in the SUPER group (user ID 255,nnn):

SIOCSIFBRDADDR SIOCSIFADDR**
SIOCSIFDSTADDR SIOCSIFFLAGS
SIOCADDRT** SIOCDELRT**
SIOCSIFNETMASK** STOCSIFMETRIC
SIOCSARP SIOCDARP

The commands marked with double asterisks (**) can be accessed using the DSM commands

as follows:

SIOCSIFADDR Can be accessed through the ZIP-ADDR attribute of the ZCOM-OBJ-SUBNET type by
using the programmatic ALTER command (ZCOM-CMD-ALTER).

SIOCADDRT Can be accessed through the ADD ROUTE command (ZCOM-CMD-ADD for the
ZCOM-OBJ-ROUTE object type).

SIOCDELRT Can be accessed through the DELETE ROUTE command (ZCOM-CMD-DELETE for the

ZCOM-OB-ROUTE object type).

SIOCSIFNETMASK Can be accessed through the ZSUBNET-MASK attribute of the ZCOM-OBJ-SUBNET
type by using the programmatic ALTER command (ZCOM-CMD-ALTER).

198 Library Routines

The FIONBIO command is not supported. If this command is selected, the EINVAL error is
returned.

If you select FTONREAD for UDP sockets, the number of characters returned is greater than
the number of characters received as a result of a call to the recv or recvErom functions;
the increase in characters is equal o sizeof (struct sockaddr in). The additional
characters are returned because the network keeps the sender’s socket address at the beginning
of the data until the application requests the data.

UDP does not support out-of-band data. Use of the command argument STOCATMARK is
meaningless for UDP, although specifying STOCATMARK does not cause the call to fail.

The STOCSIFFLAGS function is now disabled. The call completes successfully but no flags
are changed.

For STOCGIFCONF, the data-buffer pointer (1£c_buf) must point to the first byte immediately
following the ifcont structure, because the Parallel Library TCP/IP, NonStop TCP/IPv6, and
NonStop TCP/IP architectures allow only a single buffer to be passed.

For STOCGIFNUM, aliases are not included in the count.

See Nowait Call Errors (page 86) for information on error checking.

Socket 1/O Control Operations

Table 16 gives the /O control operations that can be specified in command, the corresponding
pointer types for arg ptr, and descriptions of the commands. The definitions of the structures
pointed to by arg ptr are provided in Chapter 3 (page 62).

Table 16 Socket I/O Control Operations

Command Pointer Type for arg Description

FIONREAD int * Get the number of bytes waiting to be
read.

SIOCSIFADDR struct ifreq * Set the interface address. Returns the
error [EOPNOTSUPP].

SIOCGIFADDR struct ifreqg * Get the interface address.

SIOCGIFCONF struct ifconf * Get the interface configuration list. See
Usage Guidelines (page 198).

SIOCGIFNUM int * Get the number of interfaces that have
been configured. See Usage Guidelines
(page 198).

SIOCSIFDSTADDR struct ifreq * Set the destination address on a
pointto-point interface. Returns the error
[EOPNOTSUPP].

SIOCGIFDSTADDR struct ifreq * Get the destination address on a
pointto-point inferface.

SIOCSIFFLAGS struct ifreqg * Set the interface flags. Returns the error
[EOPNOTSUPP].

SIOCGIFFLAGS struct ifreq * Get the interface flags.

SIOCADDRT struct rtentry * Add a specific route.

SIOCDELRT struct rtentry * Delete a specific route.

SIOCATMARK int * Check for pending urgent data. If a

nonzero value is returned, urgent data
is pending.

socket_ioctl, socket_ioctl_nw 199

Table 16 Socket I/0 Control Operations (continued)

Command

Pointer Type for arg

Description

SIOCSIFBRDADDR

struct ifreq *

Set the broadcast address associated

with a subnet device. Returns the error
[EOPNOTSUPP].

Get the broadcast address associated
with a subnet device.

SIOCGIFBRDADDR struct ifreq *

Set the network address mask.
SIOCSIFNETMASK specifies which
portion of the IP host ID and IP network
number should be masked to define a
subnet. Returns the error
[EOPNOTSUPP].

SIOCSIFNETMASK struct ifreq *

SIOCGIFNETMASK struct ifreq * Get the network address mask.

SIOCSARP struct arpreq * Set an ARP protocol (IP
address/hardware address pair)
address entry in the translation table.
This address is distinct from the ARP

hardware address.

SIOCGARP struct arpreqg * Get an ARP protocol address entry
(hardware address) from the translation

table.

SIOCDARP struct arpreq * Delete an ARP protocol address (IP
address/hardware address pair) entry

from the translation table.

Examples
See UDP Client Program (page 219) for examples that call the socket ioct1 function.

The following program excerpt shows an example of using both the STOCGIFCONF and
SIOCGIFNUM functions. The names of all interfaces configured are displayed.

/* declarations */
struct ifreqg* ifr;
struct ifconf* ifc;
int ifcount, res,datasize,bufsize,i,ifr count;
/* procedure code */
... /* assume socket is already created, descriptor 'sd' */
res = socket ioctl(sd,SIOCGIFNUM, (char*)&ifcount);
/* error checking */
/* bufsize * 2 to allow for alias entries */

datasize = sizeof (struct ifreq) * ifcount * 2;
bufsize = sizeof (struct ifconf) + datasize;
ifc = (struct ifconf*)malloc (bufsize) ;

/* error checking */
ifc->ifc _len = datasize;
ifc->ifc buf = (char*)e&ifc([l];
res = socket ioctl (sd,SIOCGIFCONF, (char*)ifc) ;

/* error checking */
ifr count = ifc->ifc len / sizeof (struct ifreq);
ifr = (struct ifreqg*)&ifcl[l];
for (i=0; i<ifr count;i++)

printf ("Interface %d: %$s\n",i,ifr[i].ifr name);

.../*end of program extract*/

socket_set_inet name

The socket set inet name function specifies the name of the NonStop TCP/IP or TCP6SAM
process that the socket library is going to open.

200 Llibrary Routines

C Synopsis
#include "netdb.h"
void socket set inet name (name ptr);

char *name ptr;
TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

void socket set inet name (name ptr);

STRING .EXT name ptr;

name ptr

input value; points to a nullterminated character string containing the process name of the
NonStop TCP/IP or TCP6SAM process that is to be accessed by subsequent calls to socket
or socket nw.

Errors

No errors are returned for this function.

Usage Guidelines

The socket or socket nw function opens the NonStop TCP/IP, TCP6SAM or CIPSAM process
by name. Therefore, the function must know the name of this process. If your program calls the
socket set inet name function before calling the socket or socket nw function, the socket
library opens the TCP/IP process you specified.

If your program does not call socket _set inet name, the socket library opens the process
with the name defined for =TCPIP*PROCESS*NAME DEFINE. If a defined name does not exist,
the socket library uses the default process $zTco0. For more information on
=TCPIP*PROCESS”*NAME, see Using the DEFINE Command (page 29).

NOTE: Name resolver socket APl calls (for example, gethostbyname, gethostbyaddr,
getaddrinfo, and so on) access the TCP/IP stack through the TCP/IP socket library (which makes
the initial socket or socket nw call). The TCP/IP stack that is used by these socket library calls
is assigned by either the =TCPIP*PROCESS"NAME TACL DEFINE or by the
socket set inet name socket APl call.

t_recvfrom_nw

The t _recvfrom nw function receives data on an unconnected UDP socket or raw socket created
for nowait operations. This routine is replaced by the recvfrom nw routine.

C Synopsis

#include <socket.h>
#include <in.h>
#include <netdb.h>

error = t_recvfrom nw (socket, r buffer ptr, length,
flags, tag);
int socket, length, error, flags;
struct sendto_recvfrom buf *r buffer ptr;
long tag;

TAL Synopsis

t_recvfrom_nw 201

Errors

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := recvfrom nw (socket, r buffer ptr, length,
flags, tag);

INT socket,

length,

flags;
INT .EXT r buffer ptr(sendto recvfrom buf) ;
INT (32) tag;

error
return value; if the call is successtul, a zero is returned. If the call is not successful, =1 is returned.
If the call failed, the external variable errno is set as indicated in Errors (page 202).
socket
input value; specifies the socket number for the socket, as returned by the call to socket nw.

r buffer ptr
input and return value; on completion, points to the remote address and port number from
which the data is received, followed by the data. The address of the data is (r_buffer ptr
+ sizeof (struct sockaddr in)), where sizeof (struct sockaddr in) is 16
bytes.

length

input value; the size of the buffer pointed to by r buffer ptr. The size of the buffer is the
size of the data plus sizeof (struct sockaddr in), where sizeof (struct
sockaddr in) is 16 bytes.

flags
input value; specifies how the incoming message is to be read, and is one of the following
values:
MSG_PEEK Read the incoming message without removing the message from the queue.
0 No flag; read data normally.
tag

is the tag parameter to be used for the nowait operation initiated by t recvfrom nw.

If an error occurs, the return value is set to -1 and the external variable errno is set to one of the
following values:

EISCONN The specified socket was connected.
ESHUTDOWN The specified socket was shut down.
EINVAL An invalid argument was specified.

Usage Guidelines

e This is a nowait call; it must be completed with a call to the AWAITIOX procedure. For a
waited call, use recvfrom.

o The parameters of the t recvfrom_ nw function are not compatible with those of the
recvErom function in the 4.3 BSD UNIX operating system.

202 Library Routines

o The length of the received data is given in the third parameter (count transferred) returned
from the AWAITIOX procedure. This length includes the address information given by
sizeof (sockaddr_in) atthe beginning of the buffer.

e Note that the MSG_OOB option is not available. This is a constraint imposed by UDP. UDP
does not support out-of-band data.

See Nowait Call Errors (page 86) for information on checking errors.

t_recvfrom nwé4

The t recvfrom nwe4 function receives data on an unconnected UDP socket or raw socket
created for nowait operations. This routine is replaced by the recvfrom nwé4 routine.

C Synopsis

#include <socket.h>
#include <in.h>
#include <netdb.h>

error = t _recvfrom nwé64 (socket, r buffer ptré4, Ilength,
flags, tag);
int socket, length, error, flags;
struct sendto recvfrom buf ptré4 *r buffer ptré64;
long long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := t _recvifrom nwé4 (socket, r buffer ptré4, length,
flags, tag);
INT socket,
length,
flags;
INT .EXT64 r buffer ptré4(sendto_recvirom buf) ;
INT (64) tag;
error

return value; if the call is successtul, a zero is returned. If the call is not successful, -1 is returned.
If the call fails, the external variable errno is set as shown in Errors (page 204).

socket
input value; specifies the socket number for the socket, as returned by the call to socket nw.
r buffer ptré64

input and return value; on completion, points to the remote address and port number from
which the data is received, followed by the data. The address of the data is (r_buffer ptre4
+ sizeof (struct sockaddr in)), where sizeof (struct sockaddr in) is 16
bytes.

length

input value; the size of the buffer pointed to by r buffer ptre4. The size of the buffer is
the size of the data plus sizeof (struct sockaddr in), where sizeof (struct
sockaddr in) is 16 bytes.

t_recvfrom_nwé4_ 203

flags

input value; specifies how the incoming message must be read, and takes one of the following
values:

MSG_PEEK Read the incoming message without removing the message from the queue.
0 No flag; read data normally.
tag

is the tag parameter to be used for the nowait operation initiated by t recvfrom nwe4 .

Errors

If an error occurs, the return value is set to -1 and the external variable errno is set to one of the
following values:

EISCONN The specified socket was connected
ESHUTDOWN The specified socket was shut down.
EINVAL An invalid argument was specified.

Usage Guidelines

o This is a nowait call; it must be completed with a call to the FILE AWAITIO64 procedure.
For a waited call, use recvEromeé4 .

o The parameters of the t recvfrom nwé4_ function are not compatible with those of the
recviromé4 _function in the 4.3 BSD UNIX operating system.

o The length of the received data is specified in the third parameter (count transferred) returned
from the FILE_AWAITIO64 procedure. This length includes the address information given
by sizeof (sockaddr in) at the beginning of the buffer.

e Note that the MSG_OOB option is not available. This is a constraint imposed by UDP. UDP
does not support out-of-band data.

For information on checking errors, see Nowait Call Errors (page 86).

t_sendto_nw

The t _sendto_nw function sends data on an unconnected UDP socket or raw socket created for
nowait operations. This routine is replaced by the sendto_nw routine.

C Synopsis

#include <socket.h>

#include <in.h>
#include <netdb.h>

error = t_sendto nw (socket, r buffer ptr, length, flags, tag);
int error, socket, length, flags;

struct sendto recvfrom buf *r buffer ptr;
long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := t_sendto nw (socket, r buffer ptr, length, flags, tag);

INT socket,
length;

204 Library Routines

Errors

flags
INT .EXT sockaddr ptr(sockaddr) ;
INT (32) tag;

error
return value; if the call is successful, a zero is returned. If the call is not successful, —1 is returned.
If the call failed, the external variable errno is set as indicated in Errors (page 205).
socket
input value; specifies the socket number for the socket, as returned by a socket nw call.

r buffer ptr

input and return value; points to the remote address and port number to which the data is to
be sent, followed by the data. The address of the data is (r_buffer ptr + sizeof (struct
sockaddr in)). See the sendto_recvfrom buf structure in “Data Structures”.

Note that the first two bytes pointed to by r buffer ptr are the sin_family field of the
sockaddr_in structure. After a call fo t_sendto nw, the normal value in the sin family
field (AF_INET) is replaced by the number of bytes that have been transferred.

length
input value; the size of the buffer pointed to by r buffer ptr.

flags
input value; specifies whether the outgoing data should be sent to the destination if routing is
required. This parameter can be one of the following values:

MSG_DONTROUTE Send this message only if the destination is located on the local network; do not send
the message through a gateway.
0 No flag; send the message to the destination, even if the message must be routed.
tag

input value; the tag parameter to be used for the nowait operation initiated by t sendto nw.

If an error occurs, the external variable errno is set to one of the following values:

EMSGSIZE The message was too large to be sent atomically, as required by the socket options.
EISCONN The specified socket was connected.

ESHUTDOWN The specified socket was shut down.

ENETUNREACH The destination network was unreachable.

EINVAL An invalid argument was specified.

Usage Guidelines

o This is a nowait call; it must be completed with a call to the AWATTIOX procedure. For a
waited call, use sendto.

o The parameters of the t sendto_nw function are not compatible with those of the sendto
function in the 4.3 BSD UNIX operating system.

e To determine the number of bytes transferred as a result of the t _sendto nw function, check
the sb_sent field of the sendto_recvErm buf structure. This field is defined the same as
the sin family field of the sockaddr in structure. After you use this value, reset the
sin_family field to AF_INET.

See Nowait Call Errors (page 86) for information on error checking.

t_sendto_nw 205

t sendto_nwb4_

The t sendto nwé4 function sends data on an unconnected UDP socket or raw socket created
for nowait operations. This routine is replaced by the sendto _nwé4_ routine.

C Synopsis
#include <socket.h>

#include <in.h>
#include <netdb.h>

error = t_sendto nwé64 (socket, r buffer ptré64, length, flags, tag);

int error, socket, length, flags;
struct sendto recvfrom buf ptré4 *r buffer ptré64;
long long tag;

TAL Synopsis

?NOLIST, SOURCE SOCKDEFT
?NOLIST, SOURCE SOCKPROC

error := t_sendto nwé64_ (socket, r buffer ptré4, length, flags, tag);

INT socket,
length,
flags;
INT .EXT64 r buffer ptré64(sendto_recvfrom buf) ;
INT .EXT64 sockaddr ptré64(sockaddr) ;
INT (32) tag;

error
return value; if the call is successful, a zero is returned. If the call is not successful, =1 is returned.
If the call fails, the external variable errno is set as shown in Errors (page 207).

socket
input value; specifies the socket number for the socket, as returned by a socket nw call.

r buffer ptré64
input and return value; points to the remote address and port number to which the data must
be sent, followed by the data. The address of the data is (r_buffer ptre4 +
sizeof (struct sockaddr in)).For more information, see the sendto recvfrom buf
structure in Data Structures (page 63).
Note that the first two bytes pointed to by r buffer ptré4 arethe sin family field of
the sockaddr in structure. After a call to t_sendto_nwé4 _, the normal value in the
sin family field (AF_INET) is replaced by the number of bytes that have been transferred.
length
input value; the size of the buffer pointed to by r buffer ptre4.
flags

input value; specifies whether the outgoing data must be sent to the destination if routing is
required, and takes one of the following values:

MSG_DONTROUTE Send this message only if the destination is located on the local network; do not send
the message through a gateway.
0 No flag; send the message to the destination, even if the message must be routed.
tag

input value; the tag parameter to be used for the nowait operation initiated by
t sendto nwé64 .

206 Llibrary Routines

Errors

It an error occurs, the external variable errno is set to one of the following values:

EMSGSIZE The message was too large fo be sent atomically, as required by the socket options.
EISCONN The specified socket was connected.

ESHUTDOWN The specified socket was shut down.

ENETUNREACH The destination network was unreachable.

EINVAL An invalid argument was specified.

Usage Guidelines
e This is a nowait call; it must be completed with a call to the FILE AWAITIO64 procedure.
For a waited call, use sendto64

o The parameters of the t _sendto _nwée4_ function are not compatible with those of the
sendto64 _ function in the 4.3 BSD UNIX operating system.

o To determine the number of bytes transferred as a result of the t _sendto nwé4_ function,
check the sb_sent field of the sendto recvfrm buf structure. This field has the same
definition as the sin_family field of the sockaddr in structure. After you use this value,
reset the sin family field to AF INET.

For information on error checking, see Nowait Call Errors (page 86).

t_sendto_nw64_ 207

5 Sample Programs

This section provides TCP/IP program examples for AF_INET sockets and AF_INET6 sockets.
Programs Using AF_INET Sockets

This subsection contains a client and server program that use AF_INET sockets.

AF_INET Client Stub Routine

The first example shows a sample client program that you can build, compile, and run on your
system. The program sends a request to and receives a response from the system specified on the
command line.

/*
AF _INET Client Stub Routine

Rk Ik b S R bk R R R R Rk kR i kR R R kb R R Ik Rk

Copyright (c) Hewlett-Packard Company, 2003

* *
* *
* *
* The software contained on this media is proprietary to *
* and embodies the confidential technology of Hewlett *
* Packard Corporation. Possession, use, duplication or *
* dissemination of the software and media is authorized only *
* pursuant to a valid written license from Hewlett Packard *
* Corporation. *
* *
* RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure *
* by the U.S. Government is subject to restrictions as set *
* *
* *
* *
* *

forth in Subparagraph (c) (1) (ii) of DFARS 252.227-7013,
or 1in FAR 52.227-19, as applicable.

LR I R S T I N R

*

IR R EE S SRS EEEEEEE SRR EEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE LR
*/

#include <systype.h>

#include <socket.h>

#include <errno.h>

#include <in.h>

#include <netdb.h>

#include <string.hs>

#include <stdio.h>

#include <signal.h>

#include <stdlib.h>

#include <inet.h>

#include <cextdecs(FILE CLOSE) >

#define SERVER_PORT 7639
#define CLIENT PORT 7739

#define MAXBUFSIZE 4096

int main (int argc, char **argv)

{

int S;

int error;

char databuf [MAXBUFSIZE] ;
int dcount;

const char *ap;

struct hostent *hp;

char *server;

/* Declare sockaddr in structures for IPv4 use.*/
struct sockaddr in serveraddr;

208 Sample Programs

char request [MAXBUFSIZE] = " This is the client's request";
if (argc < 2) {

printf ("Usage: client <server>\n");

exit (0);

}

server = argv/[l];

/* Clear the server address and sets up server variables.
The socket address is a 32-bit Internet address and a 16-bit
port number. */
bzero((char *) &serveraddr, sizeof (struct sockaddr in)) ;
serveraddr.sin family = AF INET;

/* Obtain the server's IPv4 address. A call to gethostbyname
returns IPv4 address only. */

if ((hp = gethostbyname (server)) == NULL) {
printf ("unknown host: %s\n", server);
exit (2) ;

}

serveraddr.sin port = htons (SERVER_ PORT) ;

/* Creates an AF_INET socket with a socket call. The socket type
SOCK_STREAM is specified for TCP or connection-oriented
communication. */

while (hp->h addr 1list[0] != NULL) {
if ((s = socket (AF INET, SOCK STREAM, 0)) < 0) {
perror ("socket") ;
exit (3);
}
memcpy (&serveraddr.sin addr.s_addr, hp->h addr 1list[O0],
hp->h length) ;

/* Connect to the server using the address in the sockaddr in
structure named serveraddr. */
if ((error = connect (s, (struct sockaddr *)&serveraddr,
sizeof (serveraddr))) < 0) {
perror ("connect") ;
hp->h addr list++;
continue;

}

break;

}

if (error < 0)
exit (4) ;

/* Send a request to the server. */

if (send(s, request, (int)strlen(request), 0) < 0) {
perror ("send") ;
exit (5) ;

}

/* Receive a response from the server. */
dcount = recv (s, databuf, sizeof (databuf), 0);
if (dcount < 0) {

perror ("recv") ;
exit (6) ;

databuf [dcount] = '\0';

/* Get the server name using the address in the sockaddr in
structure named serveraddr. A call to gethostbyaddrexpects an
IPv4 address as input. */

hp = gethostbyaddr ((char *)&serveraddr.sin addr.s_addr,
sizeof (serveraddr.sin_addr.s_addr), AF_INET);

Programs Using AF_INET Sockets 209

/* Convert the server's 32-bit IPv4 address to a dot-formatted
Internet address text string. A call to inet ntoa expects an
IPv4 address as input. */

ap = inet ntoa(serveraddr.sin addr) ;

printf ("Response received from") ;

if (hp != NULL)

printf (" %s", hp->h name) ;
if (ap != NULL)

printf (" (%s)", ap);

printf (":\n %s\n", databuf) ;
FILE CLOSE_ ((short)s);

}
AF_INET Server Stub Routine

The next example shows a sample server program that you can build, compile, and run on your
system. The program receives requests from and sends responses to client programs on other
systems.

/*
AF_INET Server Stub Routine
Rk b Sk bk kR R kR kR S R Rk Ik I

Copyright (c) Hewlett-Packard Company, 2003

* *
* *
* *
* The software contained on this media 1is proprietary to *
* and embodies the confidential technology of Hewlett *
* Packard Corporation. Possession, use, duplication or *
* dissemination of the software and media is authorized only *
* pursuant to a valid written license from Hewlett Packard *
* Corporation. *
* *
* *
* *
* *
* *
* *
* *

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions as set
forth in Subparagraph (c) (1) (ii) of DFARS 252.227-7013,
or in FAR 52.227-19, as applicable.

LR S S S S R S S S

L R B S S I

/

#include <systype.h>
#include <socket.h>
#include <errno.h>
#include <in.h>
#include <netdb.h>
#include <string.hs>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <inet.h>
#include <cextdecs(FILE CLOSE) >

#define SERVER_ PORT 7639
#define CLIENT_ PORT 7739

##define MAXBUFSIZE 4096
int main (

int argc,
char **argv)

int s;
char databuf [MAXBUFSIZE] ;

210 Sample Programs

int new_s;

int dcount;
u_short port;
struct hostent *hp;
const char *ap;

/* Declares sockaddr in structures. The use of this type of
structure implies communication using the IPv4 protocol. */

struct sockaddr in serveraddr;

struct sockaddr in clientaddr;

int clientaddrlen;

char response [MAXBUFSIZE] = " This is the server's response";

/* Creates an AF_INET socket. The socket type SOCK STREAM is
specified for TCP or connection-oriented communication. */
if ((s = socket (AF_INET, SOCK STREAM, 0)) < 0) {
perror ("socket") ;
exit (0);

}

/* Clear the server address and sets up server variables. The socket
address is a 32-bit Internet address and a 16-bit port number on
which it is listening.*/

bzero((char *) &serveraddr, sizeof (struct sockaddr in));

serveraddr.sin family = AF_INET;

/* Set the server address to the IPv4 wild card address
INADDR_ANY. This signifies any attached network interface on
the system. */
serveraddr.sin addr.s_addr htonl (INADDR ANY) ;
serveraddr.sin port = htons (SERVER_ PORT) ;
if (bind(s, (struct sockaddr *)&serveraddr, sizeof (serveraddr)) < 0) {
/* Binds the server's address to the AF INET socket. */
perror ("bind") ;
exit (2);

}

while (1)
clientaddrlen = sizeof (clientaddr) ;

/*Accept a connection on this socket. The accept call places the
client's address in the sockaddr in structure named clientaddr. */
new s = accept (s, (struct sockaddr *)&clientaddr, &clientaddrlen);
if (new s < 0) {
perror ("accept") ;
continue;
}
/* Receive data from the client. */
dcount = recv(new s, databuf, sizeof (databuf), 0);
if (dcount <= 0) {
perror ("recv") ;
FILE CLOSE_((short)new_s) ;
continue;

}

databuf [dcount] = '\0';
/* Retrieve the client name using the address in the sockaddr in
structure named clientaddr. A call to gethostbyaddr expects an

IPv4 address as input. */

hp = gethostbyaddr ((char *)&clientaddr.sin addr.s_ addr,
sizeof (clientaddr.sin addr.s_addr), AF_INET) ;

/* Convert the client's 32-bit IPv4 address to a dot-formatted
Internet address text string. A call to inet ntoa expects an

Programs Using AF_INET Sockets 211

IPv4 address as input. */
ap = inet ntoa(clientaddr.sin addr) ;
port = ntohs(clientaddr.sin port) ;
printf ("Request received from") ;
if (hp != NULL)

printf (" %s", hp->h name);
if (ap != NULL)
printf (" (%s)", ap);

printf (" port %d\n\"%s\"\n", port, databuf) ;
/* Send a response to the client. */
if (send(new_s, response, (int)strlen(response), 0) < 0)

perror ("send") ;
FILE CLOSE_ ((short)new_s);
continue;

}

FILE CLOSE ((short)new_s) ;

}

FILE CLOSE_((short)s) ;

}

AF_INET No-Wait Server Stub Routine
/*

*

AF_INET Server Stub Routine
*khkkkhhkhhkhkdhhkhkdhkhdhkhdhkhdhdhhdhhdhhdhhdhdhhddhhdhddhrddrddrddrdhrdhkrdx

Copyright (c) Hewlett-Packard Company, 2003

*

*

* The software contained on this media is proprietary to

* and embodies the confidential technology of Hewlett

* Packard Corporation. Possession, use, duplication or

* dissemination of the software and media is authorized only
* pursuant to a valid written license from Hewlett Packard

* Corporation.

*

* RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure

* by the U.S. Government is subject to restrictions as set

* forth in Subparagraph (c) (1) (ii) of DFARS 252.227-7013,

* or in FAR 52.227-19, as applicable.

*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

LR R R SR SRR SR SRR SRR SRS R SRR E R SRR SRR RS R R R EEEEREEEEEEEE SRS

/

* % ok ok 3k ok ok ok Xk 3k X X 3k X Xk

/* This is the same as the IPV4 sample server, but using nowaited I/O calls */

#include <systype.h>
#include <socket.h>
#include <errno.h>
#include <in.h>

#include <netdb.h>
#include <string.h>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <inet.h>
#include <tal.h>
#include <ctype.h>
#include <cextdecs.h>
#define SERVER_PORT 7639
#define CLIENT PORT 7739
#define MAXBUFSIZE 4096

long tagBack;

short completedSocket;
short dcount;

212 Sample Programs

short IOCheck (long TOVal) {

int

/* use a single AWAITIOX () check for all I/O in this pgm
return value is FE;
sets global tagBack & socket that completed;
don't care about buf addr but do want count */

short error;

_cc_status CC;

completedSocket = -1;
CC = AWAITIOX(&completedSocket, , &dcount, &tagBack, TOVal) ;
/* ignoring possible _status_ gt condition */
if (_status 1t(cc)) {
FILE GETINFO_ (completedSocket, &error) ;
return error;

}

else return 0;

main (int argc,char **argv) {
int s;

char databuf [MAXBUFSIZE] ;
int new_s;

u_short port;

struct hostent *hp;
const char *ap;
short fe;

long tag = 44; /* for nowait I/O ID */
long tag2 = 45; /* " " */
long acceptWait = -1;/* how long to wait for connections */
long timeout = 500; /* read t/o of 5 secs */

/* Declares sockaddr_ in structures. The use of this type of
structure implies communication using the IPv4 protocol. */

struct sockaddr in serveraddr;

struct sockaddr in clientaddr;

int clientaddrlen;

char response [MAXBUFSIZE] = " This is the server's response";

/* Create an AF_INET socket.
FLAGS argument does not indicate open nowait (octal 200) ,
but does indicate 2 outstanding I/Os max.
SETMODE 30 included in the call */
if ((s = socket_nw(AF INET, SOCK_STREAM, 0, 2, 0)) < 0) {
perror ("socket") ;
exit (0);

}

/* Clear the server address and set up server variables. The socket
address is a 32-bit Internet address and a 16-bit port number on
which it is listening.*/

bzero((char *) &serveraddr, sizeof (struct sockaddr_in)) ;

serveraddr.sin family = AF INET;

/* Set the server address to the IPv4 wild card address
INADDR _ANY. This signifies any attached network interface on
the system. */
serveraddr.sin addr.s_addr = htonl (INADDR ANY) ;
serveraddr.sin port = htons (SERVER PORT) ;

/* Bind the server's address to the AF INET socket. */
if (bind nw(s, (struct sockaddr *)&serveraddr, sizeof (serveraddr), tag) <0) {

perror ("bind") ;

exit (2) ;

!

if (fe = IOCheck(-1)) {
printf ("AWAITIO error %d from bind nw\n",fe);
exit (2) ;

Programs Using AF_INET Sockets

213

while (1) {
/* Accept a connection on this socket. The accept call places the
client's address in the sockaddr in structure named clientaddr.*/
clientaddrlen = sizeof (clientaddr) ;

if (accept nw(s, (struct sockaddr *)&clientaddr, &clientaddrlen, tag) <O0)

perror ("accept") ;

exit (3);
}
if (fe = IOCheck(acceptWait)) { /* initially, wait -1;

maybe change afterwards? */
if (fe == 40) {
printf("Timed out after %1d secs wtg Client connect.

Terminating.\n",acceptWait/100) ;
FILE CLOSE_ ((short)s);

exit (0) ;

} else {
printf ("AWAITIO error %d from accept nw\n",fe);
exit (3);

/* Need a new socket for the data transfer
Resembles the earlier call */

if ((new_s = socket nw(AF_INET, SOCK STREAM,0,2,0)) < 0) {
perror ("Socket 2 create failed.");
exit (4);

/* Make the connection */

if (accept nw2(new_ s, (struct sockaddr *)&clientaddr, tag2) < 0) {
perror ("2nd Accept failed.");
exit (5);

}

if (fe = IOCheck(-1)) {
printf ("AWAITIO error %d, tag %1d from 2nd
accept _nw\n", fe, tagBack) ;
exit (4);

}

/* Receive data from the client.
recv_nw() - awaitio() should be in a loop until a logical record
has been received. In this example, we expect the short messages
to be completed in a single recv _nw() */
if (recv_nw(new s, databuf, sizeof (databuf), 0, tag2) < 0) {
if(errno == ESHUTDOWN || errno == ETIMEDOUT || errno ==
ECONNRESET) {
FILE CLOSE ((short)new_ s);

continue;
} else {
perror("recv_nw error");
exit(6);
}
}
if (fe = IOCheck (timeout))
if(fe == 40) { /* abandon and start over */
FILE_CLOSE_ ((short)new_s) ;
continue;
} else {
printf ("AWAITIO error %d from recv_nw\n",fe);
exit (6) ;
}
}
databuf [dcount] = '\0'; /* dcount set by IOCheck */

/* Retrieve the client name using the address in the sockaddr_ in
structure named clientaddr. A call to gethostbyaddr expects an
IPv4 address as input. */

214 Sample Programs

hp = gethostbyaddr ((char *)&clientaddr.sin addr.s addr,
sizeof (clientaddr.sin addr.s_addr), AF_ INET) ;

/* Convert the client's 32-bit IPv4 address to a dot-formatted
Internet address text string. A call to inet ntoa expects an
IPv4 address as input. */

ap = inet ntoa(clientaddr.sin addr) ;

port = ntohs(clientaddr.sin port) ;

printf ("Request received from") ;

if (hp != NULL) printf(" %s", hp->h name);
if (ap != NULL) printf(" (%s)", ap);
printf (" port %d\n\"%s\"\n", port, databuf) ;

/* Send a response to the client. */

if (send nw2(new_s, response, (int)strlen(response), 0, tag2) < 0) {
perror ("send nw2") ;
FILE CLOSE_ ((short)new_ s);

continue;
!
if (fe = IOCheck(-1)) {
FILE CLOSE ((short)new s);
continue;
} /* while */

b/*
C TCP Client Program

The following client program on one NonStop system sends data from its memory to the server on
another NonStop system, where the two hosts are connected over a network or an internetwork:

To compile the program in native mode, run this command:

> nmc/in <input file name>,out <list file name>/<object file
name>; symbols, runnable, extensions,ssv0 "subvolume name", ssvl
"$system.system", ssv2

"$system.zsysdefs",ssv3 "$system.ztcpip"

NOTE: Before running the client program, create a send file with object code 000.

To run the client program:

> run <objectfile name> <send file name> <host port #> <process name>

Sample Program

#pragma nolist

#include <cextdecs (FILE CLOSE ,read) >
#include <unistd.hs>

#include <param.h>

#include <socket.h>

#include <in.h>

#include <netdb.h>

#include <stdio.h>

#include <fcntl.hs>

#include <string.h>

#include <stdlib.h>

#include <memory.hs>

#include <errno.h>

#define INET ERROR 4294967295 /* inet addr returns Oxffffffffl upon error */
#pragma list

/*
* Usage: CLIENT send file host port# proc name nbufs bufsize
*/

main (argc, argv)

int argc;
char *argvl(];

Programs Using AF_INET Sockets 215

/* define things */

int fo;
int rdstat,nbytes;

register int £d;

struct sockaddr_in sin;
char *buf;

char *procname;

int nbufs, bsize;

int port;

struct hostent *host entry;

/* DEBUG(); */
/* open send file */
argc--; argv++;

if (argc < 3)
goto usage;

if ((fo = (open(argv[0],0 RDONLY))) < 0) {
printf ("CLIENT: open failed\n");
exit (0) ;

}

/* set address according to device name */

argc--; argv++;
if ((sin.sin addr.s _addr = inet addr(argv[0])) ==
if ((host entry = gethostbyname (argv[0])) ==
(struct hostent *)NULL) {

INET ERROR) {

printf ("Get host by name failed, error %d\n",h errno);

exit (0) ;

}

sin.sin_addr.s_addr =

* (unsigned long *) (* (host entry->h addr list));

}

else
sin.sin addr.s_addr = inet_addr(argv[0]) ;

/* set port number */

argc--; argv++;
if ((port = atoi (argv [0])) <= 0)
goto usage;

/* set the process name */

argc--; argv++;
if (argc > 0)

procname = argv/[0];
else

procname = "$SZTCO";

/* set the number of buffers to be sent */

argc--; argv++;
if (argc > 0)

nbufs = atoi (argv [0]);
else

nbufs = 1;

/* set the size of the buffer to be sent */

argc--; argv++;
if (argc > 0)

bsize = atoi (argv [0]);
else

bsize

1024;

buf = (char *)malloc (bsize);

216 Sample Programs

nbytes = bsize;

/* lets open the process */
printf ("CLIENT: Data is sent with TCPIP process %s \n",procname) ;
(void) socket set inet name (procname) ;

/* lets open the socket */

if ((f£d = socket (AF _INET, SOCK STREAM, 0)) < 0) {
perror ("CLIENT: socket");

exit (0) ;
!
printf ("CLIENT: Socket # %d opened ... \n", £d);
sin.sin family = AF_INET;
sin.sin port = (unsigned short)port;
if (connect (£fd, (struct sockaddr *)&sin, (int) (sizeof (sin))) < 0) {
/* printf ("CLIENT: errno is %s \n",errno); */
perror ("CLIENT: connect");
exit (0) ;
!
printf ("CLIENT: Connected ...\n");

while (nbufs-- > 0) ({
int sent, tosend;
sent = 0;
rdstat = (read(fo,buf,nbytes));
printf ("CLIENT: Bytes read from file %d \n", rdstat);
tosend = rdstat;
if (rdstat > 0) {
retry:
if ((sent=send (fd, (buf + sent), tosend, 0)) < 0) {
perror ("CLIENT: send");
exit (0) ;
}
printf ("CLIENT: sent %d bytes\n", sent) ;
if (sent < tosend) {
tosend -= sent;
printf ("CLIENT: sending more data ...\n");
goto retry;

} else nbufs=0;
} /* while */
printf ("CLIENT: Send completed.\n");
FILE CLOSE ((short int)fo);

exit (0) ;

usage:
fprintf (stderr, "usage:CLIENT send file host port# proc_name") ;
fprintf (stderr, " nbufs bufsize \n");

exit (0) ;

}
C TCP Server Program

The following server program receives data from the previous client program. To run this server
with default port 25, you must be logged on as a SUPER user.

To compile the program in native mode, run this command:

> nmc/in <input file name>,out <list file name>/<object file
name>; symbols, runnable, extensions,ssv0 "subvolume name", ssvl
"$system.system", ssv2

"$system.zsysdefs",ssv3 "$system.ztcpip"

NOTE: Before running the server program, create a receive file with object code 101.

To run the server program:

Programs Using AF_INET Sockets 217

> run <objectfile name ><receive file name><port #><process name >

Sample Program

#pragma nolist

#include <$system.ztcpip.param.h>
#include <S$system.ztcpip.socket.h>
#include <$system.ztcpip.in.h>
#include <$system.ztcpip.netdb.h>
#include <stdio.h>

#include <fcntl.hs>
#include <unistd.h>
#include <string.h>

#include <stdlib.h>

#include <errno.h>

#include <cextdecs (TIME, CLOSE,FILE_CLOSE_,WRITE) >
#pragma list

/*
* Usage: SERVER recv_file port# proc_name
*/
long state, total_read;
char buf [12000/ (int) (sizeof (char) + 1)];
int sizebuf = (12000/ (int) (sizeof (char) + 1));

main (argc, argv)
int argc;
char *argvl];

int fo, wc;

int nnnn = 2340;

register int fd, s2, cc;

int flen = 8, port;

struct sockaddr in sin, from;
char *procname;

/* open receive file */
argc--; argv++;

if (argc < 2)
goto usage;

if ((fo = (open(argv[0],0 RDWR|O CREAT|O TRUNC,nnnn))) < 0)
printf ("SERVER: open failed\n") ;
exit (0) ;
}
/* Set the port address */
argc--; argv++;
if ((port = atoi (argv[0])) <= 0)

goto usage;
/* set the process name */
argc--; argv++;
if (argc > 0)
procname = argv[0];
else
procname = "$ZTCO";

/* lets open the process */

printf ("SERVER: Data is recd with Tandem NonStop TCP/IP process %s\n",procname) ;
(void) socket set_ inet name (procname) ;

/* Open the socket */
if ((fd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
fprintf (stderr, "SERVER: socket-failure (%d)\n", errno);
exit (0);
printf ("SERVER: Socket # %d opened ...\n", £fd);
/* Set up sin.x values */
sin.sin family = AF_INET;

sin.sin_addr.s_addr = INADDR_ANY;
sin.sin port = (unsigned short)port;

218 Sample Programs

/* Bind the socket */

if (bind (fd, (struct sockaddr *)&sin, (int)sizeof (sin)) < 0) {
perror ("SERVER: bind");
exit (0);

}

printf ("SERVER: BIND completed ...\n");

if (listen (£fd, 5) < 0) {
perror ("SERVER: listen");
exit (0);

}

printf ("SERVER: Listening on socket # %d \n", £d);

if ((s2 = accept (fd, (struct sockaddr *)&from, &flen)) < 0) {
perror ("SERVER: accept");

exit (0);
}
printf ("SERVER: Connected ...\n");
total_read = 0;
while ((cc = recv (s2, buf, sizebuf,0)) > 0) {
printf ("SERVER: read %d bytes ... \n",cc);
total_read += (long)cc;
printf ("SERVER: copying buffer to file ... \n");
if ((wc=write(fo,buf,cc)) <0) {
printf ("SERVER: write failed\n");
exit (0) ;
}
else

printf ("SERVER: copied %d bytes \n",wc);

}
(void) FILE_CLOSE_ ((short int)s2);
printf ("SERVER: Receive completed.\n") ;
FILE CLOSE_((short int)fo);
exit (0) ;
usage:

fprintf (stderr, "usage: SERVER recv_file port proc_name\n") ;
exit (0) ;

}
Client and Server Programs Using UDP

This subsection contains a client and a server program that demonstrate a UDP communication.
The client on one NonStop system sends a string of characters entered by a user to the server on
another NonStop system. The server sends (echoes) the string back to the client.

.
-

:9: TIP: When using the NonStop TCP/IPv6 network mode to call the socket _ioct1 function, you
must configure the “Family” attribute to “DUAL” in the PROVIDER object (associated with the
CIPSAM process). If the Family attribute is set to "INET", all NonStop TCP/IPv6 addresses are
ignored and not returned to the socket_ioctl caller. When the attribute is set to DUAL, the NonStop
TCP/IPv6 addresses are returned, but the size of the entries are variable and based on the actual
address type:

e For a NonStop TCP/IP address, IFNAMSIZ=sizeof (struct sockaddr) bytes is passed
back.

e For a NonStop TCP/IPv6 address, IFNAMSIZ=sizeof (struct sockaddr iné) bytes is
passed back.

UDP Client Program

The following programming example shows how to use the socket routines in a UDP client
application using the NonStop TCP/IP network mode:

#pragma nolist

#include <$system.ztcpip.param.hs>
#include <$system.ztcpip.socket.h>
#include <$system.ztcpip.ioctl.h>
#include <$system.ztcpip.in.h>
#include <$system.ztcpip.netdb.hs>

Programs Using AF_INET Sockets 219

#include <stdio.h>

#include <stdlib.h>

#include <memory.h>

#include <string.h>

#include <cextdecs (DELAY) >
#define INET ERROR 4294967295
#pragma list

/*

* The following DEFINES control the behavior of the client.

*/
#define CONNECTIONLESS /* Do not connect to host that sends you packet */
#define DONTROUTE /* Tell IP not to use routing to send this packet */
#define BROADCAST /* Tell IP to allow broadcasting of this packet */
#define SETBUF /* Set Receive and Send buffer sizes */

#define PORT ECHO 1987
int channel;

main (argc, argv)

int argc;
char *argv[];
struct sockaddr in remote, him, me;

int status, len, ncc, tosend;
int optval, optlen;
long haddr;
char buffer[8*1024];
struct hostent *hp;
if (argec < 2) |
printf ("Usage: %s hostname\n", *argv);

exit (0);
}
/*
* Get the host address of the remote server
*/
if ((haddr = (long)inet addr(argv[1l])) == INET ERROR) {
if ((hp = gethostbyname (argv[1l])) == (struct hostent *)NULL) ({
printf ("%s: unknown host\n", argv[1]);
exit (0);

}

bcopy (hp->h addr, (char *)&remote.sin addr.s_addr, hp->h length);
}
else
remote.sin addr.s_addr = haddr;
remote.sin family = AF INET;
remote.sin port = htons (PORT_ ECHO) ;

/*
* Create a socket
*/
channel = socket (AF INET, SOCK DGRAM, O0);
if (channel == -1) {
printf ("echo client: socket failed\n");
exit (0);

}

printf ("Socket -client created\n");

#ifdef BROADCAST
printf ("\nExecute SETSOCKOPT to allow broadcasting\n") ;
optlen = sizeof (optval) ;
optval = 1;
if (setsockopt (channel, SOL_SOCKET, SO BROADCAST,
(char *)&optval,optlen) < 0)
perror ("setsockopt (BROADCAST) ") ;
#endif
#ifdef DONTROUTE
printf ("\nExecute SETSOCKOPT to disallow packet routing\n") ;
optval = 1;

220 Sample Programs

optlen = sizeof (optval) ;
if (setsockopt (channel, SOL_SOCKET, SO DONTROUTE,
(char *)&optval,optlen) < 0)
perror ("setsockopt (DONTROUTE) ") ;
#endif
#ifdef SETBUF
printf ("\nExecute SETSOCKOPT to increase socket buffering\n") ;
optlen = sizeof (optval) ;
optval = 10*1024;
if (setsockopt (channel, SOL_SOCKET, SO _RCVBUF,
(char *)&optval,optlen) < 0)
perror ("setsockopt (RCVBUF) ") ;
optlen = sizeof (optval) ;

optval = 10*1024;
if (setsockopt (channel, SOL_SOCKET, SO SNDBUF,
(char *)&optval,optlen) < 0)
perror ("setsockopt (RCVBUF) ") ;
#endif

printf ("\nExecute GETSOCKOPT to determine socket options\n") ;
optlen = sizeof (optval) ;
if (getsockopt (channel, SOL_SOCKET, SO BROADCAST,
(char *)&optval, &optlen) < 0)
perror ("getsockopt (BROADCAST) ") ;

else

printf (" Broadcast mode is turned %s\n",optval ? "ON" : "OFF");
optlen = sizeof (optval) ;
if (getsockopt (channel, SOL_SOCKET, SO DONTROUTE,

(char *)&optval, &optlen) < 0)
perror ("getsockopt (DONTROUTE) ") ;
else
printf (" Dontroute mode is turned %s\n",optval ? "ON" : "OFF");

optlen = sizeof (optval) ;
if (getsockopt (channel, SOL_SOCKET, SO RCVBUF,
(char *)&optval, &optlen) < 0)
perror ("getsockopt (RCVBUF) ") ;
else
printf (" Receive buffer size is %d bytes\n",optval) ;
optlen = sizeof (optval) ;
if (getsockopt (channel, SOL_SOCKET, SO SNDBUF,
(char *)&optval, &optlen) < 0)
perror ("getsockopt (SNDBUF) ") ;
else
printf (" Send buffer size is %d bytes\n",optval) ;
#ifdef CONNECTIONLESS
printf ("\nUsing CONNECTIONLESS version...\n");
#else
printf ("\nUsing CONNECTED version...\n");

len = sizeof (remote) ;
if (connect (channel, &remote, len) < 0) {
perror ("connect");
exit (0);
}
#endif
printf ("\nExecute GETSOCKNAME to determine my socket's address and \
port\nAddress is zero if CONNECTIONLESS\n") ;
optlen = sizeof (me);
if (getsockname (channel, (struct sockaddr *)é&me, &optlen) < 0)
perror ("getsockname") ;
else
printf ("My socket: family=%d port=%d addr=%lx\n",
me.sin family,me.sin port,me.sin addr.s_ addr) ;

/*

* Write it over the network

Programs Using AF_INET Sockets

221

*/

buffe
while

retry:

r[0] = '?';

(buffer[0] 1= "1") {
int sent = 0;
printf ("\nInput (end with !)? ");
if (gets(buffer) == NULL) break;
if (buffer[0] == 0) continue;
tosend = (int)strlen(buffer);

printf ("\nExecute SEND[TO]\n") ;

#ifdef CONNECTIONLESS

#telse

#endif

len = sizeof (remote) ;
status = sendto(channel, ((char *)buffer + sent), tosend, 0,
(struct sockaddr *)&remote, len);

status = send(channel, ((char *)buffer + sent), tosend, 0);
printf ("\nAfter SEND[TO], execute GETSOCKNAME\n") ;

optlen = sizeof (me) ;
if (getsockname (channel, (struct sockaddr *)é&me, &optlen) < 0)
perror ("getsockname") ;
else
printf ("After send, my socket: family=%d port=%d addr=%1x\n",
me.sin_ family,me.sin port,me.sin_addr.s_addr) ;
switch (status)
case O:
DELAY (5L) ;
goto retry;
case -1:
perror ("echo client: send failed");
break;
default:
if ((sent = sent + status) < tosend) (
tosend = tosend - sent;
goto retry;

}

break;

}
/*

* Read from the network

*/

printf ("\nExecute SOCKET_IOCTL to determine chars on read queue");
if (socket ioctl (channel, FIONREAD, (char *)&ncc) < 0) {

perror ("socket ioctl (FIONREAD)") ;

ncc = 1;
}
else

printf (" Socket ioctl (FIONREAD) returns %d chars\n", ncc);
while (ncc)

len = sizeof (him) ;

tosend = sizeof (buffer) ;

printf ("\nExecute RECV[FROM]\n") ;

#ifdef CONNECTIONLESS

ftelse

#endif

status = recvfrom(channel, (char *)&buffer[0], tosend,
0, (struct sockaddr *)&him, &len);

status = recv(channel, (char *)&buffer[0], tosend, 0);
if (status == -1)

perror ("echo client: receive failed");
else {

buffer[status] = 0;

#ifdef CONNECTIONLESS

222 Sample Programs

printf ("After RECVFROM, his socket: family=%d port=%d addr=%1x\n",
him.sin family,him.sin_port,him.sin_addr.s_addr) ;

#endif
printf ("Number of chars from recv[from] is %d\n",
status) ;

printf ("\nExecute GETPEERNAME fails if CONNECTIONLESS socket\n") ;
optlen = sizeof (him);
if (getpeername (channel, (struct sockaddr *)&him, &optlen) < 0)
perror ("getpeername") ;
else
printf (" His socket: family=%d port=%d addr=%1lx\n",
him.sin family,him.sin port,him.sin addr.s_addr) ;
printf ("\n Data from net: %$s\n", buffer);
printf ("\nExecute SOCKET IOCTL to determine chars on re queue\n")
ncc = 0;
if (socket ioctl (channel, FIONREAD, (char *)&ncc) < 0)
perror ("socket ioctl (FIONREAD)") ;

else
printf (" Socket ioctl (FIONREAD) returns %d chars\n", ncc);
}
}
/*
* Close socket
*/

printf ("\nExecute SHUTDOWN to close socket\n");
if (shutdown (channel,2) < 0)
perror ("shutdown") ;

}
UDP Server Program

The following programming example shows how to use the socket routines in a server application:

#pragma nolist

#include <S$system.ztcpip.param.h>
#include <$system.ztcpip.socket.h>
#include <S$system.ztcpip.in.h>
#include <S$system.ztcpip.netdb.h>
#include <stdio.h>

#include <stdlib.h>

#include <memory.hs>

#include <string.hs>

#include <cextdecs (DELAY) >
#pragma list

#define PORT ECHO 1987

int chan;

struct sockaddr in sin, remote;
int len;

char buf[10%*1024] ;

main ()

{

int status;
int optval, optlen;

/*
* Set your local address

*/

sin.sin port = htons (PORT ECHO); /* Interchange bytes of PORT */
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_family = AF_INET;

/*
* Create a socket

*/

Programs Using AF_INET Sockets 223

chan = socket (AF_INET, SOCK DGRAM, O0);

if (chan == -1){
printf ("echo server: socket failed\n");
exit (0);
}
/*
* Bind it to an Internet Address
*/

len = sizeof (sin);
status = bind(chan, (struct sockaddr *)&sin, 1len);
if (status == -1)
perror ("echo server: bind failed");
optlen = sizeof (optval) ;
optval = 1;
if (setsockopt (chan,SOL_ SOCKET, SO BROADCAST,
(char *)&optval,optlen) < 0)
perror ("setsockopt") ;
optlen = sizeof (optval) ;
optval = 20*1024;
if (setsockopt (chan, SOL_SOCKET, SO RCVBUF,
(char *)&optval,optlen) < 0)
perror ("setsockopt (RCVBUF) ") ;
optlen = sizeof (optval) ;
optval = 20*1024;
if (setsockopt (chan, SOL_SOCKET, SO_SNDBUF,
(char *)&optval,optlen) < 0)
perror ("setsockopt (SNDBUF) ") ;
while (1)
{
int tosend, sent = 0;
len = sizeof (remote) ;
tosend = sizeof (buf);

status = recvfrom(chan, (char *)&buf[0], tosend, O,
(struct sockaddr *)&remote, &len);
if (status == -1)
perror ("echo server: recvfrom failed") ;
else
buf [status] = 0;
if (buf[0] == 0) continue;
tosend = (int)strlen (buf) ;

retry:
len = sizeof (remote) ;
status = sendto(chan, ((char *)buf + sent), tosend, O,
(struct sockaddr *)&remote, len) ;
switch (status) (

case O0:
DELAY (5L) ;
goto retry;
case -1:
perror ("echo server: send failed");
break;
default:
if ((sent = sent + status) < tosend) {

tosend = tosend - sent;
goto retry;

break;

}

224 Sample Programs

UDP Program for Sending Multicast Packets

The following programming example shows how to use the socket routines in an application that

implements multicast for sending:

/*#pragma nolist*/
#include "inh"
#include "socketh"
#include "sckconfh"
#include <errnohs>
#include <routehs>
#include <paramh>

#include <ioctlh>

#include <stdioh>

#include <stringhs>

#include <memoryhs>

#include <stdlibh>

#include <cextdecs(DEBUG,FILE_GETINFO_,AWAITIOX,SETMODE,DELAY)>
#include <fcntlhs>

#include <ctypehs

#include <timeh>

#pragma list

#define BUFFER_LEN 10000
#define PORT_LEN 4

#define HOST LEN 4

#define MAGIC NUMBER 0x00D71101L

int main (int argc, char **argv)

{

struct protoent *udproto;

struct sockaddr in sin, this, to;

struct hostent *temp;

struct in_ addr in addr gmulti, in addr multiO, in addr mult;
struct in_addr in addr this;

struct ip_mreqg multi req;

int x, i, j, k, f£dl, req count = BUFFER LEN , xcount, loopCount;
int len, tolen;

int portNum = 0, argNum = 1, bytesready, error;

int getsize, ssockerr = 0;

long dtime;
time_t timenow;

FILE *fi;

char hostchar [HOST LEN+1];

char ttlset, ttlget, loopbkset, loopbkget;

char *chr = "-", *multiip, *ascptr, *thishost, *thisip;

char sendbuf [BUFFER_LEN] ;

unsigned long thisaddr, multiaddr, multiaddroO;

if (argc != 10) |
printf ("usage: sndmulw [NO]DEBUG tcpip process port this host");
printf (" multicast ip ttl loopCount data_file send size\n");
exit (0);

}

if (!strcmp (argv[argNum++], "DEBUG"))
DEBUG () ;

/* TCPIP"PROCESS”NAME parameter */

printf ("\nClient Process: %s\n", argv[argNum]) ;
socket set inet name (argv[argNum++]);

/* Port number */

Programs Using AF_INET Sockets

225

portNum = atoi (argv[argNum++]) ; /* convert string to PORT # */
printf (" PortNum: %i\n", portNum) ;

/* Name of this host */

thishost = argv[argNum++] ;
if ((temp = gethostbyname (thishost)) != (struct hostent*)NULL)
memmove ((char *)&in addr this.s addr, (char *)temp->h addr,

(size_t)temp->h length);
else {
printf ("gethostbyname failed for %s, error = %d\n", thishost, h errno);

exit (0);

}

thisaddr = in _addr this.s addr;
thisip = inet ntoa (in_addr_ this);
printf ("Multicast Interface IP: %$s\n", thisip);

/* IP address of the multicast group to join */

multiip = argv[argNum++] ;
multiaddr0 = inet addr (multiip); /* convert to binary format */

/* Multicast TTL */

ttlset = atoi (argv[argNum++]) ;
printf ("Multicast TTL: %$i\n",ttlset);

/* Test loop count */
loopCount = atoi (argv[argNum++]) ;
/* Protocol is UDP */
udproto = getprotobyname ("UDP") ;

/* Open data input file */

if ((fi = fopen (argv[argNum++],"r")) == NULL)
printf ("OPEN failed for the data input file\n");
exit (0);

req count = atoi (argv[argNum++]) ;
if (reqg count > BUFFER LEN)

req count = BUFFER LEN;

printf ("Requested count : %i\n",reqg count);

xcount = fread (sendbuf,req count,1,fi);

if (xcount != 1)
printf ("Error reading Input file. Check if it's in subvol!\n");
exit (0);

}

sendbuf [req count-1] = '\0';

/* Create socket */
if ((f£dl1 = socket (AF_INET, SOCK DGRAM, udproto->p proto)) < 0){
perror ("Socket Failure") ;

exit (0);

}

/* Test Multicast I/F set and get */

printf ("SETting Multicast I/F to %s or 0x%lx \n", thisip, thisaddr);

226 Sample Programs

if (setsockopt (£fd1l, IPPROTO IP, IP_MULTICAST IF,
(char *)&in addr this, sizeof (in addr_ this))) {
perror ("SET MULTI IF error");
exit (0);

}

if (getsockopt (fdl, IPPROTO_IP, IP_MULTICAST IF,
(char *)&in_addr gmulti, &getsize)) {
perror ("GET MULTI IF error");
exit (0);

}

printf ("GET Multicast I/F: %s, size: %d\n", inet ntoa(in_addr gmulti),
getsize) ;

/* Disable multicast loopback */

loopbkset = 0;
if (setsockopt (£d1l, IPPROTO_IP, IP MULTICAST_LOOP,
(char *)&loopbkset, sizeof (loopbkset))) {
perror ("SET MULTI LOOP error");
exit (0);

}

printf ("Multicast loopback is disabled\n") ;
/* Set multicast TTL */

ttlget = 0;
printf ("SETting TTL to %d\n",ttlset);
if (setsockopt (£fdi, IPPROTO IP, IP_ MULTICAST TTL,
(char *)&ttlset, sizeof (ttlset)))
perror ("SET MULTI TTL error");
if (getsockopt (£fd1l, IPPROTO IP, IP_MULTICAST TTL,
(char *)&ttlget, &getsize))
perror ("GET MULTI TTL error");
printf ("GET TTL: %d, size: %d \n",ttlget, getsize);

***************/
/* Send data to the multicast groups */

to.sin family = AF_INET;

to.sin port = portNum;

tolen = sizeof (to);

srand ((unsigned int) timenow) ; /* initialize random number gen */

for (i = 0; i < loopCount; i++) {
printf ("Loop: %d\n", i+1);
for (j = 0, multiaddr = multiaddr0; (j < IP_MAX MEMBERSHIPS) ;
j++, multiaddr += MAGIC NUMBER) ({
to.sin addr.s _addr = multiaddr;
ascptr = inet_ntoa (to.sin_addr) ;
for (k = 0; *ascptr != 0; k++)
sendbuf [k] = *ascptr++;
for (;k < 15; k++)
sendbuf [k] = *chr;
timenow = time (NULL) ;

if ((xcount = sendto (fdl, sendbuf, req count, 0,
(struct sockaddr *)&to, tolen)) < 0) {
perror (" Sendto failure");
exit (0);
}
else

printf ("%s SENDTO completed %i bytes to: %s\n", ctime (&timenow),

xcount, inet ntoa(to.sin addr)) ;
dtime = (rand() % 150) + 50L; /* 0.5 - 2 seconds */
DELAY (dtime) ;
} /* end for j loop */
dtime = 100L; /* 1 second */
DELAY (dtime) ;
} /* end for i loop */

Programs Using AF_INET Sockets

227

/* Close the socket */
FILE CLOSE_ (£fd1);

}
UDP Program for Receiving Multicast Packets

The following programming example shows how to use the socket routines in an application that
implements multicast for receiving:

#pragma nolist
#include "inh"
#include "sckconfh"
#include "socketh"
#include <errnohs>
#include <routehs>
#include <paramhs>
#include <ioctlh>
#include <stdiohs>
#include <stringhs>
#include <memoryhs>
#include <stdlibhs>
#include <cextdecs (DEBUG,FILE GETINFO ,AWAITIOX,SETMODE) >
#include <fcntlhs>
#include <ctypehs
#pragma list

#define BUFFER LEN 10000
#define PORT_LEN 4

#define HOST LEN 4

#define DELAYTIME 200

#define MAGIC NUMBER 0x00D71101L

int main (int argc, char **argv)

{

struct protoent *udproto;

struct sockaddr in sin, this, to, from;

struct hostent *temp;

struct in_addr in addr gmulti, in addr multiO, in addr mult;
struct in_addr in_addr this;

struct ip mreqg multi req;

int x, i, j, k, fdl, req count, xcount;

int len, fromlen;

int portNum, argNum = 1, error;

int getsize, ssockerr = 0;

FILE *fi,;

char hostchar [HOST LEN+1];

char ttlset, ttlget, loopbkset, loopbkget;
char *multiip, *ascptr, *thishost, *thisip;

char recvbuf [BUFFER_LEN] ;

unsigned long thisaddr, multiaddr, multiaddr0;

if (argec '= 7) |
printf ("usage: rcvmcl [NO]JDEBUG tcpip process port this host");
printf (" multicast ip ttl\n");
exit (0);

}

if (!strcmp (argv[argNum++], "DEBUG"))
DEBUG() ;

/* TCPIP“PROCESS“NAME parameter */

printf ("\nClient Process: %s\n", argv[argNum]) ;
socket set inet name (argv[argNum++]) ;

228 Sample Programs

/* Port number */

portNum = atoi (argv[argNum++]) ; /* convert string to PORT # */

printf (" PortNum: %i\n", portNum) ;

/* Name of this host */

thishost = argv[argNum++] ;
if ((temp = gethostbyname (thishost)) != (struct hostent*)NULL)
memmove ((char *)&in addr this.s_addr, (char *)temp->h addr,

(size_t)temp->h length);

else {

printf ("gethostbyname failed for %s, error = %d\n", thishost, h errno);

exit (0);

}
thisaddr = in addr this.s addr;

thisip = inet ntoa (in_addr_this);
printf ("Multicast Interface IP: %$s\n", thisip);

/* IP address of the multicast group to join */

multiip = argv[argNum++] ;
multiaddr0 = inet addr (multiip);

/* Multicast TTL */

ttlset = atoi (argv[argNum++]) ;
printf ("Multicast TTL: %i\n",ttlset);

/* Protocol is UDP */
udproto = getprotobyname ("UDP") ;

/* Create socket */

if ((f£dl1 = socket (AF_INET, SOCK DGRAM, udproto->p proto)) < 0){
perror ("Socket Failure") ;
exit (0);

}

/* Test Multicast I/F set and get */

printf ("SETting Multicast I/F to %s or 0x%lx \n", thisip, thisaddr);

if (setsockopt (£fd1l, IPPROTO IP, IP_MULTICAST IF,
(char *)&in addr this, sizeof (in_addr_ this))) {
perror ("SET MULTI IF error");
exit (0);

}

if (getsockopt (fdl, IPPROTO_IP, IP_MULTICAST IF,
(char *)&in_addr gmulti, &getsize)) {
perror ("GET MULTI IF error");
exit (0);

}

printf ("GET Multicast I/F: %s, size: %d\n", inet ntoa(in_addr gmulti),

getsize) ;
/* Set multicast TTL */

ttlget = 0;
printf ("SETting TTL to %d\n",ttlset);
if (setsockopt (£fd1l, IPPROTO_IP, IP MULTICAST TTL,
(char *)&ttlset, sizeof (ttlset)))
perror ("SET MULTI TTL error");
if (getsockopt (£d1, IPPROTO_IP, IP MULTICAST TTL,

Programs Using AF_INET Sockets

{

/* convert to binary format

229

(char *)&ttlget, &getsize))
perror ("GET MULTI TTL error");
printf ("GET TTL: %d, size: %d \n",ttlget, getsize);

/* Join multicast groups */

multi reqg.imr interface.s addr = thisaddr;
for (i = 1, multiaddr = multiaddr0O; i <= IP_MAX MEMBERSHIPS;
i++, multiaddr += MAGIC_NUMBER) {
multi reqg.imr multiaddr.s addr = multiaddr;
printf ("ADDing MEMBERSHIP to group: %s or %lx\n",

inet ntoa (multi req.imr multiaddr) ,
multi reqg.imr multiaddr.s_ addr) ;

printf (" ON E/F: $s\n", inet ntoa(multi req.imr interface));
if (setsockopt (£fd1l, IPPROTO_IP, IP ADD MEMBERSHIP,
(char *)&multi req, sizeof (multi req))) ({
perror ("ADD MEMBER error") ;
printf (" error code: %x Hex (%d.)\n", errno, errno);
}
}
/* Bind */

sin.sin family = AF_INET;

sin.sin port = portNum;

sin.sin addr.s_addr = INADDR ANY;
len = sizeof (sin) ;

if (bind (fdl, (struct sockaddr *)&sin, len) < 0) {
perror ("Bind Failure");
exit (0);

}

/* Receive from multicast */

fromlen = sizeof (from) ;

i=1;
while (1) { /* standby for receiving always */
printf ("\n\n....... \n") ;
printf (M. ... \n") ;
printf (M. .. \n") ;
printf (M. ... e e \n") ;
printf ("... LOOP %d\n", 1i);
printf (M. ... \n") ;
pPrintf (M. .. e \n\n\n") ;

/* For every 10 loop, add some
if ((1 % 10) == 0) { /* memberships
printf ("ADD every other 3 group memberships\n");
for (j = 1, multiaddr = multiaddroO;
j <= IP_MAX MEMBERSHIPS;
j += 3, multiaddr += (MAGIC NUMBER * 3)) {
multi req.imr multiaddr.s_addr = multiaddr;
printf ("ADD MEMBERSHIP to group: %s or %$1x\n",
inet ntoa (multi req.imr multiaddr),
multi reqg.imr multiaddr.s_addr) ;

printf (" ON I/F: %$s\n", inet ntoa(multi req.imr interface));
if (setsockopt (fdl, IPPROTO IP, IP_ ADD MEMBERSHIP,
(char *)&multi req, sizeof (multi req)))

perror ("ADD MEMBER error") ;

printf (" error code: %x Hex (%d.)\n", errno, errno);
}
}
}
else /* For every x5 loop, drop some
if ((i % 5) == 0) | /* memberships
printf ("DROP every other 3 group memberships\n") ;
for (j = 1, multiaddr = multiaddro;

230 Sample Programs

*/
*/

*/
*/

j <= IP_MAX MEMBERSHIPS;
j += 3, multiaddr += (MAGIC_NUMBER * 3)) {
multi reqg.imr multiaddr.s addr = multiaddr;
printf ("DROP MEMBERSHIP from group: %$s or %lx\n",
inet ntoa (multi req.imr multiaddr),
multi reqg.imr multiaddr.s_ addr) ;

printf (" ON I/F: %$s\n", inet ntoa(multi req.imr interface));
if (setsockopt (£d1, IPPROTO_IP, IP_DROP_MEMBERSHIP,
(char *)&multi req, sizeof (multi req))) {
perror ("DROP MEMBER error") ;
printf (" error code: %x Hex (%d.)\n", errno, errno);
}
}
}
reqg count = 1000 * IP MAX MEMBERSHIPS;
while (reqg count) {
/* printf ("Retrieving %d bytes\n", req count); */
if ((xcount = recvfrom (fdl, recvbuf, req count, 0,
(struct sockaddr *)&from,
(int *)&fromlen)) < 0) {
perror (" Recvfrom failure");
exit (0);
}
printf ("Loop %d............... received %i bytes from %s\n",
i, xcount, inet ntoa (from.sin addr));
recvbuf [xcount] = 0;
recvbuf [72] = 0; /* to print the first 72 chars only */

printf ("%s\n",recvbuf) ;

req_count -= xcount;
}
1+4+;
} /* end for loop */
close (fdil);

}
TAL Echo Client Programming Example

The TAL program below demonstrates an ECHO client that communicates with an ECHO server.
The source code for this program appears in the TALDOCUM file on the site update tape (SUT)
for TAL sockets. Refer to the TCP/IP Applications and Utilities User Guide for details on using
ECHO.

?ENV COMMON

?SYMBOLS, INSPECT

?SEARCH S$SYSTEM.SYSTEM.CLULIB
?SEARCH $SYSTEM.SYSTEM.TALLIB
?SEARCH $SYSTEM.ZTCPIP.libinetl

NAME echo example;

-- This sample TAL socket program communicates with an ECHO server.
?PUSHLIST,NOLIST, SOURCE $SYSTEM.SYSTEM.CREDECS (initialization, Termination)
?POPLIST

BLOCK sockdeft;

?PUSHLIST,NOLIST, SOURCE $SYSTEM.ZTCPIP.SOCKDEFT

?POPLIST

END BLOCK;

BLOCK error_codes;

?PUSHLIST,NOLIST, SOURCE $SYSTEM.ZTCPIP.SOCKPROC (error_codes)
?POPLIST

END BLOCK;

BLOCK getsockopt opts;

?PUSHLIST,NOLIST, SOURCE $SYSTEM.ZTCPIP.SOCKPROC (getsockopt opts)
?POPLIST

END BLOCK;

BLOCK socket_opts;

?PUSHLIST, NOLIST, SOURCE $SYSTEM.ZTCPIP.SOCKPROC (socket opts)
?POPLIST

Programs Using AF_INET Sockets 231

END BLOCK;
?PUSHLIST,NOLIST, SOURCE $SYSTEM.SYSTEM.RTLDECS (convert)

?POPLIST

?PUSHLIST,NOLIST, SOURCE $SYSTEM.ZTCPIP.SOCKPROC(connect

? ,gethostbyname

? ,gethostbyaddr

? ,getservbyname

? ,get_errno

? ,inet addr

? ,paramcapture

? ,recv

? , send

? , socket

?)

?POPLIST

?PUSHLIST,NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECSO (

? DEBUG

? FILE CLOSE_

?)

?POPLIST

?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.CREDECS(cre terminator

? ,cre_log message

?)

?POPLIST

?PUSHLIST,NOLIST, SOURCE $SYSTEM.SYSTEM.CLUDECS(SMU Param GetText
? SMU_Startup GetText
?)

?POPLIST

?PUSHLIST,NOLIST, SOURCE $SYSTEM.SYSTEM.RTLDECS (RTL STRLENX

? RTL Intl6 to decimal
?)

?POPLIST

?PUSHLIST,NOLIST, SOURCE $SYSTEM.SYSTEM.TALDECS (tal cre initializer)
?POPLIST

-- Heap directive is necessary either in the MAIN program or in

-- the BIND step. If there is no HEAP directive, then the

-- C Language functions using the heap (malloc, calloc, realloc)

-- fails. The heap directive is put into this program for saftey in a
-- mixed language environment, it is NOT required to make use of the
-- Socket library, which makes no use of HEAP functions for memory

-- management.

?HEAP 20

?EXTENDSTACK 8

PROC term msg(message) ;
STRING .EXT message;

BEGIN
INT error := 0;
IF (error := CRE _LOG MESSAGE (message:S$INT (RTL_STRLENX (message))))
THEN BEGIN
CALL DEBUG;
END;
END;

PROC PRINT_ERROR(prefiX);
STRING .EXT prefix;

BEGIN
STRING .EXT work buf [0:300];
STRING .EXT s := -1D;
work buf ':=' prefix FOR $INT(RTL_STRLENX (prefix))
& " Error = " -> @s;
CALL RTL_Intlé_to_decimal_ (get_errno,s,6,RTL"Leading”separate) ;
@s := @s + 6D;
s := 0; -- Null Termination.
CALL term msg(work buf) ;
END;

INT PROC term read(input buffer:buffer length);
STRING .EXT input buffer;
INT (32) buffer length;

232 Sample Programs

BEGIN

INT
INT

END;

count read := 0;
error := 0;
IF (error:=CRE_LOG_MESSAGE_ (input_buffer:0, ,buffer_length,count_read))
THEN BEGIN
CALL DEBUG;

END;
input buffer[count read] := 0; -- Null Termination.

RETURN count read;

PROC echo_main MAIN;

BEGIN
INT (32) bytes from term := 0;
INT (32) total received := 0;
INT (32) nrcvd := 0;
INT (32) sock := -1;
INT (32) bytes returned := 0;
STRING .EXT startup msg[0:50] ;
STRING .EXT buf [0:1024] ;
INT .EXT param msg = buf;
STRING .EXT host name;
STRUCT .EXT sin(sockaddr in) ;
STRUCT .EXT hp (hostent) ;
STRUCT .EXT se (servent) ;
-- All of the following strings are NULL terminated, this is the
-- convention in C and many of the Socket routines depend on null
-- terminated strings.
STRING echo_service = 'p!' := ["echo",0];
STRING TCP_PROTOCOL = 'P! := ["tcp",0];
STRING socket error = 'pP!' := ["Socket error",0];
STRING send_error = 'P!' := ["Send error",O0];
STRING recv_error = 'p!' := ["Recv error",0];
STRING connect_error = 'P! := ["Connect error",O0];
STRING string portion = 'P' := ["STRING",O0];
STRING usage = 'p! := ["usage: echo machine",0];
STRING no_echo serv = 'p!
:= ["Echo Service not defined, check SERVICES file.",O0];
STRING con_close = 'P!
:= ["Connection unexpectedly closed by host.",0];
STRING ALL = 'pP! := ["*ALL*",0];
INT count := 0;

-- Initialization uses the facilities of the CRE to
-- facilitate the possibility of a mixed language environment.

CALL tal cre initializer (CRE"Save®all”messages) ;

-- Use SMU routines to read the startup message.
count := SMU Startup_ GetText (
string portion:$INT (RTL_ STRLENX (string portion))
,startup msg:$OCCURS (startup_msg)) ;
startup msg[count] := 0; -- Null Termination.
-- Display the usage of this program if there was no startup text.
IF NOT count
THEN BEGIN
CALL term msg(usage) ;
CALL CRE_TERMINATOR_ (CRE”“Completion®normal) ;
END;

-- Use SMU to get ENTIRE parameter message and if there is one
-- call the paramcapture routine. The paramcapture routine is
-- necessary to save parameters such as TCPIP"PROCESS”NAME in
-- socket library data structures.
IF (SMU Param GetText (ALL:S$INT(RTL STRLENX (ALL))

,buf : SINT (SOCCURS (buf)))) > 0

Programs Using AF_INET Sockets

233

THEN BEGIN
CALL paramcapture (param msg) ;
END;

-- Create an open socket to do IO on.
IF ((sock := socket (AF_INET, SOCK STREAM, 0)) < 0)
THEN BEGIN
CALL PRINT ERROR (socket error) ;
CALL CRE_TERMINATOR (CRE”“Completion”fatal);
END;

-- Look up the port number of the echo service using a socket
-- routine (echo port is well known port 7)
IF (@se := getservbyname (echo service,TCP_PROTOCOL)) = 0D
THEN BEGIN

term msg(no_echo serv) ;

CALL CRE_TERMINATOR (CRE“Completion*warning) ;
END;

-- Start filling up the sockaddr in structure for a connect.
sin.sin port := se.s_port; -- From getservbyname
sin.sin_ family := AF_INET;

-- Check to see if address was supplied in dotted decimal format.
IF (sin.sin addr.s_addr := inet addr(startup msg)) = -1D
THEN BEGIN
-- It is not dotted decimal, check to see if it can be resolved
-- in a name lookup.
@hp := gethostbyname (startup msg) ;
IF (@hp = OD)
THEN BEGIN

buf ':=' "Unknown host: "
& startup msg FOR $INT(RTL STRLENX (startup msg))
& 0; -- Null Termination.

CALL term msg(buf) ;
CALL CRE_TERMINATOR (CRE”Completion®warning) ;
END;
sin.sin _addr.s_addr ':=' hp.h addr list.ptrs FOR hp.h length;
@host _name :=@hp.h name;
END ELSE BEGIN
@hp := gethostbyaddr (sin.sin addr.s_addr, 4, AF_INET);
if (@hp = 0D)
THEN BEGIN
@host _name
END ELSE BEGIN
@host_name

@startup msg;

@hp.h_name;

END;

END;

buf ':=' "Establishing Connection to: "
& host name FOR $INT (RTL_STRLENX (host name))
& 0; -- Null Termination.

CALL term msg(buf) ;
IF (connect (sock,sin,$LEN(sin)) < 0)
THEN BEGIN
CALL PRINT ERROR (connect error) ;
CALL CRE_TERMINATOR (CRE”“Completion”fatal);

END;
buf ':=' "Connected" & 0;
CALL term msg(buf) ;
WHILE (bytes from term := term read (buf:$0OCCURS (buf))) > 0
DO BEGIN
IF (send(sock,buf,bytes_from term,0)) <= 0
THEN BEGIN
CALL PRINT ERROR (send error) ;
CALL CRE_TERMINATOR (CRE”“Completion”fatal) ;
END;

-- Use the following loop because the socket interface may
-- require more than one call to "recv" to get all of the
-- bytes desired. This is usually due to network fragmentation.

234 Sample Programs

total received := 0;
DO BEGIN
nrcvd := 0;
IF ((nrcvd := recv(sock
,buf [total received]
, $OCCURS (buf) -total received
,0)) < 0)
THEN BEGIN

PRINT ERROR (recv_error) ;
CALL CRE_TERMINATOR_(CRE“Completion’fatal) ;

END;
IF (nrcvd = 0)
THEN BEGIN

term msg(con_close) ;
CALL CRE_TERMINATOR (CRE”Completion®warning) ;

END;

total received := total_received + nrcvd;
END UNTIL total received >= bytes from term;
buf [total received] := 0; -- Null Termination.
CALL term msg(buf) ;

END;
CALL FILE CLOSE_ (sock) ;

CALL CRE_TERMINATOR (CRE“Completion®normal) ;
END;

Using AF_INET6 Sockets

This section contains a client and server program that use AF_INET6 sockets.

AF_INET6 Client Stub Routine

This example shows a sample client program that you can build, compile, and run on your system.
The program sends a request to and receives a response from the system specified on the command
line. All addresses are in IPvé address format.

~
*

AF_INET6 Client Stub Routine
LR R R o o R R R R ok o R R S o R o ok R R Rk ok o

*

Copyright (c) Hewlett-Packard Company, 2003 *

*

*

*

* The software contained on this media is proprietary to
* and embodies the confidential technology of Hewlett
* Packard Corporation. Possession, use, duplication or

* dissemination of the software and media is authorized only
* pursuant to a valid written license from Hewlett Packard

* Corporation.

*

* RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
* by the U.S. Government is subject to restrictions as set
*
*
*
*

forth in Subparagraph (c) (1) (ii) of DFARS 252.227-7013,
or 1in FAR 52.227-19, as applicable.

£ 0% % ok F % ok F X 3k F X X F X X F

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

PR S SR SRS EEEEEEEEEEEEEEEEEEEEREEEEEEEEEEREEREEEEEEEEEEEEEE RS SRS
*/

#include <systype.h>

#include <socket.h>

#include <errno.h>

#include <in.h>

#include <iné6.h>

#include <netdb.h>
#include <string.h>
#include <stdio.h>

Using AF_INET6 Sockets 235

#include <signal.h>

#include <stdlib.h>

#include <inet.h>

#include <nameser.h>

#include <cextdecs (FILE CLOSE) >
#define SERVER PORT 7639

#define CLIENT PORT 7739

#define MAXBUFSIZE 4096

int main (
int argc,
char **argv)

int s;

char databuf [MAXBUFSIZE] ;
int dcount;

char addrbuf[INETG_ADDRSTRLEN];
char node [MAXDNAME] ;

char service [MAXDNAME] ;
int ni;

int err;

int serveraddrlen;

char *server;

struct addrinfo *server info;
struct addrinfo *cur_ info;

struct addrinfo hints;

/* Declare the sockaddr iné structure. The use of this type of
structure is dictated by the communication domain of the
socket (AF INET6), which implies communication using the IPvé6
protocol. If you wanted to write a protocol-independent program,
you would declare a sockaddr storage structure. */
struct sockaddr iné serveraddr;
char request [MAXBUFSIZE] = "This is the client's request";
if (arge < 2) {
printf ("Usage: client <server>\n");
exit (0);

}

server = argv[l];

/* Clear the hints structure and set up hints variables. The hints
structure contains values that direct the getaddrinfo processing.
In this case, AF_INET6 returns IPv6 addresses. The AI ADDRCONFIG
and AI V4MAPPED values return AAAA records if an IPv6 address is
configured, and if none are found, return A records if an IPv4
address is configured. */

bzero((char *) &hints, sizeof (hints)) ;

hints.ai family = AF_INET6;

hints.ai protocol = IPPROTO_TCP;

hints.ai flags = AI ADDRCONFIG | AI V4MAPPED;

sprintf (service, "%d", SERVER_PORT) ;

/* Obtains the server address. A call to getaddrinfo returns
IPv6-formatted addresses in one or more structures of type
addrinfo. */

err = getaddrinfo(server, service, &hints, &server info);

if (err !'= 0) {
printf ("$s\n", gai strerror(err)) ;
if (err == EAI_SYSTEM)
perror ("getaddrinfo") ;
exit (2) ;
}
cur_info = server info;

/* Create an AF_INET6 socket. The socket type is specified in

236 Sample Programs

the addrinfo structure. */
while (cur info != NULL) {
if ((s = socket(cur_ info->ai family,cur info->ai socktype,0))<0)
perror ("socket") ;
freeaddrinfo(server_info) ;
exit (3);

}

/* Connect to the server using the address in the addrinfo
structure named cur_info. */

if ((err = connect(s,cur_info-»ai_addr, (int)cur info-»ai addrlen))<0) {
perror ("connect") ;
cur_info = cur info->ai next;
continue;

break;

}

/* Free all addrinfo structures. */
freeaddrinfo(server info) ;
if (err < 0)

exit (4) ;

/* Send a request to the server. */

if (send(s, request, (int)strlen(request), 0) < 0) {
perror ("send") ;
exit (5) ;

}

/* Receive a response from the server. */
dcount = recv (s, databuf, sizeof (databuf), 0);
if (dcount < 0) {
perror ("recv") ;
exit (6) ;
}
databuf [dcount] = '\0';
serveraddrlen = sizeof (serveraddr) ;

/* Obtain the address of the peer socket at the other end of the
connection and store the address in a sockaddr_iné structure named
serveraddr. */

if (getpeername (s, (struct sockaddr*) &serveraddr, &serveraddrlen) < O){
perror ("getpeername") ;
exit (7) ;

}

printf ("Response received from") ;

/* Obtain the server's name with a call to getnameinfo using the
address in the sockaddr iné structure named serveraddr. The
NI NAMEREQD flag directs the routine to return a hostname for the
given address. */

ni = getnameinfo((struct sockaddr*)&serveraddr, serveraddrlen,
node, sizeof (node), NULL, 0, NI _NAMEREQD) ;
if (ni == 0)
printf (" %s", node);
ni = getnameinfo((struct sockaddr*)&serveraddr, serveraddrlen,

addrbuf, sizeof (addrbuf), NULL, 0, NI_NUMERICHOST) ;
if (ni == 0)
printf (" (%s)", addrbuf) ;
printf (":\n%s\n", databuf) ;
FILE CLOSE ((short)s);

Using AF_INET6 Sockets 237

AF_INET6 Server Stub Program

This example shows a sample server program that you can build, compile, and run on your system.
The program receives requests from and sends responses to client programs on other systems.
/*

AF INET6 Server Stub Routine
kkhkkhkhkkkhkhkhkkhkkhhkkhkkhhkhkkhkhhkkhkdhhhkkhhhkkhkdhhkhdhhkkhkdhhkhdhhkkhdhhkddhhkhddhhkddhkkhddkhkrdhkx*kx*%

*

Copyright (c) Hewlett-Packard Company, 2003 *

The software contained on this media 1is proprietary to
and embodies the confidential technology of Hewlett
Packard Corporation. Possession, use, duplication or
dissemination of the software and media is authorized only

* % ok X X ok X X
* % 3k ok X % F
* ok F F F

pursuant to a valid written license from Hewlett Packard
Corporation.

* *
* *
* *
* RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure *
* by the U.S. Government is subject to restrictions as set *
* forth in Subparagraph (c) (1) (ii) of DFARS 252.227-7013, *
* or in FAR 52.227-19, as applicable. *
* *
* *

LR S L S

L R A T . S

/

#include <systypes.h>
#include <socket.h>
#include <errno.h>
#include <in.h>
#include <iné6.h>
#include <netdb.h>
#include <string.hs>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <inet.h>
#include <nameser.h>
#include <cextdecs(FILE CLOSE) >

#define SERVER_ PORT 7639
#define CLIENT PORT 7739

##define MAXBUFSIZE 4096
int main (

int argc,
char **argv)

int s;

char databuf [MAXBUFSIZE] ;

int new_s;

int dcount;

char addrbuf[INETG_ADDRSTRLEN];
char node [MAXDNAME] ;

char port [MAXDNAME] ;

int ni;

int clientaddrlen;

/* Declare the sockaddr_ iné structure named serveraddr. The use
of this type of structure is dictated by the communication domain
of the socket (AF INET6), which implies communication using the IPvé6
protocol. */

struct sockaddr_ iné serveraddr;

238 Sample Programs

/* Declare a sockaddr storage structure named clientaddr. The use
of this type of structure enables your program to be protocol
independent. */

sockaddr_ storage clientaddr;

char response [MAXBUFSIZE] = " This is the server's response";

/* Create an AF_INET6 socket. The socket type SOCK STREAM is
specified for TCP or connection-oriented communication. */
if ((s = socket (AF_INET6, SOCK STREAM, 0)) < 0) {
perror ("socket") ;
exit (0);

}

/* Clear the server address and sets up the server variables. */
bzero((char *) &serveraddr, sizeof (struct sockaddr iné6)) ;
serveraddr.siné_ family = AF INET6;

serveraddr.siné_addr = in6addr_any;

serveraddr.siné port

htons (SERVER_PORT) ;

/* Bind the server's address to the AF INET socket. */

if (bind(s, (struct sockaddr *)&serveraddr, sizeof (serveraddr)) < O){
perror ("bind") ;
exit (2) ;

}

/* Listen on the socket for a connection. The server queues up
to SOMAXCONN pending connections while it finishes processing the
previous accept call. See sys attrs_ socket (5) for more information on
the socket subsystem kernel attributes. */
if (listen(s, SOMAXCONN) < 0) {
perror ("listen") ;
FILE CLOSE_((short)s) ;
exit (3) ;

while (1) {
clientaddrlen = sizeof (clientaddr) ;

/* Clear the client address. */
bzero((char *)&clientaddr, clientaddrlen) ;

/* Accept a connection on this socket. The accept call places
the client's address in the sockaddr storage structure named
clientaddr. */
new s = accept (s, (struct sockaddr*)&clientaddr, &clientaddrlen) ;
if (new s < 0) {
perror ("accept") ;
continue;

}

/* Receive data from the client. */
dcount = recv(new_ s, databuf, sizeof (databuf), 0);
if (dcount < 0) {

perror ("recv") ;

FILE CLOSE ((short)new_s) ;

continue;

}

databuf [dcount] = '\0';

printf ("Request received from") ;

ni = getnameinfo((struct sockaddr *)&clientaddr,
clientaddrlen, node, sizeof (node), NULL, 0, NI NAMEREQD) ;
if (ni == 0)
printf (" %s", node);

Using AF_INET6 Sockets 239

/* Obtains the client's name with a call to getnameinfo using the
address in the sockaddr storage structure named clientaddr. The
NI _NAMEREQD flag directs the routine to return a hostname for
the given address. */
ni = getnameinfo((struct sockaddr *)&clientaddr,
clientaddrlen, addrbuf, sizeof (addrbuf), port, sizeof (port),
NI NUMERICHOST |NI_NUMERICSERV) ;
if (ni == 0)
printf (" (%s) port %s", addrbuf, port);
printf (":\n\"%s\"\n", databuf) ;

/* Sends a response to the client. */

if (send(new_s, response, (int)strlen(response), 0) < 0) {
perror ("send") ;
FILE CLOSE_((short)new_s) ;
continue;

}

FILE CLOSE ((short)new_s);

}

FILE_CLOSE_ ((short)s);

240 Sample Programs

A Well-Known IP Protocol Numbers

Table 17 provides a list of commonly used IP protocol numbers, together with the names you can
use for them in your application programs. These protocols are provided in the file
$SYSTEM. ZTCPIP.PROTOCOL. For other protocol numbers, refer to RFC 1010, “Assigned

Numbers.”

Table 17 Commonly Used IP Protocol Numbers

Protocol Number ~ C Name Protocol Full Name

0 ip IP Internet Protocol (pseudoprotocol number)
1 icmp ICMP Internet Control Message Protocol

3 ggp GGP Gateway-to-Gateway Protocol

6 tcp TCP Transmission Control Protocol

12 pup PUP PARC Universal Packet Protocol

17 udp uDP User Datagram Protocol

TCP and UDP Port Numbers

Table 18 (page 241), Table 19 (page 242), and Table 20 (page 242) list the port numbers preassigned
to specific services when accessed from TCP or UDP. The tables give the name or names of each
service as it is used in application programs. These port numbers are provided in the file

SSYSTEM.ZTCPIP.SERVICES.

Table 18 Port Numbers for Network Services

Port Number Protocol C Name(s) of Service or Function
7 TCP, UDP echo

9 uDP discard, sink null

1 TCP systat

13 TCP daytime

15 TCP netstat

20 TCP ftp-data

21 TCP ftp

23 TCP telnet

25 TCP smip, mail

37 TCP, UDP time, time server

42 ubDP name, nameserver

43 TCP whois, nickname (usually to sri-nic)
53 TCP, UDP domain

101 TCP hostnames, hostname (usually to sri-nic)
m TCP, UDP sunrpc

TCP and UDP Port Numbers 241

Table 19 Port Numbers for Host-Specific Functions

Port Number Protocol C Name(s) of Service or Function
69 UDP tftp

77 TCP rie

79 TCP finger

87 TCP link, tylink
95 TCP supdup

105 TCP csnet-ns

n7z TCP vucp-path
19 TCP nntp, usenet
123 uUDP ntp

1524 TCP ingreslock

Table 20 Port Numbers for UNIX-Specific Services

Port Number Protocol C Name(s) of Service or Function
512 TCP exec
UDP biff, comsat
513 TCP login
ubDP who, whod
514 TCP shell, cmd (no passwords used)
uDP syslog
515 TCP printer, spooler (experimental)
517 ubp talk
520 uDP route, router, routed
530 TCP courier, rpc (experimental)
550 ubp new-rwho, new-who (experimental)
560 ubpP rmonitor, rmonitord (experimental)
561 ubP monitor (experimental)

242 Well-Known IP Protocol Numbers

B Socket Errors

This appendix summarizes the socket errors that can be returned in the external variable errno
by the routines in the socket interface library.

Socket errors start at base 4000.

The errors returned in the external variable h_errno are not contained in this appendix. For those
errors, see the error descriptions under the gethostbyaddr and gethostbyname functions in
Chapter 4 (page 81).

The descriptions given here are general; you should interpret each error accordin? to the type and
circumstances of the call. For specific information about the meaning of an error tor a particular
socket routine, see the description of the individual routine in Chapter 4 (page 81).

Some of the errors defined in $SYSTEM. ZTCPIP. PARAMH are for HP internal use only and cannot
be received by application programs using the socket calls. This appendix lists only those socket
errors that can be received by application programs.

File-system errors can also be returned in errno upon return from a socket call. File-system errors
indicate that an error occurred during interprocess 1/O. For descriptions of the file-system errors,
refer to the Guardian Procedure Errors and Messages Manual.

The SAP library function calls described in Chapter 4 (page 81), return file-system errors. For
descriptions of the file-system errors, refer to the Guardian Procedure Errors and Messages Manual.

The socket errors are described in alphabetical order. The error number associated with each error
is shown in parentheses following the mnemonic name of the error. Table 21 (page 253) lists of the
errors in numerical order.

Error number definitions can be found in the file $SYSTEM.SYSTEM.ERRNOH.
EACCES (4013)

EACCES
Cause

A call to bind or bind_nw specified an address or port number that cannot be assigned to a
nonprivileged user. Only applications whose process access ID is in the SUPER group (user ID
255,n) can bind a socket to a well-known port. 2. The requested operation specfed a broadcast
address as the destination but the SO_BROADCAST socket option was not enabled (see setsockopt,
setsockopt_nw (page 184)).

Effect
The bind, bind nw, sendto, or sendto nw call failed.
Recovery
For bind and bind_nw, specify another port number or address, or rerun the application with
a process access ID in the SUPER group (user ID 255,n). For sendto or sendto_nw, set the
SO_BROADCAST option for the socket.
EADDRINUSE (4114)
EADDRINUSE
Cause

A call to bind or bind_nw specified an address-port number combination that is already in
use.

Effect

The bind or bind nw call failed.
Recovery

Specify another address and port number.

243

EADDRNOTAVAIL (4115)
EADDRNOTAVATIL
Cause

A call to bind or bind_nw specified an address-port number combination that is not available
on the local host.

Effect

The bind or bind nw call failed.

Recovery

Specify an address and port number that are valid for this system.

EAFNOSUPPORT (4113)
EAFNOSUPPORT
Cause

The “Family” attribute in the PROVIDER object is not configured correctly. The PROVIDER object
represents a transport-service provider and is associated with the CIPSAM process, which directs
socket requests to a specific CLIM. If the attribute is set to "INET", only NonStop TCP/IP is
supportej. If the attribute is set to "DUAL", both NonStop TCP/IP onc}INonSfop TCP/IPvé are
supported.

Effect

The socket or socket nw call failed.

Recovery

For NonStop TCP/IP, specity address family as AF_INET.

For NonStop TCP/IPvé, specify address family as AF_DUAL.

EALREADY (4103)
EALREADY
Cause

An operation is already in progress. For accept nw and connect nw calls, there is already
an outstanding call on the socket. For the send_nw call, the send buffer is o|rec1dy full (see the

SO_SNDBUF option of the setsockopt, setsockopt_nw (page 184) call for increasing the size of
the send buffer).

Effect
The call failed.
Recovery

Wait for the operation to complete and retry the call.

EBADF (4009)
EBADF
Cause

The filedes or socket parameter specified in the call contained an invalid file descriptor.
Effect

The call failed.

Recovery

Correct the file descriptor specification in the call and retry the call.
EBADSYS (4196)

EBADSYS

244 Socket Errors

Cause

Either an application attempted to write directly to the NonStop TCP/IPvé or NonStop TCP/IP
process, or an internal error occurred in one of the socket routines.

Effect
The operation failed.
Recovery

Direct writes to the NonS’ro,o TCP/IP or NonStop TCP/IP [)rocess are not permitted; use the socket
calls. However, if the problem appears to be an internal socket error, contact your service
provider.

ECONNABORTED (4119)
ECONNABORTED
Cause
A connection was aborted by the internal software on your host machine.
Effect
The connection was closed.
Recovery

Close the socket. Reestablish the connection using the socket, bind, and connect calls. If
the problem persists, contact your service provider.

ECONNREFUSED (4127)
ECONNREFUSED
Cause

The remote host rejected the connection request. This error usually results from an attempt to
connect to a service that is inactive on the remote host.

Effect
The connect call failed.
Recovery

Start the server on the remote host. Close the local socket. Reestablish the connection using the
socket, bind, and connect calls.

ECONNRESET (4120)
ECONNRESET
Cause
The peer process reset the connection before the operation completed.
Effect
The connect call failed.
Recovery
Close the local socket. Reestablish the connection using the socket, bind, and connect calls.

EDESTADDRREQ (4105)
EDESTADDRREQ
Cause

Destination address required. A required address was omitted from an operation on a transport
end point.

Effect
The call failed.

245

Recovery
Retry the call with a valid destination address.

EEXIST (4017)
EEXIST
Cause

Object exists. An existing okzjed was sEecified in an inappropriate context, such as attempting
to add a route entry that had already been added.

Effect

The call failed.

Recovery

Retry the call with a valid object name.

EFAULT (4014)
EFAULT
Cause
The system encountered a memory access fault in attempting to use an argument of the call.
Effect
The call failed.
Recovery
Contact your service provider.

EHAVEOOB (4195)
EHAVEOOB
Cause

Out-of-band data is pending. Before receiving or sending normal data, you must clear the
out-of-band data by calling recv with the MSG_00B flag set.

Effect

The call failed.

Recovery

Call recv with the MSG_00B flag set to read the out-of-band data.

EHOSTDOWN (4128)
EHOSTDOWN
Cause
The destination host is present, but it is not responding.
Effect
The call failed.
Recovery
Correct the problem in the destination host and retry the call.

EHOSTUNREACH (4129)
EHOSTUNREACH
Cause

No route to host. A transport provider operation was attempted to an unreachable host.
Effect
The call failed.

246 Socket Errors

Recovery

Ensure that you have specified a valid hostname or address. If so, ensure that the remote host
can be reached from the local host.

EINPROGRESS (4102)
EINPROGRESS
Cause

Operation now in progress. A connect nw call was attempted on a non-blocking socket where
connect_nw had already been called on that socket.

Effect

The call failed.

Recovery

Wait and retry the operation.

EINTR (4004)
EINTR
Cause

While a process was in the sleep mode waiting for an event, it received an unexpected signal,
not the wait-for event.

Effect

The call failed.
Recovery
Retry the call.

EINVAL (4022)
EINVAL
Cause
The specified socket was already bound to an address or the address 1len was incorrect.
Effect
The call failed.
Recovery

Corrective action depends on the function and the circumstances. For a list of valid arguments,
see the description of the function that caused the error.

EIO (4005)
EIO
Cause

I/O error. Some physical 1/O error has occurred. In some cases, this error may occur on a call
following the one to which it actually applies.

Effect

The call failed.

Recovery

Examine the preceding calls. Retry the call.

EISCONN (4122)

EISCONN
Cause

Acallto sendto, t_sendto nw, recvfrom, recvfrom nw, ort_recvfrom nw was made
on a socket that was connected.

247

Effect
The call failed.
Recovery

Correct the call. For a connected socket, use send, send _nw, recv, or recv_nw.

EMFILE (4024)
EMFILE
Cause
The network manager attempted to add too many routes.
Effect
The call failed.
Recovery
Close some files and retry the call.

EMSGSIZE (4106)
EMSGSIZE
Cause

The message was too large to be sent automatically, as required by the socket options.
Effect

The call failed.

Recovery

Reduce the message size and retry the call.

ENAMETOOLONG (4131)
ENAMETOOLONG
Cause
The call specified a process or file name that exceeds the maximum allowable name length.
Effect
The call failed.
Recovery
Correct the process or file name and retry the call.

ENETDOWN (4116)
ENETDOWN
Cause
The network is down. The operation encountered a dead network.
Effect
The call failed.
Recovery
Contact the network manager.

ENETRESET (4118)
ENETRESET
Cause

The network dropped the connection because of a reset. The host you were connected to failed
and rebooted.

Effect
The call failed, and all connections to the specified remote host were closed.

248 Socket Errors

Recovery

Close the sockets using the close call. Reestablish the connections using the socket, bind,
connect, and accept calls and retry the call.

ENETUNREACH (4117)
ENETUNREACH
Cause
The specified remote network was unreachable.
Effect
The interface is down.
Recovery
Retry the calll.

ENOBUFS (4121)
ENOBUFS
Cause
There was not enough buffer space available to complete the call.
Effect
The call failed.
Recovery
Retry the calll.

ENOMEM (4012)
ENOMEM
Cause
Insufficient memory was available to complete the call.
Effect
The call failed.
Recovery
Retry the calll.

ENOPROTOOPT (4108)
ENOPROTOOPT
Cause

A call to get sockopt, getsockopt nw, setsockopt, or setsockopt nw specified an
option that was unknown to the specified protocol.

Effect

The call failed.

Recovery

Specify the correct operation or protocol and retry the call.

ENOSPC (4028)
ENOSPC
Cause

The call required the addition of a filter and the adapter does not have sufficient memory to
complete the request.

Effect
The call failed.

249

Recovery
Reduce the number of connect and/or 1isten calls.

ENOTCONN (4123)
ENOTCONN
Cause
The specified socket was not connected.
Effect
The call failed.
Recovery
Ensure that the socket is connected and retry the operation.

ENOTSOCK (4104)
ENOTSOCK
Cause

A socket operation was attempted on an object that is not a socket.
Effect

The call failed.

Recovery

Specify a valid socket and retry the operation.

ENXIO (4006)
ENXIO
Cause

The call specified an unknown device or the request was outside of the device capabilities.
Effect

The call failed.

Recovery

Correct the call using a known interface device or configure the desired interface device and
retry the call.

EOPNOTSUPP (4111)
EOPNOTSUPP
Cause

The operation is not supported on a transport end point. For example, the application tried to
accept a connection on a datagram transport end point.

Effect

The call failed.

Recovery

Specify a valid transport end point and retry the call.

EPERM (4001)
EPERM
Cause

The specified 1/O control operation cannot be performed by a nonprivileged user. Only
applications whose process access ID is in the SUPER group (user ID 255,n) can perform the
operations that alter network parameters.

250 Socket Errors

Effect
The call failed.
Recovery

Use the Subsystem Control Facility (SCF) ALTER command (or its programmatic equivalent), rather
than socket calls. See the TCP/IP Configuration and Management Manual or the TCP/IP
Management Programming Manual for a description of the ALTER command.
EPFNOSUPPORT (4112)
EPFNOSUPPORT
Cause

The specified protocol family is not supported. It has not been configured into the system or no
implementation for it exists. The protocol family is used for the Internet protocols.

Effect

The call failed.

Recovery

Specify AF_INET and retry the operation.

EPIPE (4032)
EPIPE
Cause

A write or send call was attempted on a local socket that had been previously closed with
the shutdown call.

Effect
The call failed.
Recovery

Reestablish the connection using the socket, bind, and connect calls and retry the write
or send call.

EPROTONOSUPPORT (4109)
EPROTONOSUPPORT
Cause
The protocol specified in a call to socket or socket nw is not supported.
Effect
The call failed.
Recovery

For protocol, specify a number in the range O to 255, excluding the values 1, 6, and 17 (the
values assigned to ICMP, TCP, and UDP, respectively).

EPROTOTYPE (4107)
EPROTOTYPE
Cause

The protocol specified does not support the semantics of the socket type requested.

Effect

The call failed.

Recovery

Retry the call using the proper protocol type.

ERANGE (4034)

ERANGE

251

Cause

A numeric specification in the call is not within the allowable range.
Effect

The call failed.

Recovery

Correct the faulty specification and retry the calll.

ESHUTDOWN (4124)
ESHUTDOWN
Cause

The operation could not be performed because the specified socket was already shut down.
Effect

The call failed.

Recovery

Reopen the remote socket using the open, bind, and accept calls. Reestablish the connection
using a call o connect or connect_nw.

ESOCKTNOSUPPORT (4110)
ESOCKTNOSUPPORT
Cause

The socket type specified in a call to socket or socket nw is not supported.
Effect

The call failed.

Recovery

Specify socket type as SOCK_STREAM, SOCK_DGRAM, or SOCK_RAWN.

ESRCH (4003)
ESRCH
Cause

An accept nw2 call was issued on a socket that had been shut down or closed.
Effect

The call failed.

Recovery

Close all sockets associated with the connection. Attempt to reestablish the connection with the
socket nw, bind nw, accept nw, socket nw, and accept nw2 calls. Each of these calls
should be followed by an AWAITIOX call to ensure proper completion.
ETIMEDOUT (4126)
ETIMEDOUT
Cause
The connection timed out before the operation completed.
Effect
The call failed.
Recovery

Close the local socket. Rebuild the local socket using the socket and bind calls. Call connect
or connect_nw to reestablish the connection.

252 Socket Errors

EWOULDBLOCK (4101)

EWOULDBLOCK
Cause

A recv (MSG_OOB) or recv_nw (MSG_OOB) call was issued with the MSG_0OB flag set, but

there was no out-of-band data to read.

Effect
The call failed.
Recovery

Execute a recv or recv_nw call without setting the MSG_00B flag. If the recv or recv_nw
call fails with an EHAVEOOB value in errno, call recv or recv_nw with the MSG_00B flag set.

Table 21 Socket Errors by Number and Name

Error Number Error Name Error Number Error Name

4001 EPERM 4109 EPROTONOSUPPORT
4003 ESRCH 4110 ESOCKTNOSUPPORT
4004 EINTR 4111 EOPNOTSUPP
4005 EIO 4112 EPFNOSUPPORT
4006 ENXIO 4113 EAFNOSUPPORT
4009 EBADF 4114 EADDRINUSE
4012 ENOMEM 4115 EADDRNOTAVAIL
4013 EACCES 4116 ENETDOWN

4014 EFAULT 4117 ENETUNREACH
4017 EEXIST 4118 ENETRESET
4022 EINVAL 4119 ECONNABORTED
4024 EMFILE 4120 ECONNRESET
4028 ENOSPC 4121 ENOBUFS

4032 EPIPE 4122 ETSCONN

4034 ERANGE 4123 ENOTCONN

4101 EWOULDBLOCK 4124 ESHUTDOWN
4102 EINPROGRESS 4126 ETIMEDOUT
4103 EALREADY 4127 ECONNREFUSED
4104 ENOTSOCK 4128 EHOSTDOWN
4105 EDESTADDRREQ 4129 EHOSTUNREACH
4106 EMSGSIZE 4131 ENAMETOOLONG
4107 EPROTOTYPE 4195 EHAVEOOB

4108 ENOPROTOOPT 4196 EBADSYS

253

Index

Symbols
$SYSTEM.ZTCPIP.HOSTS

See HOSTS file , 26
$SYSTEM.ZTCPIP.RESCONF see RESCONEF file
$ZTCO process, 30
/usr/ include directory, 33
=NETWARE"PROCESS*NAME, 29
=TCPIP*HOST*FILE, 26
=TCPIP*NETWORKM"FILE, 29
=TCPIP"PROCESS*NAME, 29
=TCPIP*"PROTOCOL"FILE, 29
=TCPIP*RESOLVER*NAME, 29
=TCPIP*SERVICE"FILE, 29

A

accept function, 37, 89

accept_nw function, 37, 91

accept_nw1 function, 94

accept_nw?2 function, 95

accept_nw3 function, 97

ADD command, DEFINE, round-robin filtering, 30

Address family
AF_INET functions, porting, 56, 57
AF_INET structures, porting, 54, 55
AF_INET, name changes for porting, 54
AF_INET6, 49
AF_INET6 functions, porting, 56, 57
AF_INET6 structures, porting, 54, 55
AF_INET6, name changes for porting, 54

Alias
for hostname, 66
for network name, 71
for protocol name, 73
for service name, 77

All nodes multicast address, 44

ARP
I/O control operations, 64, 65
indicating no support, 69

arpreq data structure, 64, 65

Attributes
=NETWARE"PROCESS*NAME, 29
=TCPIP*"HOST"FILE, 26
=TCPIP*NETWORK"FILE, 29
=TCPIP*PROCESS*NAME, 29
=TCPIP*PROTOCOL"FILE, 29
=TCPIP*RESOLVER*NAME, 29
=TCPIP*SERVICE"FILE, 29

AWAITIO procedure see Guardian procedures

B

Backing up a socket, 72

Basic program steps, 35

Binary format
converting from dotted decimal, 134, 136
converting to dotted decimal, 133, 137, 139

254 Index

bind function

definition, 98

use of, 36
bind_nw function, 98
Broadcast address

error, 243

getting, 200

in data structure, 69

sefting, 200

usage guidelines, 188
Broadcasting and UDP ports, 100
Broadcasting packet, 188

C

C and TAL mixed programming, 87
C functions see Socket routines see Support routines
Case-sensitive routines, 85
Changes required when porting, 32
Checking for connections
accept routine, 89
listening for, defined, 26
on nowait socket, 91
passive connect, 26
server, 39
socket routines, 82
Checkpointing, socket_backup, 193
Class map, 30
Class map;PTCPIP*FILTER*KEY define; DEFINE
filter key, 29
Client
basic program steps, 35
defined, 25
starting or running, 29
Closing sockets, 36
Coexistence, NonStop TCP/IP and NonStop TCP/IPv6,
24
Commands for 1/O control, 199
Commonly used IP protocol numbers, 241
connect function
definition, 102
use of, 36
connect_nw function, 102
Connected socket, sending data nowait, 173, 175
Connections
accepting, 37, 89
accepting nowait, 91, 95, 97
actively checking for, 37
and socket routines, 81
checking for, 39
checking for nowait, 91
closing, 185, 190
creating, and servers, 26
creating, socket routine, 102
creating, socket routines, 82
high-volume, adjusting for, 185
identifying, 31

initiating, 43

keep alive, 185

passive, 26

passively checking for, socket routine, 91, 94

setting maximum pending TCP, 153
Control operations, socket, 193
Converting service name to port number, 76
CRE, requirements for TAL, 87
CRE-dependent routines, 81
CRE-independent routines, 81
Creating a socket, 35

D

Data structures
arpreq, 64, 65
hostent, 66
if_ nameindex, 67
ifreq, 68
in6_addr, 70
in_addr, 69
ip_mreq, 70
ipv6_mreq, /1
netent, /1
open_info_message, 72
protent, /3
rtentry, /4
send_nw_str, 75
sendto_recvfrom_buf, 76
servent, 76
sockaddr, 77, 241
sockaddr_in, 78, 79, 241
sockaddr_iné, 78
sockaddr_storage, 79
summary of (TCP/IP), 63
DEFINE
port ranges for round-robin filtering, 29
round robin, 29
DEFINE command see also DEFINE names
resolving file names, 29
using, 29
DEFINE names
=CIP*COMPAT"ERROR, 30
=TCPIP*"HOST"FILE, 29
=TCPIP*NETWORK"FILE, 29
=TCPIP*NODE"FILE, 29
=TCPIP*"PROCESS*NAME, 29, 30
=TCPIP*PROTOCOL"FILE, 29
=TCPIP*RESOLVER*NAME, 29
=TCPIP*SERVICE"FILE, 29
runtime entry values, 30
DEVICE_GETINFOBYNAME_ procedure see Guardian
procedures
DEVICEINFO
See DEVICE_GETINFOBYNAME_, 43
Directive, include, 62
directory, /usr/ include, 33
Domain Name resolver, 26
Domain Name server, 26
Dotted decimal format

converting from binary, 133, 137, 139
converting to binary, 134, 136

E
EACCES error

in bind, bind_nw library routines, 100

in sendto library routine, 178

in sendto64_ library routine, 180

in sendto_nw library routine, 181

in sendto_nw64_ library routine, 183
EADDRINUSE error

in accept_nw2 library routine, 96

in accept_nw3 library routine, 98

in bind, bind_nw library routines, 99
EADDRNOTAVAIL error

in bind, bind_nw library routines, 99
EAFNOSUPPORT error

in inet_ntop library routine, 139

in inet_pton library routine, 140

in socket, socket_nw library routines, 193
EALREADY error

in accept_nw library routine, 92

in accept_nw1 library routine, 95

in accept_nw2 library routine, 96

in accept_nw3 library routine, 98

in connect, connect_nw library routines, 103

in send library routine, 167

in send64_ library routine, 169

in send_nw library routine, 171

in send_nw?2 library routine, 174

in send_nw2_64_ library routine, 176

in send_nwé4_ library routine, 173
ECONNREFUSED error

in connect, connect_nw library routines, 103
ECONNRESET error

in accept library routine, 90

in accept_nw library routine, 92

in accept_nw]1 library routine, 95

in accept_nw2 library routine, 96

in accept_nw3 library routine, 98

in recv, recv_nw library routines, 155

in recv64_, recv_nw6b4_ library routines, 157

in send library routine, 167

in send64_ library routine, 169

in send_nw library routine, 171

in send_nw?2 library routine, 174

in send_nw2_64_ library routine, 176

in send_nwé4_ library routine, 173
EHAVEOORB error

in recv, recv_nw library routines, 155

in recv64_, recv_nwb4_ library routines, 157

in send library routine, 168

in send64_ library routine, 169

in send_nw library routine, 171

in send_nw?2 library routine, 174

in send_nw2_64_ library routine, 176

in send_nwé4_ library routine, 173
EINVAL error

in accept library routine, 90

255

in sendto64_ library routine, 180

in sendto_nw library routine, 181, 205

in sendto_nw64_ library routine, 183

in t_sendto_nw64_ library routine, 207
ENOBUF error

in accept_nw2 library routine, 96

in accept_nw3 library routine, 98
ENOMEM error

in if_indextoname library routine, 132
ENOPROTOORPT error

in getsockopt, getsockopt_nw library routines, 130
ENOSPC error, in inet_ntop library routine, 139
ENOTCONN error

in getpeername, getpeername_nw library routines, 122

in recv, recv_nw library routines, 155

in recv64_, recv_nwb4_ library routines, 157

in send library routine, 167

in send64_ library routine, 169

in send_nw library routine, 171

in send_nw?2 library routine, 174

in send_nw2_64_ library routine, 176

in send_nwé4_ library routine, 173

in shutdown, shutdown_nw library routines, 189

in socket_get_info library routine, 195
ENV COMMON, TAL compilation requirement, 87
Environments, using both, 24
ENXIO error

in if_indextoname library routine, 132
EPERM error

in socket_ioctl, socket_ioctl_nw library routines, 198
EPROTONOSUPPORT error

in socket, socket_nw library routines, 193
errno external variable, 86, 243
Errors, 85, 243

in accept_nw library routine, 92

in accept_nw]1 library routine, 95

in accept_nw2 library routine, 96

in accept_nw3 library routine, 98

in bind, bind_nw library routines, 100

in connect, connect_nw library routines, 103

in gethostname library routine, 114

in getpeername, getpeername_nw library routines, 122

in getsockname, getsockname_nw library routines, 127

in if_indextoname library routine, 132

in recvfrom library routine, 159

in recvfromé4_ library routine, 161

in recvfrom_nw library routine, 163, 202

in recvfrom_nw64_ library routine, 165

in send library routine, 167

in sendé4_ library routine, 169

in send_nw library routine, 171

in send_nw?2 library routine, 174

in send_nw2_64_ library routine, 176

in send_nwé4_ library routine, 173

in sendto library routine, 178

in sendto64_ library routine, 180

in sendto_nw library routine, 181, 205

in sendto_nw64_ library routine, 183

in shutdown, shutdown_nw library routines, 189

in socket_get_info library routine, 195

in socket_ioctl, socket_ioctl_nw library routines, 198

in t_recvfrom_nwé4_ library routine, 204

in t_sendto_nw64_ library routine, 207
EISCONN error

in accept_nw2 library routine, 96

in accept_nw3 library routine, 98

in connect, connect_nw library routines, 103

in recvfrom library routine, 159

in recvfromé4_ library routine, 161

in recvfrom_nw library routine, 163, 202
in recvfrom_nw64_ library routine, 165
in sendto library routine, 178

in sendto64_ library routine, 180

in sendto_nw library routine, 181, 205

in sendto_nw64_ library routine, 183

in t_recvfrom_nwé4_ library routine, 204
in t_sendto_nw64_library routine, 207

EMSGSIZE error

in send library routine, 167

in sendé4_ library routine, 169

in send_nw library routine, 171

in send_nw?2 library routine, 174

in send_nw2_64_ library routine, 176
in send_nwé4_ library routine, 173

in sendto library routine, 178

in sendto64_ library routine, 180

in sendto_nw library routine, 181, 205
in sendto_nw64_ library routine, 183
in socket_get_info library routine, 195
in t_sendto_nw64_ library routine, 207

ENETUNREACH error

in connect, connect_nw library routines, 103
in sendto library routine, 178

256 Index

incompatible numbers, 34
socket, 86

ERSCH error

in accept_nw2 library routine, 96
in accept_nw3 library routine, 98

ESHUTDOWN error

in recv, recv_nw library routines, 155

in recv64_, recv_nw6b4_ library routines, 157
in recvfrom library routine, 159

in recvfromé4_ library routine, 161

in recvfrom_nw library routine, 163, 202
in recvfrom_nwé4_ library routine, 165
in send library routine, 167

in send64_ library routine, 169

in send_nw library routine, 171

in send_nw?2 library routine, 174

in send_nw2_64_ library routine, 176

in send_nwé4_ library routine, 173

in sendto library routine, 178

in sendto64_ library routine, 180

in sendto_nw library routine, 181, 205

in sendto_nw64_ library routine, 183

in socket_get_info library routine, 195

in t_recvfrom_nwé4_ library routine, 204
in t_sendto_nwé64_ library routine, 207

ESOCKTNOSUPPORT error
in socket, socket_nw library routines, 193
Ethernet interface, 49
ETIMEDOUT error
in connect, connect_nw library routines, 103
in recv, recv_nw library routines, 155
in recv64_, recv_nwb4_ library routines, 157
in send library routine, 167
in sendé4_ library routine, 169
in send_nw library routine, 171
in send_nw?2 library routine, 174
in send_nw2_64_ library routine, 176
in send_nwé4_ library routine, 173

F
fentl system call, 34
File names, resolving for TCP/IP, 29
File-system errors, 86
FILE_GETINFO procedure see Guardian procedures
Filter key, round-robin, 29
freeaddrinfo function, 104
freehostent function, 105
Functions see Socket routines
See Support routines, 81

G

gai_strerror function, 105
gaierror function, 130
Gateway for routing, 75
getaddrinfo function, 107
gethostbyaddr function
=TCPIP*HOST*FILE attribute, 27
definition, 109
gethostbyname function
=TCPIP*HOST*FILE attribute, 27
definition, 110
gethostbyname?2 function, 112
gethostid function, 113
gethostname function, 113
getipnodebyaddr function, 115
getipnodebyname function, 116
getnameinfo function, 117
getnetbyaddr function, 119
getnetbyname function, 120
getpeername_nw function, 121
getprotobyname function, 122
getprotobynumber function, 123
getservbyname function, 124
getservbyport function, 125
getsockname function, 126
getsockname_nw function, 126
getsockopt function, 128
getsockopt_nw function, 128
Guardian procedures
AWAITIO, 171, 175, 177
AWAITIOb64, 173
AWAITIOX, error checking, 86
CLOSE, 36
DEVICE_GETINFOBYNAME_, 43

FILE_GETINFOBYNAME, 86
H

h_errno external variable
use by resolver, 28
where to find, 243
Header files, 62
heap management, 87
Host address in structure, 66
Host order, 32
host_file_gethostbyaddr function
=TCPIPA"HOST*FILE attribute, 28
description of, 109
host_file_gethostbyname function
=TCPIPA"HOST*FILE attribute, 28
description of, 110
HOST_NOT_FOUND error

in gethostbyaddr and host_file_gethostbyaddr library

routines, 110

in gethostbyname and host_file_gethostbyname library

routines, 111

in getipnodebyaddr library routine, 115
in getipnodebyname library routine, 117

hostent data structure, 66
Hostname in structure, 66
Hosts

getting ID for local, 113

getting internet address by name, 110

getting name by address, 109
getting official name, 113
HOSTS file
$SYSTEM.ZTCPIP.HOSTS file, 28
=TCPIP*HOST*FILE attribute, 28
resolving names with, 28

|
/O
control operations, 199
nowait and non-blocking, 32
Identifying a connection in TCP, 31
if_freenameindex function, 130
if_indextoname function, 131
if_nameindex function, 132
if_nametoindex function, 133
ifreq data structure, 67, 68
inbaddr_any, 54

in_addr data structure, 69, 70, 71, 77

INADDR_ANY, 54

Include directive, 62

Include files, 33

inet_addr function, 134
inet_Inaof function, 135
inet_makeaddr function, 135
inet_netof function, 136
inet_network function, 136
inet_ntoa function, 133, 137, 139
inet_ntop function, 138
inet_pton function, 139
Interface address, 69

Interface request structure, 67, 68
Internet address

combining network and local portions, 135

converting format of, 133, 134, 137, 139

getting by hostname, 110

getting hostname for, 109

in data structure, 66, 69, 70, 71, 77,78, 79

of socket remote connection, 121

port number associated, 78, 79

separating local portion, 135

separating network portion, 136

sockaddr_in, 241

socket bound to, 126
IP

defined, 25

programming using raw sockets, 41
IP protocol numbers

commonly used, 241

well-known, 241
IP_ADD_MEMBERSHIP, 186, 187
IP_DROP_MEMBERSHIP, 187
IP_MULTICAST_IF, 129, 186, 187
IP_MULTICAST_LOOQRP, 129, 186, 187
IP_MULTICAST_TTL, 129, 186, 187
IP_OPTIONS socket option (TCP/IP), 186
IPPROTO_ICMP socket level (TCP/IP), 185
IPPROTO_IP socket level (TCP/IP), 185
IPPROTO_IPV6 socket level (TCP/IP), 185
IPPROTO_RAW socket level (TCP/IP), 185
IPPROTO_TCP socket level (TCP/IP), 185
IPV6_JOIN_GROUP, 186, 187
IPV6_LEAVE_GROUP, 186, 187
IPV6_MULTICAST_HORPS, 186, 187
IPV6_MULTICAST_IF, 186, 187
IPV6_MULTICAST_LOOP, 186, 187
IPV6_VO6ONILY, 129, 186

L
Large-memory model routines, 81
Library headers, 62
Library routines, 81 see also Support routines
See Socket routines, 81
listen function
description of, 153
use of, 37
LISTNER process
description of, 31
server started by, 37
LNP
See logical network partitioning (LNP), 43
Local address, selecting from internet address, 135
Locating TCP/IP processes, 43
Logical network partitioning (LNP), 43, 101
Loopback address, 188
Loopback interface, 69
Iwres_freeaddrinfo function, 140
Iwres_freehostent function, 141
lwres_gai_strerror function, 141
Iwres_getaddrinfo function, 142

258 Index

Iwres_gethostbyaddr function, 144
Iwres_gethostbyname function, 145
Iwres_gethostbyname?2 function, 146
Iwres_getipnodebyaddr function, 147
lwres_getipnodebyname function, 149
lwres_getnameinfo function, 150
Iwres_hstrerror function, 152

M

Macros, address and scope-festing, 53
Management, heap, 87
Mapping socket to address, 98
Maximum TCP connections, 153
Metric, interface, 69
Multicast

changes for IPv6, 59

setsockopt optname, 129, 186, 187

N

Name resolution, 26
Name server see Domain Name server
nb_sent in data structure, 75
netent data structure, 71
Network address
combining with local address, 135
selecting from internet address, 136
Network name
getting by address, 119
getting number for, 120
netent data structure, 71
Network order, 32
NETWORKS file, 120, 121
NO_ADDRESS error

in gethostbyname and host_file_gethostbyname library

routines, 111
in getipnodebyname library routine, 117
NO_RECOVERY error

in gethostbyname and host_file_gethostbyname library

routines, 111
in getipnodebyaddr library routine, 115
in getipnodebyname library routine, 117
Non-blocking 1/0, 32
NonStop process pairs
socket_backup, 193
socket_get_info , 194
socket_get_len, 195
socket_get_open_info , 196
Nowait call errors, 86
Nowait I/O, 32
Nowait operations
call errors, 86
for TCP clients and servers, 39
for UDP clients and servers, 41
socket routines for, 85
tag parameter used in, 39

O

open_info_message data structure, 72
Options

getting socket, 128 sending data on waited, 177, 179

setting socket, 184 recv function
Order, host or network, 32 definition, 153
Out-of-band data pending, 33 use of, 36
recv64_ function
P definition, 155
Packet to broadcast address, 188 recv_nw function, 153
Packets routed through gateway, 74 recv_nw64_ function, 155
Parallel Library TCP/IP, 23 recvirom function
PARAMH file, 243 definition, 158, 160
perror, not supported for TAL sockets, 85 incompatibility with 4.3BSD, 163, 166, 202, 204
PF_INET, 54 use of, 36
PF_INET6, 54 RESCONF file
Point-to-point link, 69 default name, 27
Pointers, TAL handling of, 87 specifying name of, 30
Port number Resolver, using, 26
for service, 124 Resolving file names
from service name, 76 using DEFINE commands, 29
in data structure, 78, 79 with a HOSTStype file, 28
of remote connection, 121 Return value, 86
overview, 31 Round-robin filtering, defining port ranges for, 29
service on, 125 Route entry, 74
socket bound to, 126 Routines
well-known, 241 CRE-dependent, 81
PORTCONEF file, 31 CRE-Independent, 81
Porting programs, 32 large-memory model, 81
Primary server, 28 socket, 81
Procedures socket library, 81
AWAITIO, 171, 175, 177 support, 81
AWAITIO64, 173 wide-data model, 81
AWAITIOX, error checking, 86 rtentry data structure, 74
CLOSE, 36 Running clients or servers, 29
DEVICE_GETINFO, 43 Runtime entry values, DEFINE names, 30
FILEINFO_GETINFOBYNAME_, 86
Process pairs S
socket_backup, 193 sb_sent field, 76
socket_get_info , 194 Scope testing, macros;Address testing, macros, 53
socket_get_len, 195 Secondary server, 28
socket_get_open_info , 196 select routine, 33
Programming considerations, 43 Semantics, 85
Protocol name send function
associated with service, 77 definition, 166
getting for number, 123 use of, 36
in data structure, 73 send64_ function
Protocol numbers definition, 168
getting by name, 122 send_nw function, 169
structure for, 73 send_nw2 function, 173
protoent data structure, 73 send_nw2_64_ function, 175
PTCPIPAFILTER™KEY, 101 send_nwé4_ function, 171
PTCPIPAFILTERATCPAPORTS, 29, 30, 101 send_nw_str data structure, 75
PTCPIPAFILTER*UDPAPORTS, 29, 30, 101 sendto function
definition, 177, 178
R use of, 36
Raw sockets sendto64_ function
defined, 41 definition, 179
limitations, 41 sendto_nw function, 180
receiving data on nowait, 161, 164, 201, 203 sendto_nwé4_ function, 182
receiving data on waited, 158, 160 sendto_recvfrom_buf data structure, 75, 76
sending data on nowait, 180, 182, 204, 206 servent data structure, 76

259

Server
basic program steps, 37
defined, 25
invoked by LISTNER, 31, 37
primary, 28
secondary, 28
starting or running, 29
tertiary, 28
Services
converting names of, 76
getting name from port number, 125
port number for, 124
types of, 25
SERVICES file
getservbyname, 125
getservbyport, 126
port numbers in, 241
relationship with LISTNER, 31
setsockopt function, 184
setsockopt_nw function, 184
shutdown function
definition, 189
use of, 36
shutdown_nw function, 189
sin_family field, 78, 79
SO_BROADCAST socket option, 185
SO_DONTROUTE socket option, 185
SO_ERROR socket option, 185
SO_KEEPALIVE socket option, 185
SO_LINGER socket option, 185
SO_OOBINLINE socket option, 185
SO_RCVBUF socket option, 185
SO_REUSEADDR socket option, 185
SO_SNDBUF socket option, 185
SO_TYPE socket option, 185
sock_close_reuse_nw, 190
sockaddr, 241
sockaddr_in, 241
Socket backup, 72
Socket control limitation, UDP, 199
Socket errors see Errors
socket function, 191
Socket 1/O structure, 67, 68
Socket levels (TCP/IP)
IPPROTO_ICMP, 185
IPPROTO_IP, 185
IPPROTO_RAW, 185
IPPROTO_TCP, 185
IPPROTO_UDP, 185
SOL_SOCKET, 185
User protocol, 185
Socket options (TCP/IP)
IP_OPTIONS, 185
SO_BROADCAST, 185
SO_DONTROUTE, 185
SO_ERROR, 185
SO_KEEPALIVE, 185
SO_LINGER, 185
SO_OOBINLINE, 185

260 Index

SO_RCVBUF, 185
SO_REUSEADDR, 185
SO_SNDBUF, 185
SO_TYPE, 185
TCP_NODELAY, 185

Socket routines, 81

accept, 89
accept_nw, 91
accept_nw2, 95
accept_nw3, 97
bind, 98

bind_nw, 98

connect, 102
connect_nw, 102
data structures used by, 64
errors, 85
freeaddrinfo, 104
freehostent, 105
gai_strerror, 105
gaierror, 130
getaddrinfo, 107
getipnodebyaddr, 115
getipnodebyname, 116
getnameinfo, 117
getpeername, 121
getpeername_nw, 121
getsockname, 126
getsockname_nw, 126
getsockopt, 128
getsockopt_nw, 128
if_freenameindex, 130
if_indextoname, 131
if_nameindex, 132
if_nametoindex, 133
inet_ntop, 138
inet_pton, 139

listen, 153

nowait operations, 85
recv, 153

recv64_, 155
recv_nw, 153
recv_nwb4_, 155
recvfrom, 158, 161
recvfromé4_, 160
recvfrom_nwé4_, 164
send, 166, 169
send64_, 168
send_nw, 166, 168, 169
send_nw?2, 173
send_nw2_64_, 175
send_nwé4_, 171
sendto, 177
sendto64_, 179
sendto_nw, 180
sendto_nwb64_, 182
setsockopt, 184
setsockopt_nw, 184
shutdown, 189
shutdown_nw, 189

socket, 191

socket_backup, 193

socket_get_info, 194

socket_get_len, 195

socket_get_open_info , 196

socket_iocil, 197

socket_ioctl_nw, 197

socket_nw, 191

socket_set_inet_name, 200

t_recvfrom_nw, 201

t_recvfrom_nwé4_, 203

t_sendto_nw, 204

t_sendto_nwé4_, 206

waited operations, 85
socket_backup function, 193
socket_get_info function, 194
socket_get_len function, 195
socket_get_open_info function, 196
socket_ioctl function, 197
socket_ioctl_nw function, 197
socket_nw function, 191
socket_set_inet_name function, 200
Sockets

address to which bound, 126

binding, 98

closing, 36

connecting, 102

control operations on, 197

creating, 35, 191

error descriptions, 243

getting options, 128

I/O control operations, 199

library, defined, 25

mapping to addresses, 98

number, 36

port to which bound, 126

receiving data on connected TCP, 153, 155

receiving data on UDP or raw

nowait, 161, 164, 201, 203
waited, 158, 160

sending data on connected TCP, 166, 168, 169, 171

nowait, 173, 175
sending data on UDP or raw
nowait, 180, 182, 204, 206
waited, 177, 179
sefting options, 184
shutting down TCP, 189
using two environments, 24
SOL_SOCKET socket level, 185
SRL
defining for TCPSAM, 29
Starting clients or servers, 29
Stream-oriented protocol, 26
Structure changes, 54
Support routines
data structures used by, 64
errors, 85
gethostbyaddr, 109
gethostbyname, 110

gethostid, 113
gethostname, 113
getnetbyaddr, 119
getnetbyname, 120
getprotobyname, 122
getprotobynumber, 123
getservbyname, 124
getservbyport, 125
host_file_gethostbyaddr, 109
host_file_gethostbyname, 110
inet_addr, 134
inet_Inaof, 135
inet_makeaddr, 135
inet_netof, 136
inet_network, 136
inet_ntoa, 137
inet_ntop, 138
inet_pton, 139

Syntax descriptions, 85

T
t_sendto_nw function, 204
t_sendto_nwé4_ function, 206
Tag parameter, 39, 85
TAL
4-byte pointer requirement, 87
CRE requirements, 87
ENV COMMON for TAL compilation, 87
handling of functions returning pointers, 87
usage and bind requirements, 87
TAL and C mixed programming, 87
TAL socket library
functional limitations, 87
perror not supported, 85
TCP
defined, 25
identifying a connection, 31
nowait operations, 39
selecting a socket, 31
sending data on nowait socket, 173, 175
shutting down socket, 189
waited operations, 39
TCP retransmission timer variables, 188
TCP/IP process
locating by name, 43
name, 30
specifying name of, 200
TCP_MAXRXMT, 186, 187
TCP_MINRXMT, 186, 187
TCP_NODELAY socket option (TCP/IP), 186
TCP_RXMTCNT, 186, 187
TCP_SACKENA, 186
TCP_TOTRXMTVAL, 186, 187
Tertiary server, 28
Timer variables, 188
Trailers, 69
TRY_AGAIN error

in gethostbyname and host_file_gethostbyname library

routines, 111

261

in getipnodebyaddr library routine, 115
in getipnodebyname library routine, 117

U
uDP
defined, 25
nowait operations, 41
port and broadcasting, 100
receiving data on nowait socket, 161, 164, 201, 203
receiving data on waited socket, 158, 160
selecting a socket, 31
sending data on nowait socket, 180, 182, 204, 206
sending data on waited socket, 177, 179
socket control limitation, 199
UNIX
differences from Guardian environment, 32
signals, 33

Urgent data pending, 33
User protocol socket level (TCP/IP), 185
Using the DEFINE command, 29

\%%

Waited operations

for TCP clients and servers, 39

used by socket routines, 85
Well-known IP protocol numbers, 241
Well-known port number see Port number
Wide-data model routines, 81

262 Index

	HP NonStop TCP/IP Programming Manual
	Contents
	About This Document
	Supported Release Version Updates (RVUs)
	Intended Audience
	New and changed information for March 2014 (524521-020)
	New and changed information for February 2013 (524521-019)
	New and changed information for July 2012 (524521-018)
	New and changed information for February 2012 (524521-017)
	New and changed information for August 2011 (524521-016)
	New and Changed Information for October 2010 (524521-015)
	Changes and Additions for September 2010 (524521-014)
	Changes and Additions for March 2010 Update (524521-013)
	Changes and Additions for September 2008 Update (524521-012)
	Changes and Additions January 2007 Update (524521-010)
	Changes and Additions for the H06.05 RVU (February 2006, 524521-009)
	Changes and Additions for the G06.27 RVU (September 2005, 524521-007)
	Changes and Additions for the H06.03 RVU (July, 2005 524521-006)
	Correction Update (December 2004, 524521-005)
	Correction Update (September 2004, 524521-004)
	Manual Consolidation Update (March 2004, 524521-003)
	G06.22 RVU Update (December 2003, 524521-002)
	G06.20 RVU Update (May 2003, 524521-001)

	Document Organization
	Notation Conventions
	General Syntax Notation
	Notation for Messages
	Notation for Subnet
	Notation for Management Programming Interfaces

	Related Information
	Publishing History
	HP Encourages Your Comments
	Request for Comments (RFC) Statement

	1 Introduction to Programming to the Guardian Sockets Library
	NonStop TCP/IP Subsystems and the Guardian Sockets Application Program Interface (API)
	TCP/IP Programming Fundamentals
	Using NonStop TCP/IP and NonStop TCP/IPv6 or Parallel Library TCP/IP
	Using CIP
	Suppressing Compatibility Errors

	Types of Service
	The Socket Library Routines
	Servers and Clients

	Stream-Oriented Protocol Considerations
	Passive Connect Compared to Active Connect
	Domain Name Resolution
	Resolving Names With a Name Server
	Resolving Names by Using a HOSTS-Type File
	ND6HOSTD Process for NonStop TCP/IPv6

	Starting Clients and Servers
	Using the DEFINE Command
	LISTNER Process

	Port Numbers
	Network and Host Order

	Programming Using the Guardian Sockets Interface
	Porting Considerations
	Nowait I/O
	Differences Between UNIX and NonStop Server Implementations
	Asynchrony and Nowaited Operations
	Considerations for Using socket_nw

	Concurrency and Considerations for Blocking and Nonblocking
	Considerations for a Server Posting Receives

	Basic Steps for Programs
	NonStop TCP/IP, Parallel Library TCP/IP, and NonStop TCP/IPv6 Basic Steps
	Client Program
	Designating the NonStop TCP/IP, TCPSAM, or TCP6SAM Process Name
	Creating a Socket
	Binding a Socket
	Connecting a Socket
	Transferring Data
	Shutting Down and Closing a Socket

	Server Program
	Listening for Connections
	Accepting a Connection

	Server Programs Started by LISTNER

	TCP Client and Server Programs
	UDP Client and Server Programs

	Programmatic Interface to Raw Sockets
	Programming Considerations
	Process Names
	Multiple NonStop TCP/IP Processes and Logical Network Partitioning (LNP) (NonStop TCP/IPv6, H-Series and G06.22 and Later G-Series RVUs Only)

	Multicasting Operations
	Sending IPv4 Multicast Datagrams
	Receiving IPv4 Multicast Datagrams
	Datagram Protocols and Flow Control
	Optimal Ways to Deal With Connection Management
	Using LISTNER for Custom Applications

	Input/Output Multiplexing

	2 Porting and Developing IPv6 Applications (NonStop TCP/IPv6 and CIP Only)
	Using AF_INET6-Type Guardian Sockets for IPv6 Communications
	Using AF_INET6 Guardian Sockets for IPv4 Communications
	Using AF_INET6 Guardian Sockets to Receive Messages
	Address-Testing Macros
	Porting Applications to Use AF_INET6 Sockets
	Application Changes
	Making Name Changes
	Making Structure Changes
	in_addr Structure Changes for Protocol-Independent Applications
	sockaddr_in Structure Changes for IPv6 Applications

	Making Library Routine Changes
	gethostbyaddr Function Call
	gethostbyname Function Call
	inet_ntoa Function Call
	inet_addr Function Call

	Making Other Application Changes
	Comparing IP Addresses
	Comparing an IP Address to the Wild Card Address
	Using int Data Types to Hold IP Addresses
	Using Functions That Return IP Addresses
	Changing Socket Options

	Multicast Changes for IPv6
	Sending IPv6 Multicast Datagrams
	Receiving IPv6 Multicast Datagrams
	Dropping Membership in a Multicast Group

	3 Data Structures
	Library Headers
	Data Structures
	addrinfo
	arpreq
	hostent
	if_nameindex
	ifreq
	in_addr
	in6_addr
	ip_mreq
	ipv6_mreq
	netent
	open_info_message
	protoent
	rtentry
	send_nw_str
	sendto_recvfrom_buf
	servent
	sockaddr
	Usage Guidelines

	sockaddr_in
	sockaddr_in6
	sockaddr_storage

	4 Library Routines
	Socket Library Routines
	CRE-Dependent Socket Library
	CRE-Independent Socket Library

	Summary of Routines
	Syntax and Semantics of Socket Library Routines
	Nowait Routines
	Error Conditions
	Nowait Call Errors

	Interfacing TAL Programs to the Socket Library
	Procedure Prototypes
	Implications of the C Socket Library
	Usage/Bind Considerations
	TAL to pTAL Conversion Issues
	CRE Considerations

	Native Mode C/C++ Issues
	accept
	Errors
	Usage Guidelines
	Examples

	accept_nw
	Errors
	Usage Guidelines
	Example

	accept_nw1
	Errors
	Usage Guidelines

	accept_nw2
	Errors
	Usage Guidelines
	Example

	accept_nw3
	Errors
	Usage Guidelines

	bind, bind_nw
	Errors
	Usage Guidelines
	Examples

	connect, connect_nw
	Errors
	Usage Guidelines
	Examples

	freeaddrinfo
	Errors
	Usage Guidelines
	Examples

	freehostent
	Usage Guidelines

	gai_strerror
	Usage Guidelines
	Example
	Errors

	getaddrinfo
	Example
	Usage Guidelines

	gethostbyaddr, host_file_gethostbyaddr
	Errors
	Usage Guidelines

	gethostbyname, host_file_gethostbyname
	Errors
	Usage Guidelines
	Example

	gethostbyname2
	Errors
	Example
	Usage Guidelines

	gethostid
	Errors

	gethostname
	Errors

	getipnodebyaddr
	Usage Guidelines
	Errors

	getipnodebyname
	Example
	Usage Guidelines
	Errors

	getnameinfo
	Usage Guidelines
	Example
	Errors

	getnetbyaddr
	Errors
	Usage Guideline

	getnetbyname
	Errors
	Usage Guidelines

	getpeername, getpeername_nw
	Errors
	Usage Guidelines

	getprotobyname
	Errors
	Usage Guidelines
	Example

	getprotobynumber
	Errors
	Usage Guidelines
	Example

	getservbyname
	Errors
	Usage Guidelines

	getservbyport
	Errors
	Usage Guidelines

	getsockname, getsockname_nw
	Errors
	Usage Guidelines
	Examples

	getsockopt, getsockopt_nw
	Errors
	Usage Guidelines
	Examples

	if_freenameindex
	Errors
	Usage Guidelines
	Examples

	if_indextoname
	Errors
	Usage Guidelines
	Examples

	if_nameindex
	Errors
	Usage Guidelines
	Examples

	if_nametoindex
	Usage Guidelines
	Example

	inet_addr
	Errors
	Example

	inet_lnaof
	Errors

	inet_makeaddr
	Errors

	inet_netof
	Errors

	inet_network
	Errors

	inet_ntoa
	Errors

	inet_ntop
	Errors
	Usage Guidelines

	inet_pton
	Errors
	Usage Guidelines

	lwres_freeaddrinfo
	Usage Guidelines

	lwres_freehostent
	Usage Guidelines

	lwres_gai_strerror
	Errors
	Example
	Usage Guidelines

	lwres_getaddrinfo
	Errors
	Example
	Usage Guidelines

	lwres_gethostbyaddr
	Errors
	Example
	Usage Guidelines

	lwres_gethostbyname
	Errors
	Example
	Usage Guidelines

	lwres_gethostbyname2
	Errors
	Example
	Usage Guidelines

	lwres_getipnodebyaddr
	Errors
	Usage Guidelines

	lwres_getipnodebyname
	Errors
	Example
	Usage Guidelines

	lwres_getnameinfo
	Errors
	Example
	Usage Guidelines

	lwres_hstrerror
	Errors

	listen
	Errors
	Example

	recv, recv_nw
	Errors
	Usage Guidelines
	Example

	recv64_, recv_nw64_
	Errors
	Usage Guidelines
	Example

	recvfrom
	Errors
	Usage Guidelines
	Example

	recvfrom64_
	Errors
	Usage Guidelines
	Example

	recvfrom_nw
	Errors
	Usage Guidelines
	Examples

	recvfrom_nw64_
	Errors
	Usage Guidelines
	Examples

	send
	Errors
	Usage Guidelines
	Example

	send64_
	Errors
	Usage Guidelines
	Example

	send_nw
	Errors
	Usage Guidelines
	Example

	send_nw64_
	Errors
	Usage Guidelines
	Example

	send_nw2
	Errors
	Usage Guidelines
	Example

	send_nw2_64_
	Errors
	Usage Guidelines
	Example

	sendto
	Errors
	Usage Guidelines
	Examples

	sendto64_
	Errors
	Usage Guidelines
	Example

	sendto_nw
	Errors
	Usage Guidelines

	sendto_nw64_
	Errors
	Usage Guidelines
	Example

	setsockopt, setsockopt_nw
	Errors
	Usage Guidelines
	Examples

	shutdown, shutdown_nw
	Errors
	Usage Guidelines
	Example

	sock_close_reuse_nw
	Errors
	Usage Guidelines

	socket, socket_nw
	Errors
	Usage Guidelines
	Example

	socket_backup
	Errors
	Usage Guideline

	socket_get_info
	Examples
	Errors
	Usage Guideline

	socket_get_len
	Errors
	Usage Guideline

	socket_get_open_info
	Errors
	Usage Guidelines

	socket_ioctl, socket_ioctl_nw
	Errors
	Usage Guidelines
	Socket I/O Control Operations
	Examples

	socket_set_inet_name
	Errors
	Usage Guidelines

	t_recvfrom_nw
	Errors
	Usage Guidelines

	t_recvfrom_nw64_
	Errors
	Usage Guidelines

	t_sendto_nw
	Errors
	Usage Guidelines

	t_sendto_nw64_
	Errors
	Usage Guidelines

	5 Sample Programs
	Programs Using AF_INET Sockets
	AF_INET Client Stub Routine
	AF_INET Server Stub Routine
	AF_INET No-Wait Server Stub Routine
	C TCP Client Program
	Sample Program

	C TCP Server Program
	Sample Program

	Client and Server Programs Using UDP
	UDP Client Program
	UDP Server Program
	UDP Program for Sending Multicast Packets
	UDP Program for Receiving Multicast Packets

	TAL Echo Client Programming Example

	Using AF_INET6 Sockets
	AF_INET6 Client Stub Routine
	AF_INET6 Server Stub Program

	A Well-Known IP Protocol Numbers
	TCP and UDP Port Numbers

	B Socket Errors
	Index

